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Lecture 3: Instabilities in the Solar Interior and in the Solar Atmosphere   

 
3.1. Review of the convectional instability in a hydrodynamic equilibrium medium 
 
Let us consider a hydrodynamic equilibrium background medium, with background gas 

pressure 

! 

p
0
(z) , gas temperature 

! 

T
0
(z) , average mass density 

! 

"
0
(z) , and a relative uniform 

gravitational field 

! 

g("ˆ z ) .  The hydrodynamic equilibrium state yields 

! 

"
dp

0
(z)

dz
" #

0
(z)g = 0              (3.1) 

For ideal gas, we have 

! 

p
0
(z) = "

0
(z)RT

0
(z)              (3.2) 

Equation (3.2) yields, 

! 

1

p
0

dp
0

dz
=
1

"
0

d"
0

dz
+
1

T
0

dT
0

dz
            (3.2a) 

Let us consider an air parcel, which moves from 

! 

z(t = 0) = z
0
 to 

! 

z(t) = z
0

+ "z(t), with 

thermal pressure 

! 

p(t) , mass density 

! 

"(t) , temperature 

! 

T(t) , and initial conditions 

! 

p(t = 0) = p
0
(z
0
), 

! 

"(t = 0) = "
0
(z
0
), and 

! 

T(t = 0) = T
0
(z
0
). The horizontal pressure balance 

yields the gas pressure of the air parcel 

! 

p(t) changes from 

! 

p
0
(z
0
) to 

! 

p
0
(z
0

+ "z) . If this 

process is fast enough, then the air parcel will follow the adiabatic equation of state. i.e., 

! 

d

dt
ln(p"#$ ) = 0              (3.3) 

where 

! 

"  is the specific heat.  The specific heat 

! 

"  satisfies 

! 

" = ( f + 2) /2, where 

! 

f  is the 

degree of freedom of the gas particles  For the ideal gas, we have 

! 

p = "RT . Thus, the 

adiabatic equation of state can also be written as 

! 

d

dt
ln(p

1"#
T
#
) = 0              (3.4)  

Namely, the changes of the gas density and gas temperature satisfy the adiabatic equation of 

state. i.e., 

! 

1

p

dp

dt
=
"

#

d#

dt
               (3.3a) 

! 

(1" #)

p

dp

dt
+
#

T

dT

dt
= 0             (3.4a) 

The equation of motion of the air parcel when it moves to 

! 

z = z
0

+ "z(t) is 

! 

"(t)
d
2
z(t)

d t
2

= "(t)
d
2#z(t)

d t
2

= $
d p

0

d z
z= z0 +#z

$ "(t)g        (3.5) 
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Equation (3.1) yields 

! 

d p
0

d z
z= z0 +"z

= #$
0
(z
0

+ "z)g             (3.1a) 

Substituting equation (3.1a) into equation (3.5), it yields 

! 

d
2"z(t)

d t
2

= (
#
0
(z
0

+ "z)

#(t)
$1)g             (3.6) 

We can conclude from equation (3.6) that, if 

! 

"(t) > "
0
(z
0

+ #z) , there will be a restoring 

force to move the air parcel back to 

! 

z
0
, and the system is stable to the convectional 

instability.  Or, if 

! 

"(t) < "
0
(z
0

+ #z) , the system would be unstable to the convectional 

instability. 

The numerator 

! 

"
0
(z
0

+ #z)  in equation (3.6) can be written as  

! 

"
0
(z
0

+ #z) = "
0
(z
0
) + #z

d"
0
(z)

dz z= z0

+O(#z2
d
2"

0

dz
2
)

= "
0
(z
0
){1+ #z

1

"
0

d"
0

dz
z= z0

+O(#z2
1

"
0

d
2"

0

dz
2
)}

= "
0
(z
0
){1+ #z[

1

p
0

dp
0

dz
$
1

T
0

dT
0

dz
]z= z0 +O(#z2

1

"
0

d
2"

0

dz
2
)}

= "
0
(z
0
){1+ #z [

$g

RT
0

$
1

T
0

dT
0

dz
]z= z0 +O(#z2

1

"
0

d
2"

0

dz
2
)}

    (3.7) 

where equation (3.1) has been used to eliminate 

! 

p
0
(z
0
) in equation (3.7). 

Making use of equation (3.3), we can eliminate the denominator 

! 

"(t) in equation (3.6).  

Equation (3.3) yields 

! 

p(t)"(t)#$ = (p"#$ )t= 0, or  

! 

"(t) = [
p(t)

(p"#$ )t= 0
]
1/$

= "(t = 0)[
p
0
(z
0

+ %z)

p
0
(z
0
)
]
1/$

= "
0
(z
0
)[

p
0
(z
0
) + %z

dp
0

dz z0

+O(%z2
d
2
p
0

dz
2
)

p
0
(z
0
)

]
1/$

= "
0
(z
0
)[1#%z

g

RT
0
(z
0
)

+O(%z2
1

p
0

d
2
p
0

dz
2
)]
1/$

        (3.8) 

where equation (3.1) has been used to eliminate 

! 

p
0
(z
0
) in equation (3.8).  Substituting 

equations (3.7) and (3.8) into equation (3.6), and ignoring the second order and the higher 

order terms, it yields 



Solar Physics [AP-4035] Lecture 3     by Ling-Hsiao Lyu  October 2007 

 3-3 

! 

d
2"z

dt
2
# g{

$
0
(z
0
)[1+ "z(

%g

RT
0

%
1

T
0

dT
0

dz
)

z= z0

]

$
0
(z
0
)[1%"z

g

RT
0
(z
0
)
]
1/&

%1}

# g{ [1+ "z(
%g

RT
0

%
1

T
0

dT
0

dz
)

z= z0

] [1+
1

&
"z

g

RT
0
(z
0
)
] %1}

# g"z{(
1

&
%1)

g

RT
0
(z
0
)
%
1

T
0

dT
0

dz
z= z0

}

      (3.9) 

If the background medium has an adiabatic-vertical-temperature profile 

! 

T
ad
(z) , i.e.,  

! 

p
0
(z)

1"#
Tad (z)

#
= constant  

then 

! 

(
1

"
#1)

g

RT
0
(z
0
)

=
1# "

"

1

p
0

dp
0

dz
= (

1

Tad

dTad

dz
)         (3.10) 

Thus, we can define an adiabatic-vertical-temperature-change rate 

! 

(
1

T

dT

dz
)ad " (

1

#
$1)

g

RT
0
(z
0
)
            (3.11) 

Substituting equation (3.11) into equation (3.9) it yields 

! 

d
2
"z

dt
2
# "z{(

1

T

dT

dz
)ad$

1

T
0

dT
0

dz
z= z0

}g = $"zN
2         (3.12)  

where we have defined 

! 

N
2
" {(#

1

T

dT

dz
)ad#(#

1

T
0

dT
0

dz
z= z0

)}g           (3.13) 

 

If 

! 

N
2

> 0, the vertical displacement of the air parcel can lead to a vertical oscillation of the 

air parcel with angular frequency 

! 

N , which is also called the Brunt-Väisällä frequency.  

Namely, when the temperature-decreasing rate of the background gas 

! 

"
1

T
0

dT
0

dz
z= z

0

 is less 

than the adiabatic-temperature-decreasing rate 

! 

("
1

T

dT

dz
)
ad

 the system is stable to the 

convectional instability.  The system is unstable to the convectional instability, if 

! 

N
2

< 0 or 

if the temperature-decreasing rate of the background gas 

! 

"
1

T
0

dT
0

dz
z= z

0

 is greater than the 

adiabatic-temperature-decreasing rate 

! 

("
1

T

dT

dz
)
ad

. 
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3.2. The convectional instability in the solar interior 
 
If we consider the interior of the sun as a spherically symmetric hydrodynamic equilibrium 

background medium, with background plasma pressure 

! 

p
0
(r) , plasma temperature 

! 

T
0
(r) , 

plasma number density 

! 

n
0
(r), average ion mass 

! 

µ (r) .  The average mass density is 

! 

"
0
(r) = n

0
(r)µ (r)              (3.14) 

The gravitational field 

! 

g(r) = "ˆ r g(r) can be determined by  

! 

"ˆ r g(r) = "ˆ r 4# r
2$

0
(r)

0

r

% dr             (3.15) 

The hydrodynamic equilibrium state yields 

! 

"
dp

0
(r)

dr
" #

0
(r)g(r) = 0             (3.16) 

For ideal gas, we have 

! 

p
0
(r) = n

0
(r)kBT0(r) = "

0
(r)

kB

µ (r)
T
0
(r)          (3.17) 

Based on solar seismology, scientists can determine the radial distribution of the acoustic 

wave speed 

! 

C
S0
(r)  in solar interior, where  

! 

CS0(r) =
" p

0
(r)

#
0
(r)

= " kB
T
0
(r)

µ (r)
           (3.18) 

The standard solar model (xxxx, 199x), provide an theoretical model for the average ion mass 

distribution in the solar interior 

! 

µ (r) .  Thus, the five equations (3.14), (3.15), (3.16), (3.17) 

and (3.18) together with a given 

! 

µ (r)  model and observed 

! 

C
S0
(r) , we can determine the 

five unknowns 

! 

p
0
(r) , 

! 

T
0
(r) , 

! 

n
0
(r), 

! 

"
0
(r) , and 

! 

g(r).   

 

If we include the magnetic force in the convection zone, the equilibrium state along the radial 

direction becomes 

! 

"
# p

0

# r
" $

0
(r)g(r) + (J %B)r & "

# p
0

# r
" $

0
(r)g(r) "

#

# r

B
2

2µ
0

+
B ' (

µ
0

Br = 0   (3.16a) 

Since the magnetic field cannot be spherical symmetry, if the magnetic force is included as 

described in equation (3.16a) the average ion mass 

! 

µ  should become a spherical asymmetric 

function, i.e., 

! 

µ = µ (r,") .  Namely, the spherical symmetric model of 

! 

µ (r)  is no longer 

applicable to the plasma in the solar convection zone.  Likewise, by including the magnetic 

force, it might lead to 

! 

p
0
(r,"), 

! 

T
0
(r,"), 

! 

n
0
(r,") , in the solar convection zone.  Thus, the 

convectional instability in the solar convection zone is far more complex than the 

convectional instability in the Earth’s troposphere. 


