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Electron velocity distribution function in the solar wind measured by Helios
spacecraft at 1 AU.
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http://solarphysics.livingreviews.org/Articles/Irsp-2006-1/fig_1.html
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Electron velocity distribution functions for fast (left), intermediate (middle)
and slow (right) solar wind.
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Proton velocity distribution functions in the fast solar wind measured by Helios.
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Measurements of electron energy distributions in the solar wind reveal
the presence of both thermal and suprathermal populations.

“The Solar Wind" by J. T. Gosling, 2009
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The suprathermal population is nearly collisionless, carries the solar
wind heat flux, and includes both a field-aligned "strahl” (or beam) and
a roughly isotropic “halo”.

“The Solar Wind" by J. T. Gosling, 2009



Counterstreaming Suprathermal Electrons as
Tracers of Closed Magnetic Field Lines in CMEs
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“The Solar Wind" by J. T. Gosling, 2009



ISES Solar Cycle Sunspot Number Pregression
Observed data through Aug 2017
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Co-rotating Interaction Region
(CIR)

http://solarphysics.livingreviews.org/Articles/Irsp-2013-5/CIR_2panel.png
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The CIR-associated
increases cover around
four orders-of-
magnitude above
background, but most
surprisingly, they
extend to the highest
latitudes reached by

Ulysses of just over 80°.
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The amplitude of the
CIR-induced changes
cover almost five
orders-of magnitude
in intensity at times
in the 1-3MeV region,
with similar but less
dramatic changes at
slightly higher
energies.

The peaks in the
cosmic rays are
anticorrelated with
the peaks in the solar
wind, indicating that
the CIRs serve to
exclude locally some
of the high energy
cosmic rays.

Fig. 6.3 (p.124) in Simnett et al. (2017)
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There is a small reverse "wave"
seen on day 69. This is not
accompanied by any increase in
the energetic particle intensities
at the time. However, about a
day later there is an increase
which is most pronounced at the
lowest energy, but which reaches
a maximum at progressively later
times as the energy increases.
The increase in the electrons
becomes very broad in time,
lasting well over half the solar
rotation. The lag in the
appearance of the higher
energy/higher velocity particles
can be explained as the
consequence of remote magnetic
connection of Ulysses at high
latitudes to the CIRs that are
present at low latitudes.

Fig. 6.5 (p.128) in Simnett et al. (2017)
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Fig. 6.6 (p.129) in Simnett et al. (2017)
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Fig. 4.2 (p.83) in Balogh et al. (2008)
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Fig. 6.12 (p.134) in Simnett et al. (2017)



source surface:
2.5 solar radii
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There are three basic assumptions in the model of Fisk (1996) :

1. The heliospheric magnetic Field is attached to the photosphere,
which differentially rotates.

2. The high-speed solar wind expands nonradially from polar
coronal holes.

3. The expansion of the solar wind in the polar coronal holes is
about an axis that is offset from the solar rotation axis and
that also tends to rotate rigidly at approximately the
equatorial rotation rate.

—> lead to large excursions in latitude of the heliospheric
magnetic field

p.132 in Simnett et al. (2017) Fisk et al. (1999)



The magnetic field line
coming from the magnetic
pole p undergoes a non-
radial expansion about
the dipole axis M and
emerges into the solar
corona. All the field lines
are anchored in the
differentially-rotating
photosphere and they
therefore execute
circular motion about 2,
which following the non-
radial expansion from the
north-polar coronal hole,
results in distorted
circular motion about p.
The circles on the
imaginary hemispherical
surface then make large
excursions in heliospheric
latitude.

F1G. 1.—An illustration of the motions of the magnetic field in the corona, in the polar coronal hole, as predicted by the model of Fisk (1996, after
Zurbuchen et al. 1997). The outer surface, which is defined in the text, is penetrated only by field lines which open into the heliosphere and which have
essentially constant magnetic pressure. The figure is drawn in the frame corotating with the equatorial rotation rate. The M-axis is the axis of symmetry for
the expansion of the magnetic field from a polar coronal hole. The Q-axis is the solar rotation axis. The open lines are field lines, with p marking the field line
that connects to the solar pole. The curves with arrows are the trajectories of the field lines, the motion of which is driven by differential rotation of the

photosphere.

Fisk et al. (1999)



Figure 2. The southern hemisphere of the solar wind
source surface drawn in the frame corotating with the
equatorial rotation rate. The trajectories of the he-

liospheric magnetic field lines execute circular
moving in heliographic latitude and longitude.

Zurbuche et al. (1997)

patterns

Figure 3. The trajectories of the footpoints of the heliospheric magnetic field lines on the solar
wind source surface, projected onto the equatorial plane. The trajectories are shown in the frame
corotating at the equatorial rotation rate of the sun; the perspective is from the south solar pole.
The solar wind in this frame flows counterclockwise as indicated by the arrows outside the figure.
The footpoints of the field lines move in the directions indicated by the arrows on the trajectories.
The rate of motion of the footpoints is indicated by the markers on the trajectories which are
spaced at intervals equal to the distance a footpoint will move at a rate given by (2) and during
a time interval equal to the transit time of fast solar wind over 1 AU (2.2 days). The footpoint
trajectories end when the footpoint of the field line in the photosphere encounters the coronal

hole boundary. Fisk (1996)
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Figure 2. A schematic illustration of the expansion of
magnetic field lines from a polar coronal hole.
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Footpoint Motion

Fisk (1996) Fig. 6.12 (p.134) in Simnett et al. (2017)



The Fisk model leads to equations for the field components that differ signifi-
cantly from the Parker equations:

9.

BR — B() (I_O>-
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Besh o . Qr
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Vg VR
B,r? Qr
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The field strength at the source surface located at ry 1s By. The co-latitude and
longitude in heliographic coordinates are ¢ and ¢, and ¢, is the longitude of the
magnetic pole. The differential rate of rotation, w = Q — Q(#)—that is, the difference
between the angular velocity at the equator and at high latitudes (not the angular
velocity at high latitudes).

When 3 = 0, the equations reduce to the Parker equations:

B():O

B,r
By= (r ;’/]:) [((w— Q) sin 6]

p.113 & 114 in Balogh et al. (2008)




