Review:

Unknowns				
n				
Vol.				
p				
T				
$\boldsymbol{\mathit{U}}$				
S				
$\delta Q_{\scriptscriptstyle in}$				
δW				

	Equations		
(1)	N = nVol.		
(2)	$p = nk_BT$	(2 <i>a</i>)	$pVol.=Nk_BT$
(3)	U = (3/2)pVol.	(3 <i>a</i>)	$U = (3/2)Nk_BT$
(4)	$\Delta U = \delta Q_{in} + \delta W$	(4 <i>a</i>)	$\Delta U = T\Delta S - p\Delta Vol.$
(5)	$\Delta S = \delta Q_{in} / T$		
(6)	$\delta W = -p\Delta Vol.$		

The First Law of Thermodynamics

(4)
$$\Delta U = \delta Q_{in} + \delta W$$
 外對內

Since

$$(3a) U = (3/2)Nk_BT$$
,

it yields

(3b)
$$\Delta U = (3/2)Nk_B\Delta T$$

Substituting equation (3b) and equation

(6)
$$\delta W$$
 外對內 = $-p\Delta Vol$.

into equation (4) to eliminate ΔU and δW , it yields

$$(4b) (3/2)Nk_{B}\Delta T = \delta Q_{in} - p\Delta Vol.$$

Case 1: Isochoric Process

For isochoric process (constant-volume process), we have $\Delta Vol.=0$.

Substituting $\Delta Vol.=0$ into equation

$$(4b) (3/2)Nk_B\Delta T = \delta Q_{in} - p\Delta Vol.$$

it yields

(4c)
$$\delta Q_{in}|_{Vol.=\text{constant}} = (3/2)Nk_B \Delta T|_{Vol.=\text{constant}} = C_V \Delta T|_{Vol.=\text{constant}}$$

where C_v is the heat capacity at constant volume 等容熱容.

Case 2: Isobaric Process

For isobaric process (constant-pressure process), we have $\Delta p = 0$.

Differentiating equation (2a) once, it yields

(2b)
$$Vol.\Delta p + p\Delta Vol. = Nk_B\Delta T$$

Substituting $\Delta p = 0$ into equation (2b), then substituting the resulting equation into equation

$$(4b) \ (3/2)Nk_{\scriptscriptstyle B}\Delta T = \delta Q_{\scriptscriptstyle in} - p\Delta Vol.$$

to eliminate $p\Delta Vol.$, it yields

(4d)
$$\delta Q_{in}|_{p=\text{constant}} = (5/2)Nk_B \Delta T|_{p=\text{constant}} = C_P \Delta T|_{p=\text{constant}}$$

where C_P is the heat capacity at constant pressure 等壓熱容 In summary, we have

(4c)
$$\delta Q_{in}|_{Vol.=\text{constant}} = (3/2)Nk_B \Delta T|_{Vol.=\text{constant}} = C_V \Delta T|_{Vol.=\text{constant}}$$

(4d)
$$\delta Q_{in}|_{p=\text{constant}} = (5/2)Nk_B \Delta T|_{p=\text{constant}} = C_P \Delta T|_{p=\text{constant}}$$

where

$$(4c) C_V = (3/2)Nk_B$$

$$(4d) C_P = (5/2)Nk_B$$

Now, let us consider the entropy S as a function of pressure p and volume Vol., it yields

$$\Delta S = \Delta p \frac{\partial S}{\partial p} \bigg|_{Vol.=\text{constant}} + \Delta Vol. \frac{\partial S}{\partial Vol.} \bigg|_{p=\text{constant}}$$

$$= \Delta S \bigg|_{Vol.=\text{constant}} + \Delta S \bigg|_{p=\text{constant}}$$

$$= \frac{\delta Q_{in}}{T} \bigg|_{Vol.=\text{constant}} + \frac{\delta Q_{in}}{T} \bigg|_{p=\text{constant}}$$

$$= C_V \frac{\Delta T}{T} \bigg|_{Vol.=\text{constant}} + C_P \frac{\Delta T}{T} \bigg|_{p=\text{constant}}$$

Now, we need to determine $(\Delta T/T)_{Vol.=\text{constant}} & (\Delta T/T)_{p=\text{constant}}$.

Since the ideal gas law, equation (2a), can be rewritten as

$$(2c) \ln p + \ln Vol. = \ln(Nk_B) + \ln T$$

Differentiating equation (2c) once, it yields

$$(2d) \ \frac{\Delta p}{p} + \frac{\Delta Vol.}{Vol.} = \frac{\Delta T}{T}$$

Equation (2d) yields

(2e)
$$\frac{\Delta T}{T}\Big|_{Vol.=\text{constant}} = \frac{\Delta p}{p}\Big|_{Vol.=\text{constant}}$$
 and

$$(2f) \left. \frac{\Delta T}{T} \right|_{p=\text{constant}} = \frac{\Delta Vol}{Vol}.$$

Substituting equations (2e) and (2f) into

$$\Delta S = C_V \frac{\Delta T}{T} \bigg|_{Vol.=\text{constant}} + C_P \frac{\Delta T}{T} \bigg|_{p=\text{constant}}$$

it yields

$$\Delta S(p, Vol.) = C_V \frac{\Delta p}{p} \bigg|_{Vol = \text{constant}} + C_P \frac{\Delta Vol.}{Vol.} \bigg|_{p = \text{constant}}$$

or

$$\Delta S(p, Vol.) = C_V \left\{ \Delta \ln p \Big|_{Vol.=\text{constant}} + \frac{C_P}{C_V} \Delta \ln Vol.\Big|_{p=\text{constant}} \right\}$$

Thus.

$S(p,Vol.) = C_V \ln[p(Vol.)^{C_P/C_V}] + \text{constant}$

is a solution of the above differential equation.

Since

$$\Delta S|_{Vol.=\text{constant}} = \Delta p \frac{\partial S}{\partial p}|_{Vol.=\text{constant}} = C_V \frac{\Delta p}{p}|_{Vol.=\text{constant}}$$

$$\Delta S|_{p=\text{constant}} = \Delta Vol. \frac{\partial S}{\partial Vol.}|_{p=\text{constant}} = C_P \frac{\Delta Vol.}{Vol.}|_{p=\text{constant}}$$

it vields

$$\frac{\partial S}{\partial p}\Big|_{Vol = \text{constant}} = \frac{C_V}{p} = \frac{3}{2} \frac{Nk_B}{p}$$
 and $\frac{\partial S}{\partial Vol}\Big|_{p = \text{constant}} = \frac{C_P}{Vol} = \frac{5}{2} \frac{Nk_B}{Vol}$.

Exercise:

Write down the entropy S as a function of pressure p and temperature T.

Please show that

$$\frac{\partial S}{\partial p}\Big|_{T=\text{constant}} = -\frac{Nk_B}{p}$$
 and $\frac{\partial S}{\partial T}\Big|_{p=\text{constant}} = \frac{5}{2}\frac{Nk_B}{T}$

Exercise:

Write down the entropy S as a function of volume Vol. and temperature T. Please show that

$$\frac{\partial S}{\partial Vol.}\Big|_{T=\text{constant}} = \frac{Nk_B}{Vol.}$$
 and $\frac{\partial S}{\partial T}\Big|_{Vol.=\text{constant}} = \frac{3}{2}\frac{Nk_B}{T}$

Namely,

$$\frac{\partial S}{\partial p}\Big|_{T=\text{constant}} \neq \frac{\partial S}{\partial p}\Big|_{Vol.=\text{constant}} \quad \text{and} \quad \frac{\partial S}{\partial Vol.}\Big|_{T=\text{constant}} \neq \frac{\partial S}{\partial Vol.}\Big|_{p=\text{constant}}$$

In summary, the entropy S can be written as

$$S(p, Vol.) = \frac{3}{2} Nk_B \ln[p(Vol.)^{5/3}] + \text{constant}$$

or

$$S(p,T) = Nk_B \ln[T^{5/2}/p] + \text{constant}$$

$$S(Vol.,T) = Nk_B \ln[(Vol.)T^{3/2}] + \text{constant}$$

.

這段熱力學教材,主要在闡述以下這個<mark>重要結論</mark>:

在寫偏微分時,一定要說清楚,是在什麼變數 keep constant 的情況下,所求的偏微分。 例如:

$$\left. \frac{\partial S}{\partial p} \right|_{Vol.={
m constant}}$$
 或簡寫為 $\left. \frac{\partial S}{\partial p} \right|_{Vol.}$

或清楚標明函數中的自變數。例如: $\frac{\partial S(p,Vol.)}{\partial p}$

如果單寫 $\frac{\partial S}{\partial n}$,是沒有意義的!