DEFINITION 2.1 (Intuitive Definition of Limit) The equation

$$\lim_{x\to a}f(x)=L,$$

where $\mathbf{f}: X \subseteq \mathbb{R}^n \to \mathbb{R}^m$, means that we can make $\|\mathbf{f}(\mathbf{x}) - \mathbf{L}\|$ arbitrarily small (i.e., near zero) by keeping $\|\mathbf{x} - \mathbf{a}\|$ sufficiently small (but nonzero).

THEOREM 2.5 (ALGEBRAIC PROPERTIES) Let \mathbf{F} , \mathbf{G} : $X \subseteq \mathbf{R}^n \to \mathbf{R}^m$ be vector-valued functions, f, g: $X \subseteq \mathbf{R}^n \to \mathbf{R}$ be scalar-valued functions, and let $k \in \mathbf{R}$ be a scalar.

- 1. If $\lim_{x\to a} F(x) = L$ and $\lim_{x\to a} G(x) = M$, then $\lim_{x\to a} (F+G)(x) = L+M$.
- 2. If $\lim_{x\to a} F(x) = L$, then $\lim_{x\to a} kF(x) = kL$.
- 3. If $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} g(x) = M$, then $\lim_{x\to a} (fg)(x) = LM$.
- 4. If $\lim_{\mathbf{x}\to\mathbf{a}} f(\mathbf{x}) = L$, $g(\mathbf{x}) \neq 0$ for $\mathbf{x} \in X$, and $\lim_{\mathbf{x}\to\mathbf{a}} g(\mathbf{x}) = M \neq 0$, then $\lim_{\mathbf{x}\to\mathbf{a}} (f/g)(\mathbf{x}) = L/M$.

DEFINITION 2.7 Let $\mathbf{f}: X \subseteq \mathbb{R}^n \to \mathbb{R}^m$ and let $\mathbf{a} \in X$. Then \mathbf{f} is said to be **continuous at a** if either \mathbf{a} is an isolated point of X or if

$$\lim_{x\to a} f(x) = f(a).$$

If f is continuous at all points of its domain X, then we simply say that f is **continuous**.

Figure 2.41 The graph of a continuous function.

Figure 2.42 The graph of a function that is not continuous.

Recall that if $F: X \subseteq \mathbb{R} \to \mathbb{R}$ is a scalar-valued function of one variable, then the **derivative** of F at a number $a \in X$ is

$$F'(a) = \lim_{h \to 0} \frac{F(a+h) - F(a)}{h}.$$
 (1)

Moreover, F is said to be **differentiable at** a precisely when the limit in equation (1) exists.

Figure 2.47 Visualizing the partial derivative $\frac{\partial f}{\partial x}(a, b)$.

Figure 2.48 Visualizing the partial derivative $\frac{\partial f}{\partial y}(a, b)$.

DEFINITION 3.2 The partial derivative of f with respect to x_i is the (ordinary) derivative of the partial function with respect to x_i . That is, the partial derivative with respect to x_i is $F'(x_i)$, in the notation of Definition 3.1. Standard notations for the partial derivative of f with respect to x_i are

$$\frac{\partial f}{\partial x_i}$$
, $D_{x_i} f(x_1, \ldots, x_n)$, and $f_{x_i}(x_1, \ldots, x_n)$.

Symbolically, we have

$$\frac{\partial f}{\partial x_i} = \lim_{h \to 0} \frac{f(x_1, \dots, x_i + h, \dots, x_n) - f(x_1, \dots, x_n)}{h}.$$
 (2)

The derivative F'(a) is the slope of the tangent line to y = F(x) at x = a.

Figure 2.49 The tangent line to y = F(x) at x = a has equation y = F(a) + F'(a)(x - a).

Figure 2.50 The plane tangent to z = f(x, y) at (a, b, f(a, b)).

Figure 2.51 The tangent plane at (a, b, f(a, b)) contains the lines tangent to the curves formed by intersecting the surface z = f(x, y) by the planes x = a and y = b.

THEOREM 3.3 If the graph of z = f(x, y) has a tangent plane at (a, b, f(a, b)), then that tangent plane has equation

$$z = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b).$$
 (4)

Figure 2.54 If f is differentiable at (a, b), the distance between f(x, y) and h(x, y) must approach zero faster than the distance between (x, y) and (a, b) does.

DEFINITION 3.4 Let X be open in \mathbb{R}^2 and $f: X \subseteq \mathbb{R}^2 \to \mathbb{R}$ be a scalar-valued function of two variables. We say that f is **differentiable at** $(a, b) \in X$ if the partial derivatives $f_x(a, b)$ and $f_y(a, b)$ exist and if the function

$$h(x, y) = f(a, b) + f_x(a, b)(x - a) + f_y(a, b)(y - b)$$

is a good linear approximation to f near (a, b)—that is, if

$$\lim_{(x,y)\to(a,b)} \frac{f(x,y) - h(x,y)}{\|(x,y) - (a,b)\|} = 0.$$

Moreover, if f is differentiable at (a, b), then the equation z = h(x, y) defines the **tangent plane** to the graph of f at the point (a, b, f(a, b)). If f is differentiable at all points of its domain, then we simply say that f is **differentiable**.

DEFINITION 3.7 Let X be open in \mathbb{R}^n and $f: X \to \mathbb{R}$ be a scalar-valued function; let $\mathbf{a} = (a_1, a_2, \dots, a_n) \in X$. We say that f is **differentiable at** \mathbf{a} if all the partial derivatives $f_{x_i}(\mathbf{a})$, $i = 1, \dots, n$, exist and if the function $h: \mathbb{R}^n \to \mathbb{R}$ defined by

$$h(\mathbf{x}) = f(\mathbf{a}) + f_{x_1}(\mathbf{a})(x_1 - a_1) + f_{x_2}(\mathbf{a})(x_2 - a_2) + \dots + f_{x_n}(\mathbf{a})(x_n - a_n)$$
(6)

is a good linear approximation to f near a, meaning that

$$\lim_{\mathbf{x}\to\mathbf{a}}\frac{f(\mathbf{x})-h(\mathbf{x})}{\|\mathbf{x}-\mathbf{a}\|}=0.$$

DEFINITION 3.8 (Grand definition of differentiability) Let $X \subseteq \mathbb{R}^n$ be open, let $\mathbf{f}: X \to \mathbb{R}^m$, and let $\mathbf{a} \in X$. We say that \mathbf{f} is differentiable at \mathbf{a} if $D\mathbf{f}(\mathbf{a})$ exists and if the function $\mathbf{h}: \mathbb{R}^n \to \mathbb{R}^m$ defined by

$$h(x) = f(a) + Df(a)(x - a)$$

is a good linear approximation to f near a. That is, we must have

$$\lim_{\mathbf{x} \to \mathbf{a}} \frac{\|\mathbf{f}(\mathbf{x}) - \mathbf{h}(\mathbf{x})\|}{\|\mathbf{x} - \mathbf{a}\|} = \lim_{\mathbf{x} \to \mathbf{a}} \frac{\|\mathbf{f}(\mathbf{x}) - [\mathbf{f}(\mathbf{a}) + D\mathbf{f}(\mathbf{a})(\mathbf{x} - \mathbf{a})]\|}{\|\mathbf{x} - \mathbf{a}\|} = 0.$$

Figure 2.67 Another way to view the partial derivative $\partial f/\partial x$ at a point.

Figure 2.68 The directional derivative.

DEFINITION 6.1 Let X be open in \mathbb{R}^n , $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$ a scalar-valued function, and $\mathbf{a} \in X$. If $\mathbf{v} \in \mathbb{R}^n$ is any unit vector, then the **directional derivative of** f **at a in the direction of** \mathbf{v} , denoted $D_{\mathbf{v}} f(\mathbf{a})$, is

$$D_{\mathbf{v}}f(\mathbf{a}) = \lim_{h \to 0} \frac{f(\mathbf{a} + h\mathbf{v}) - f(\mathbf{a})}{h}$$

(provided that this limit exists).

THEOREM 6.2 Let $X \subseteq \mathbb{R}^n$ be open and suppose $f: X \to \mathbb{R}$ is differentiable at $\mathbf{a} \in X$. Then the directional derivative $D_{\mathbf{v}} f(\mathbf{a})$ exists for all directions (unit vectors) $\mathbf{v} \in \mathbb{R}^n$ and, moreover, we have

$$D_{\mathbf{v}}f(\mathbf{a}) = \nabla f(\mathbf{a}) \cdot \mathbf{v}.$$

THEOREM 6.3 The directional derivative $D_{\bf u} f({\bf a})$ is maximized, with respect to direction, when ${\bf u}$ points in the *same* direction as $\nabla f({\bf a})$ and is minimized when ${\bf u}$ points in the *opposite* direction. Furthermore, the maximum and minimum values of $D_{\bf u} f({\bf a})$ are $\|\nabla f({\bf a})\|$ and $-\|\nabla f({\bf a})\|$, respectively.

Figure 2.69 Select $\nabla f(a, b) / \|\nabla f(a, b)\|$ for direction of steepest ascent.

THEOREM 6.4 Let $X \subseteq \mathbb{R}^n$ be open and $f: X \to \mathbb{R}$ be a function of class C^1 . If \mathbf{x}_0 is a point on the level set $S = {\mathbf{x} \in X \mid f(\mathbf{x}) = c}$, then the vector $\nabla f(\mathbf{x}_0)$ is perpendicular to S.

Figure 2.71 The level set surface $S = \{x \mid f(x) = c\}.$

In general, if S is a surface in \mathbb{R}^3 defined by an equation of the form

$$f(x, y, z) = c,$$

then if $\mathbf{x}_0 \in X$, the gradient vector $\nabla f(\mathbf{x}_0)$ is perpendicular to S and, consequently, if nonzero, is a vector normal to the plane tangent to S at \mathbf{x}_0 . Thus, the equation

$$\nabla f(\mathbf{x}_0) \cdot (\mathbf{x} - \mathbf{x}_0) = 0 \tag{5}$$

or, equivalently,

$$f_x(x_0, y_0, z_0)(x - x_0) + f_y(x_0, y_0, z_0)(y - y_0) + f_z(x_0, y_0, z_0)(z - z_0) = 0$$
(6)

is an equation for the tangent plane to S at x_0 .

PROPOSITION 4.1 (LINEARITY OF DIFFERENTIATION) Let $\mathbf{f}, \mathbf{g}: X \subseteq \mathbb{R}^n \to \mathbb{R}^m$ be two functions that are both differentiable at a point $\mathbf{a} \in X$, and let $c \in \mathbb{R}$ be any scalar. Then

1. The function $\mathbf{h} = \mathbf{f} + \mathbf{g}$ is also differentiable at \mathbf{a} , and we have

$$D\mathbf{h}(\mathbf{a}) = D(\mathbf{f} + \mathbf{g})(\mathbf{a}) = D\mathbf{f}(\mathbf{a}) + D\mathbf{g}(\mathbf{a}).$$

2. The function $\mathbf{k} = c\mathbf{f}$ is differentiable at **a** and

$$D\mathbf{k}(\mathbf{a}) = D(c\mathbf{f})(\mathbf{a}) = cD\mathbf{f}(\mathbf{a}).$$

PROPOSITION 4.2 Let $f, g: X \subseteq \mathbb{R}^n \to \mathbb{R}$ be differentiable at $\mathbf{a} \in X$. Then

1. The product function fg is also differentiable at a, and

$$D(fg)(\mathbf{a}) = g(\mathbf{a})Df(\mathbf{a}) + f(\mathbf{a})Dg(\mathbf{a}).$$

2. If $g(\mathbf{a}) \neq 0$, then the quotient function f/g is differentiable at \mathbf{a} , and

$$D(f/g)(\mathbf{a}) = \frac{g(\mathbf{a})Df(\mathbf{a}) - f(\mathbf{a})Dg(\mathbf{a})}{g(\mathbf{a})^2}.$$

$$\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n}$$
 (or $f_{x_1}, f_{x_2}, \dots, f_{x_n}$).

$$\frac{\partial^2 f}{\partial x_i^2} = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_i} \right). \quad \frac{\partial^2 f}{\partial x_j \partial x_i} = \frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i} \right). \quad \frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}.$$

Figure 2.58 The chain rule for functions of a single variable.

 $\frac{df}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} +$ Figure 2.60 The chain rule of Proposition 5.2.

$$\frac{df}{dt} = \frac{\partial f}{\partial x_1} \frac{dx_1}{dt} + \frac{\partial f}{\partial x_2} \frac{dx_2}{dt} + \dots + \frac{\partial f}{\partial x_n} \frac{dx_n}{dt}$$
$$= DfDx = \nabla f \cdot \vec{x}'$$

Figure 2.63 The chain rule for $f \circ \mathbf{x}$, where $f: X \subseteq \mathbf{R}^3 \to \mathbf{R}$ and $\mathbf{x}: T \subseteq \mathbf{R}^2 \to \mathbf{R}^3$.

$$\frac{\partial f}{\partial s} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial s} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial s}$$

$$\frac{\partial f}{\partial t} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial t}$$

Figure 2.65 The chain rule diagram for $\mathbf{f} \circ \mathbf{x}$, where $\mathbf{f}: X \subseteq \mathbf{R}^m \to \mathbf{R}^p$ and $\mathbf{x}: T \subseteq \mathbf{R}^n \to \mathbf{R}^m$.

$$\frac{\partial f_1}{\partial t_2} = \frac{\partial f_1 \partial x_1}{\partial x_1 \partial t_2} + \frac{\partial f_1 \partial x_2}{\partial x_2 \partial t_2} + \dots + \frac{\partial f_1 \partial x_m}{\partial x_m \partial t_2}$$

$$D\vec{h}(\vec{t}) = D(\vec{f} \circ \vec{x})(\vec{t}) = D\vec{f}(\vec{x})D\vec{x}(\vec{t})$$