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Lecture 2. Definitions of Fluid Variables in Statistic Thermal Dynamics
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To the students who are major in space physics:

The space plasma is an ionized gas (or a partially ionized gas) with very high temperature.
We cannot use the thermometer to measure the plasma temperature in space. So we need to
know the general "definition of temperature"” in order to find a way to measure the
temperature of the plasma in space. We can use Langmuir probe to directly measure the
electron temperature in the ionosphere by assuming that the electrons are in normal
distribution in the velocity space. We can also use radar to measure the electron temperature
and/or electron phase space distribution "indirectly." Indeed the radar observations of the
sporadic-E (irregular plasma density distribution in the E-region ionosphere) indicate counter-

streaming hot electrons in the sporadic-E regions.

In general, a distribution function of a gas is a function of position, velocity, and time.

Thatis f = f(x,y,2,v,,v,,v.,0) = f(x,v,f). Itis also called the phase space density, where the

phase space consists of the velocity space and the real space. In the statistic thermal
dynamics, we can define the fluid variables the number density, the mass density, the
momentum density, the momentum-flux density, the energy density, and the energy-flux
density by integrating the variables and the corresponding distribution functions over entire

velocity space.
2.1. Number Density, Mass Density, and Charge Density

The number density in the real space can be obtained by integrating the phase space

density over entire velocity space

n(x.t) = [[[ fx.v.0d™y

Likewise, we can obtained the mass density from the following integration,
p(x.t)=mn(x.t) = [[[ mf(x.v.0)d

Now, if there are more than one species in the gas or ionized gas, we can define the

number density of the « th species to be
n,(x.0= [[[ f.(x.v.)d 2.1)
where f, (x,v,t) is the phase space density of the a th species. The average mass density of

the multiple-species system is
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px.0) =Y mn, (x0= Y [[[ m,f,(x,v.0)d’ (2.2)

Likewise, the charge density of the multiple-species system is

p.x.0)= Y en,(x.0)= Y [[[e.f.x.v.0)d* (2.3)

2.2. Momentum Density and the Average Velocity

The momentum density of the o th species can be obtained by integrating the

momentum (m,v ) in the phase space over entire velocity space. We define

[[f m.v f.(x.v.0)d*v = m n, (x.)V,(x.t) (2.4)
where V_(x.t) is the average velocity of the « th species. The definition of V_(x,t) can be

obtained from equation (2.4). That is

V, (x,1)= ! (2.5)
n,(X,t)

The total momentum density of the multiple-species system is

POV, = Y mn, (xOV, (0= Y [[[ m,v f,(x,v,0d (2.6)

where V(x,¢) is the center-of-mass average velocity (or bulk velocity) of the multiple-species

system. The definition of V(x,#) can be obtained from equation (2.6). That is

V(x,t)=@gmana(x,twa(x,t) Em ) Em n,(x,0)V,(x,t) 2.7)
or

Efffmavfa(x,v,t)d%
- (2.7a)

Efffmf(xvt)aﬁ

Note that, based on the definitions given in equations (2.4) and (2.6), the “momentum
density” can be considered as the “mass-flux density”. Similarly, we will show in the next

section that the “pressure density” is equal to the “momentum-flux density”.
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2.3. Thermal Pressure Tensor, Scalar Thermal Pressure, and Stress Tensor

The momentum-flux density of the o th species can be obtained by integrating the net

momentum flux (m,vv) in the phase space over entire velocity space.

Exercise 2.1. Show that

fffmavvfa(x,v,t)d3v
(2.8)
=mn,(x.HV,x.HOV, &0+ [[[ m,[v-V,xDIv -V, &)1, xv.0)d"

Exercise 2.2. Show that the "momentum-flux density" is equivalent to a "pressure

tensor".

The first term on the right-hand side of equation (2.8) is called the dynamic pressure, which is
a moving-frame dependent pressure tensor. The second term on the right-hand side of
equation (2.8) is the thermal pressure tensor, which is a moving-frame independent variable.

Since the second-rank thermal pressure tensor of the « th species is defined by

P x.0)= [[[ m,[v-V,x.0]v-V,&xNDIf,x.v.0)d (2.9)
equation (2.8) can be rewritten as

[[] m.vv f.xv.0)d* = mn, (x.)V,(x.)V,(x.t)+P,(x,1) (2.10)

Based on the definition given in equation (2.9), the pressure tensor is a symmetric tensor. For
symmetric matrix, the trace of the matrix is one of the three invariants of the matrix after an
orthogonal transformation (e.g., a coordinate transformation such that after the transformation
the lengths of vectors and the angles between vectors are preserved). Therefore, we can

always define a scalar pressure of the « th species to be
1 1
=—trace(P,)=— m [v-V (x,)]'[v-V (x,t x,v,0)dv 2.11
Po =5 trace(P,) =2 [ m,[v =V, (01 [V = V(01 (x.¥.) 2.11)

For ideal gas, we have p(Volume)= Nk, and by definition the number density is

n=N /Volume . Thus, the temperature of the « th species is

1 1 3
T, (x,1)= gmfffma[v—Va(x,t)]-[v—Va(x,t)]fa(x,v,t)d v (2.12)

Note that, for isotropic pressure, the pressure tensor is reduced to P, =1p_, where 1 is the

unit tensor. For anisotropic pressure tensor, we can define a stress tensor II, , such that
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m -P —1p, (2.13)
The net momentum flux (or total pressure) of a multiple-species system is

S [ mov £, v 0d% = Y mn, (,0V, (0 V, (x,0)+P, (x,0)] (2.14)

We can define a pressure tensor P(x,7) in the center-of-mass moving frame, such that

E [ m.vv £, (x.v.0)d* = p(x.0)V(x,0)V (x,1)+ P(x,1) (2.15)

Equations (2.14) and (2.15) yields
P(x,t)= E[mana x,1)V, (x,H)V,,(x,1)+P, (x,1)]- p(x,1)V(X,1)V(X,1) (2.16)

Thus, unless all the species moves at the same speed, i.e., V(x,t)=V,(x,t) for all the  th

species, which yields P(x,t) = EPa (x,t), otherwise, in general, P(x,t) = EPa (x,1).

2.4. Kinetic Energy Density and Thermal Energy Density (Internal Energy)

The kinetic energy density of the o th species can be obtained by integrating the

kinetic energy (m,v:v/2) in the phase space over entire velocity space. Making use of

equations (2.10) and (2.11), the kinetic energy density of the « th species can be written as
[ m. % £xv.0)d = %mn (x,t)vj(x,z)+§ P (X,1) (2.17)

The first term on the right-hand side of equation (2.17) is the kinetic energy density due to
bulk speed of the fluid element, which is a moving-frame dependent kinetic energy density.
The second term on the right-hand side of equation (2.17) is the thermal energy density,
which is a moving-frame independent variable.

Integrating the thermal energy density over a volume Vol. we can obtain the internal

energy U, of the o th species in the given Vol., that is

U, = ; p,Vol.= %NakBTa (2.18)
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2.5. Kinetic Energy Flux Density and Heat Flux Density

The kinetic energy-flux density of the « th species can be obtained by integrating the

kinetic energy flux (m,v-vv/2) in the phase space over entire velocity space.

Exercise 2.3. Show that the kinetic energy-flux density of the « th species can be

written as
fffma%vfa(x,v,t)d%

(2.19)
= [% m.n, (X,t)Vaz(x,t) +%pa x,H)]V, (x,t)+P,(x,1) -V, (X,)+q,(X,t)

where the heat-flux density (a vector) is defined by

q.x.0)= [ %ma[v -V, (x.)|[v-V, (x.0)]'[v-V,(x0If,Xv.)dV (2.20)

Substituting equation (2.13) into equation (2.19), it yields
fffma %Vfa(x,v,t)cfv

(2.21)
= [% mn, (X,t)Vd2 (x,0)+ %pa x.0)IV, (x,t)+IL,(x,t) -V (x,1)+q,(X,1)

The first three terms on the right-hand side of equation (2.21) are moving-frame dependent
kinetic energy-flux density. The last term on the right-hand side of equation (2.21) is a

moving-frame independent heat-flux density.
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2.6. Fluid Variables of a Uniform Gas With Isotropic Normal Distribution in the
Velocity Space

Let us consider an equilibrium (9/9¢=0) and uniform (0/dx=09/dy=9/9dz=0) gas with a
normal distribution in the velocity space. The distribution function can be written as

f(V V.,V.)= 1 ex (_(Vx—Vx)2+(Vy—Vy)2+(vZ—VZ)2
x° Y’Z_(\/EO-)3 p 20_2

where

) (2.22)

n= f f f f(v)d’v is the number density,

222

V= lfffv f(v)d’v is the average velocity, and V=e V, +eV, +e
. s

o’ =kBT/m=3—1nfff(v—V)-(v—V)f(v)d3v

L v =L o v s v s

is the variance of the distribution function in each velocity component. The standard
deviation o can be considered as the thermal speed of the gas. It can be shown that the

thermal pressure tensor is
P=1p="1nk,T = [[[ m(v-V)(v=V)f(v)d’v

Obviously, both the stress tensor IT and the heat-flux density q will vanish for an isotropic

uniform gas (i.e., II=0 and q=0 for an isotropic uniform gas).
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