Global Energetics

Aschwanden et al. (2017)

It is imperial to include both the kinetic and gravitational energy in comparisons with other flare-generated energies.

The energy that goes into a CME is most closely related to the heating of the flare plasma.

Aschwanden (2016)

Solar Radio Bursts

Schematic Radiospectrogram

This diagram illustrates all of the major burst types in a typical configuration following a large flare. It should be noted that it is **not** common for **all** of these features to be observed after a flare.

http://www.ips.gov.au/Category/World%20Data%20Centre/Data%20Display%20and%20Download/Spectrograph/Schematic%20Radiospectrogram.pdf

→ The shorter wavelengths are absorbed in the Earth's atmosphere and the longer wavelengths are blocked by the terrestrial ionosphere.

http://swaves.gsfc.nasa.gov/content_images/swavesf1.png

Eduard Kontar in 2010 RHESSI Workshop

Fig. 15.15 in Markus J. Aschwanden (2005)

http://pwg.gsfc.nasa.gov/istp/cloud_jan97/waves_cme.html

Radio-Loud CME

http://www.nasa.gov/vision/universe/starsgalaxies/screaming_cmes.html

https://www.quora.com/How-does-the-Sun-emit-radio-frequencies-What-is-the-mechanism

 $\rightarrow f_p = 9 \times 10^{-3} n^{1/2}$ MHz with the electron density *n* in cm⁻³

→For example, at 05:40 UT, the upper and lower bands of the harmonic component have frequencies $f_2 = 162$ and $f_1 = 128$ MHz, respectively. The local plasma frequencies are therefore $f_{p2} = 81$ and $f_{p1} = 64$ MHz, respectively, corresponds with $n_1 = 5.1 \times 10^7$ cm⁻³.

 \rightarrow shock compression ratio n_2/n_1 is simply $(f_{p2}/f_{p1})^2 = (f_2/f_1)^2$

CME on 2015 June 25 near 10:57 UT

Chrysaphi et al. (2018)

Radio-Quiet CME

http://www.nasa.gov/vision/universe/starsgalaxies/screaming_cmes.html

472 fast (speed >= 900 km⁻¹) and wide (width >= 60°) CMEs during 1996 - 2005 by SOHO/LASCO

552 events from 891 fast CME events (speed >= 900 km/s) during 1996 - 2012 by SOHO/LASCO

CME properties	Mean values				
	Class-D	Class-A	Flare properties	Mean values	
				Class-D	Class-A
Radio-quiet					K
Position angle (degree)	188	175	Radio-quiet		
Width (degree)	128.7	128	Duration (min)	33	70
Speed (km s^{-1})	1092	1093	T _{rise} (min)	16	34
Acceleration $(m s^{-2})$	-25.89	18.59	T _{decay} (min)	16	35
Initial acceleration (km s^{-2})	1.89	1.56	Х	5.79 %	0 %
Initial speed $(km s^{-1})$	1254	951	M	34.78 %	33.33 %
Number of halo events	12.64 %	9.52 %	6 C	59.42 %	66.66 %
Radio-loud			Radio-loud		
Position angle (degree)	209	171	Duration (min)	48	80
Width (degree)	279	310	T _{rise} (min)	25	39
Speed $(km s^{-1})$	1368	1348	T _{decay} (min)	22	41
Acceleration ($m s^{-2}$)	-32.63	24.96	Х	31.7 %	24.48 %
Initial acceleration $(km s^{-2})$	1.53	0.87	М	48.78 %	46.93 %
Initial speed $(km s^{-1})$	1567	1094	С	18.2 %	26.53 %
Number of halo events	65.17 %	68.85 %	, 0		<u>.</u>

RQ CMEs were found to be less energetic than RL CMEs and are less often associated with intense X-ray flares. This confirms the previous results that RQ CMEs do not often exceed the critical Alfvén speed of 1000 km/s in the outer corona that is needed to produce type II radio bursts.

Suresh & Shanmugaraju (2015)

https://web.njit.edu/~gary/728/Lecture10.html

https://www.spaceweather.com/archive.php?view=1&day=17&month=03&year=2022