HW\#1

Due 2023/10/04
1.Show that the solution $\Phi(r)$ of the following ODE

$$
\nabla^{2} \Phi(r)-\frac{\Phi(r)}{\lambda_{D e}^{2}}=-\frac{1}{\epsilon_{0}} Q \delta(r)
$$

is

$$
\Phi(r)=\frac{Q}{4 \pi \epsilon_{0} r} \exp \left(-\frac{r}{\lambda_{D e}}\right)
$$

2.Calculate the Debye length and plasma parameter for
(a) ionosphere with $T_{e}=10^{3} \mathrm{~K}$ and $\mathrm{n}=10^{12} \mathrm{~m}^{-3}$
(b) solar wind with $T_{e}=10^{5} \mathrm{~K}$ and $\mathrm{n}=10^{7} \mathrm{~m}^{-3}$.
3.Derive $\Lambda_{D} \gg 1$ from the condition of $e \Phi \ll K_{B} T$, where Λ_{D} is the plasma parameter.

