trap-plus-precipitation

- → Higher frequency emission results from higher energy electrons, which have a smaller collision frequency than those responsible for the 17 GHz emission.
- \rightarrow The relative ratio of the radio flux produced by direct-precipitating and trap-precipitating electrons was also determined as q = 0.11.

 Imm, und mey dre consequentry less bilgrif multime ress

 Imm, und mey dre consequentry less bilgrif multime ress

 Imm, und mey dre consequentry less bilgrif multime ress

 Imm, und mey dre consequentry less bilgrif multime ress

 Imm, und mey dre consequentry less bilgrif multime ress

 Imm, und mey dre consequentry less bilgrif multime ress

 Imm, und mey dre consequence
 Imm ress

 Imm ress
 Imm ress
 Imm ress
 Imm ress

 Imm ress
 Imm ress
 Imm ress
 Imm ress
 Imm ress

 Imm ress
 Imm ress
 Imm ress
 Imm ress
 Imm ress
 Imm ress

 Imm ress
 Imm ress
 Imm ress
 Imm ress
 Imm ress
 Imm ress
 Imm ress
 Imm ress
 Imm ress
 Imm ress
 Imm ress
 Imm ress
 Imm ress
 Imm ress
 <

Fig. 15.4 in Markus J. Aschwanden (2005)

Gary et al. (2018)

Emission mechanism	Frequency	Source/Exciter
(1) Incoherent radio emission:		
(1a) Free-free emission (bremsstrahlung)	$ u \gtrsim 1 \ { m GHz}$	Thermal plasma
 Microwave postbursts 		Thermal plasma
(1b) Gyroemission	$\omega = s\Omega_e$	
Gyroresonance emission	(s = 1, 2, 3, 4)	Thermal electrons
Gyrosynchrotron emission	$(s \approx 10 - 100)$	Mildly relativistic electrons
 Type IV moving 		Trapped electrons
 Microwave type IV 		Trapped electrons
(2) Coherent radio emission:		
(2a) Plasma emission	$\nu_{pe} = 9000\sqrt{n_e}$	Electron beams
 Type I storms 		Langmuir turbulence
 Type II bursts 		Beams from shocks
 Type III bursts 		Upward propagating beams
 Reverse slope (RS) bursts 		Downward propagating beams
 Type J bursts 		Beams along closed loops
 Type U bursts 		Beams along closed loops
 Type IV continuum 		Trapped electrons
– Type V		Slow electron beams
(2b) Electron-cyclotron maser:	$\omega = s\Omega_e/\gamma + k_{\parallel}v_{\parallel}$	Losscones
- Decimetric ms spike bursts		Losscones

