HW\#4

Due 2023/11/20

1. Show that

$$
\rho \frac{d \vec{u}}{d t}=-\nabla P+\rho_{c} \vec{E}+\vec{J} \times \vec{B}
$$

can be rewritten as

$$
\frac{\partial}{\partial t}\left(\rho \vec{u}+\frac{1}{C^{2}} \frac{\vec{E} \times \vec{B}}{\mu_{0}}\right)+\nabla \cdot\left(\rho \vec{u} \vec{u}+\left(P+\frac{1}{2} \epsilon_{0} E^{2}+\frac{B^{2}}{2 \mu_{0}}\right) \overrightarrow{1}-\left(\epsilon_{0} \vec{E} \vec{E}+\frac{\vec{B} \vec{B}}{\mu_{0}}\right)\right)=0
$$

First, you need to show that $\frac{\partial}{\partial t}(\rho \vec{u})+\nabla \cdot(\rho \vec{u} \vec{u})=\rho \frac{d \vec{u}}{d t}$ by using $\nabla \cdot(\vec{A} \vec{B})=(\nabla \cdot \vec{A}) \vec{B}+(\vec{A} \cdot \nabla) \vec{B}$

2. Show that

$$
\frac{\partial}{\partial t}\left(\frac{1}{2} \rho u^{2}+U_{\text {int }}\right)+\nabla \cdot\left(\left(\frac{1}{2} \rho u^{2}+U_{\text {int }}\right) \vec{u}+P \vec{u}+Q\right)=\vec{J} \cdot \vec{E}
$$

can be rewritten as

$$
\frac{\partial}{\partial t}\left(\frac{1}{2} \rho u^{2}+U_{\text {int }}+\frac{1}{2} \epsilon_{0} E^{2}+\frac{B^{2}}{2 \mu_{0}}\right)+\nabla \cdot\left(\left(\frac{1}{2} \rho u^{2}+U_{\text {int }}\right) \vec{u}+P \vec{u}+Q+\frac{\vec{E} \times \vec{B}}{\mu_{0}}\right)=0
$$

