2.2

DEFINITION 2.1 (INTUITIVE DEFINITION OF LIMIT) The equation
lim f(x) = L,

X—a

where f: X € R” — R™, means that we can make ||f(x) — L|| arbitrarily
small (i.e., near zero) by keeping ||x — a|| sufficiently small (but nonzero).




2.2

THEOREM 2.5 (ALGEBRAIC PROPERTIES) Let F, G: X C R" — R" be vector-
valued functions, f, g: X € R" — R be scalar-valued functions, and let k € R

be a scalar.

1.

If limy_,, F(x) = L and limy_, , G(x) = M,
then limy_, ,(F + G)(x) = L + M.

If limy_,, F(x) = L, then limy_, , k<F(x) = kL.

[f limy_,, f(x) = L and limy_,, g(x) = M, then limy_, ,( fg)(x) = LM.

If limy,, f(x) =L, g(x) # 0 for x € X, and limy_,, g(x) = M s 0, then
limy—.a(f/8)(x) = L/M.




2.2

DEFINITION 2.7 Letf: X CR” — R" and let a € X. Then f is said to be
continuous at a if either a is an isolated point of X or if

lim f(x) = f(a).

If f 1s continuous at all points of its domain X, then we simply say that f is
continuous.
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Figure 2.41 The graph of a Figure 2.42 The graph of a
continuous function. function that 1s not continuous.



2.3

Recall that if F: X € R — R is a scalar-valued function of one variable, then the
derivative of ' at a numbera € X 1s

F h)— F
F'(a) = lim @+ h) (a).
h—0 h

(1)

Moreover, F is said to be differentiable at a precisely when the limit in equation
(1) exists.



X

Figure 2.47 Visualizing the
partial derivative g—x(a, b).

Figure 2.48 Visualizing the
partial derivative g—{(a, b).
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2.3

DEFINITION 3.2 The partial derivative of f with respect to x; is the
(ordinary) derivative of the partial function with respect to x;. That is, the
partial derivative with respect to x; is F’(x;), in the notation of Definition
3.1. Standard notations for the partial derivative of f with respect to x; are

%,
L DG m) md ... n)
Xi

Symbolically, we have
af 1, o oath . X)) fley, .. X)) )
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\ (a, F(a))
/—V

Figure 2.49 The tangent line to
y = F(x) at x = a has equation
y = F(a)+ F'(a)(x — a).

The derivative F '(a) Is the slope of
the tangent linetoy = F (x) at x = a.

2.3



(a, b’f(a’ b))

X

Figure 2.50 The plane tangent

toz= f(x;y)at
(a,b, f(a,b)).

2.3

X

Figure 2.51 The tangent plane at
(a, b, f(a, b)) contains the lines
tangent to the curves formed by
intersecting the surface

z= f(x, y) by the planes x = a
and y = b.



2.3

THEOREM 3.3 If the graph of z = f(x,y) has a tangent plane at
(a, b, f(a, b)), then that tangent plane has equation

z = fla,b)+ fi(a,b)(x —a)+ fy(a, b)(y — D). 4)




Figure 2.53 If F is differentiable
at a, the vertical distance between
F(x) and H(x) must approach

2.3

(x.y. f(x.y))

zero faster than the horizontal
distance between x and a does. /

X

Figure 2.

(x,y,h(x,y))

(a,b,f(a,b))

54 If f is differentiable at (a, b), the distance

between f(x, y) and i(x, y) must approach zero faster than
the distance between (x, y) and (a, b) does.



2.3

DEFINITION 3.4 Let X be open in R? and f: X € R> — R be a scalar-
valued function of two variables. We say that f is differentiable at (a, b) € X
if the partial derivatives f,(a, b) and f,(a, b) exist and if the function

h(x, y) = f(a, b) + fi(a, b)(x —a)+ fy(a,b)(y — D)
is a good linear approximation to f near (a, b)—that is, if
. T,y =alx, y)
im =
(x.y)—(a.b) ||(x, y) — (a, D)||

Moreover, if f is differentiable at (a, b), then the equation z = h(x, y) de-
fines the tangent plane to the graph of f at the point (a, b, f(a, b)). If f
is differentiable at all points of its domain, then we simply say that f is
differentiable.

0.




DEFINITION 3.7 Let X be open in R” and f: X — R be a scalar-valued
function; let a = (a1, a», ..., a,) € X. We say that f is differentiable at
a 1if all the partial derivatives f\.(a),i = 1, ..., n, exist and if the function
h: R" — R defined by

h(x) = f(a) + fy,(@)(x1 — a1) + fr,(@)(x2 — az)

e fx,, (a)(x, — ay) (6)
is a good linear approximation to f near a, meaning that
—h
w2

x4 ix A

2.3



DEFINITION 3.8 (GRAND DEFINITION OF DIFFERENTIABILITY) Let X C
R” be open, let f: X — R™, and let a € X. We say that f is differentiable at

a if Df(a) exists and if the function h: R — R defined by
h(x) = f(a) + Df(a)(x — a)
is a good linear approximation to f near a. That is, we must have

I If(x) —hx)|| .. [If(x)— [f(a) + Df(a)(x — a)]||
m = |lim = ().
—a  [x—a  x—a Ix —al

2.3



2.6

ox h—0 h

_ iy J@t D — (@)

= 11111 g
h—0 h

z=f(x,y) af(a,b): i f@+hb)— f(ab)

where a = (a, b) = ai+ bj.

Figure 2.67 Another way to view the
partial derivative df/dx at a point.



z=f(x,y)

B(x—a)-A(y—-b)=0

Figure 2.68 The directional derivative.

2.6

“the directional derivative of f at a in the
direction of v”

. fa+hv)— f(a)

m

11
h—0 h

(a, b, f(a, b)) where v = (A, B) = Ai+ Bj



2.6

DEFINITION 6.1 Let X be open in R”, f: X C R” — R a scalar-valued
function, anda € X.Ifv € R” is any unit vector, then the directional deriva-

tive of / at a in the direction of v, denoted D, f(a), is

D.f(a) = lim f(a+h;;) 1

(provided that this limit exists).




2.6

THEOREM 6.2 Let X C R" be open and suppose f: X — R is differentiable
at a € X. Then the directional derivative Dy f(a) exists for all directions (unit
vectors) v € R" and, moreover, we have

Dy f(a)=Vf(a)-v.




2.6

THEOREM 6.3 The directional derivative D, f(a) is maximized, with respect to
direction, when u points in the same direction as V f(a) and is minimized when u

points in the opposite direction. Furthermore, the maximum and minimum values
of D, f(a) are |V f(a)| and —||V f(a)||, respectively.
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Figure 2.69 Select V f(a, b)/||V f(a, b)| for direction of steepest ascent.



2.6

THEOREM 6.4 Let X € R” be open and f: X — R be a function of class C'.
If x( 1s a point on the level set § = {x € X | f(x) = ¢}, then the vector V f(x)
1s perpendicular to §.

V(%)

Figure 2.71 The level set surface
S=1{x]|f(x)=c}.



2.6

In general, if S is a surface in R? defined by an equation of the form

f(xa Y, Z) = iy

then if X € X, the gradient vector V f(xy) is perpendicular to .S and, conse-
quently, if nonzero, is a vector normal to the plane tangent to .S at x,. Thus,
the equation

Vi(Xp)-(x—xp)=0 (5)
or, equivalently,

Jx(xo0, Yo, z0)(x — x0) + fy(x0, Yo. 20)(y — Yo)

¥

(6)
+ .f:(x()a Yo, ZO)(Z - Z()) w— 0

1s an equation for the tangent plane to S at x.




2.4

PROPOSITION 4.1 (LINEARITY OF DIFFERENTIATION) Let f, g: X € R" — R”
be two functions that are both differentiable at a point a € X, and let ¢ € R be
any scalar. Then J

1. The function h = f + g is also differentiable at a, and we have
Dh(a) = D(f+ g)(a) = Df(a) + Dg(a).
2. The function k = c¢f is differentiable at a and

Dk(a) = D(cf)(a) = cDf(a).




2.4
PROPOSITION 4.2 Let f, ¢: X C R” — R be differentiable at a € X. Then

I. The product function fg is also differentiable at a, and
D(fg)(a) = g(a)Df(a)+ f(a)Dg(a).
2. If g(a) # 0, then the quotient function f/g is differentiable at a, and

¢ J D . D
D(f/g)(a) = g(a) f(a;(a){(a) g(a)
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Dependent Intermediate Final
variable variable variable

dx
dx

df df dx

- Cdt o dx d ),

df
dt

Figure 2.58 The chain rule for functions of a single variable.



2.5

Dependent Intermediate Final
variable variables variable

B_f dx

a/ * .(T\

f t
B—X . /_y
dt

ay

df

d1 df  of dx N of dy

Figure 2.60 The chain rule of Proposition 5.2. Ot ox dt oy dt




df

dt

~of dx, 8f dx,

_|_
ox, dt 8x dt

= DfDx = Vf -X

@f dx .

8x dt

2.5



Dependent Intermediate Final
variable variables variables
ax
. o

dz Z

Figure 2.63 The chain rule for f o x, where f: X € R> — R and
x:T C R* > R

2.5



of

o5

of

E:

of Ox
= +

OX 0S
Of 8x

OX Ot

of ay+

oy 0S
of 8y

of 0z

ay ot

0Z 0S
of 0z

82 ot

2.5



Dependent
variables

af

X

Intermediate
variables

-'rl

0X
ot

Final
variables

f})

x"l

Figure 2.65 The chain rule diagram for f o x, where f: X € R" — R” and

x:T C R" — R".
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8f1 8f1 8X1 8f1 8x2 . 8f1 8xm
atz axlatz 5X2 5t2 aXm 8t2

Dh(t)=D(f o x)(f)=Df(X)Dx(T)
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