HW\#5

Due 2023/12/04

1.Derive the equation of state.

$$
\frac{\partial P}{\partial t}=-\bar{u} \cdot \nabla P-\gamma P \nabla \cdot \bar{u}
$$

Hint: starting from $\frac{d}{d t} \ln \left(P \rho^{-\gamma}\right)=0$ and combining with continuity equation.
2.Derive

$$
\left[\begin{array}{ccc}
\omega^{2}-V_{A}^{2} k_{\|}^{2}-\left(C_{s}^{2}+V_{A}^{2}\right) k_{\perp}^{2} & 0 & -C_{s}^{2} k_{\|} k_{\perp} \\
0 & \omega^{2}-V_{A}^{2} k_{\|}^{2} & 0 \\
-C_{s}^{2} k_{\|} k_{\perp} & 0 & \omega^{2}-C_{s}^{2} k_{\|}^{2}
\end{array}\right]\left(\begin{array}{l}
u_{1 x} \\
u_{1 y} \\
u_{1 z}
\end{array}\right)=0
$$

from the linearized MHD equations in the (ω, \bar{k}) domain by setting the background magnetic field in the z direction and wave vector on the $x z$ plane. V_{A} is the Alfvén speed and C_{S} is the sound speed.

