HW\#2

1.(a) Determine the trajectory of a particle of mass m and charge q in uniform fields $\vec{E}=E_{x} \hat{x}$ and $\vec{B}=B_{z} \hat{Z}$ with the initial velocity $\vec{v}=v_{0} \hat{y}$, where $v_{0}=v_{\text {gyro }}+v_{E x B}$.
(b) Discuss and sketch the trajectories for the cases of $v_{\text {gyro }}>v_{E x B}$ and $v_{\text {gyro }}<v_{E x B}$.
2.Suppose the Earth's magnetic field strength in the equatorial plane is given by $B=B_{0}\left(R_{E} / r\right)^{3}$, where $B_{0}=0.3$ G, R_{E} is an earth radius, and r is the geocentric distance.
(a) Estimate the drift velocity and period for both a proton and an electron of 10 keV with a pitch angle 90° at $5 R_{E}$ in the equatorial plane.
(b) Compare answer (a) with the period of gravitation drift for the same particles.

