Coronal Mass Ejection

A massive (10!* to 107 grams) burst
of plasma ejected from the Sun at
a speed up to 2000 km/s with a
kinetic energy of 1032 ergs

CME eruptions are often associated
with flares and filament eruptions.

As propagating in the solar wind, a
CME creates a shock wave that o
accelerates particles to dangerously , (prominence)
high energies and speeds. '

plasma embedded with magnetic fields, shock

typical coronal temperature 10® K > sound speed: 102 km/s

A CME usually has a near-constant speed in the outer corona
(e.g,>2.0Rs in C2/C3 field).

http://helios.gsfc.nasa.gov/cme.html http://www.swpc.noaa.gov/phenomena/coronal-mass-ejections
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Fig. 12.1(a) in Eric Priest (2014) http://pasj.asj.or.jp/v62/n4/620425/620425.html
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> The shock remains closer to the CME in (h) than in (d), indicating a
stronger shock (Gopalswamy et al. 2013).

Fig. 3.5 in Donald V. Reames (2017)
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The average speeds of the flux rope and

shock are 330 km/s and 644 km/s.

http://iopscience.iop.org/article/10.1088/0004-637X/744/1/72/meta
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EUV Wave
(Solar Tsunami)
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https://www.nasa.gov/mission_pages/stereo/news/solar_tsunami.html



Coronal Dimming
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The dlmmlng cores, most evident in the 193 band, are seen aT The ends
of the two ribbons which probably map the CME fee’r. Cheng & Qi (2016)




Liu et al. (2008)
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ribbons in Ha, UV, & HXR™ ~ - - - S Moore et al. (2001)

Two dimming regions are found at the opposite ends of the two ribbons,
which likely map the conjugate feet of the CME. During the flare eruption,
dimming along the outmost edges of one flare ribbon is also observed and
followed by brightenings of flare ribbons.

This signature agrees with the standard model that the overlying coronal

arcade is stretched by the erupting CME, causing coronal dimming at the
feet; the arcade then reconnect and produce brightening ribbons.

Cheng & Qiu (2016)
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Cheng & Qiu (2016)
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EUV 193 emission starts to
decrease quickly at 5 minutes
after the start of the flare
reconnection and CME takeoff,
whereas dimming in the 171
band starts ~b minutes later.

The maximum dimming occurs
around the GOES peak time as
well as the CME velocity, and
then the EUV emission in
these dimming regions starts
to rise as post-flare loops
form in these regions.

Such timing among these
events indicates that fast
reconnection, CME expansion,
and coronal dimming are
intimately related.
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399 M- and X-class flare events
observed during 2010 June - 2014
January by SDO/ATIA based on
the EUV dimming method.

Since the leading edges (used for
LASCO) are faster than the bulk
speed (for ATA), we suspect that
LASCO obtains faster CME speeds
than AIA, and consequently yields
larger kinetic energies also.

On the other hand, LASCO detects
a number of CMEs with much lower
masses than ATA due to sensitivity
issues in detecting whitelight
polarized brightness signals.

Aschwanden (2016)



with CMEs

1996~2005 (98 X, 696 M, 575 C)
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- Flares without CMEs dominate at smaller energies

- Nanoflares or microflares are a potential source for coronal heating
(because no flare-released energy is used for CME eruption)

Yashiro et al. (2006)



