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Lecture 6. Linear Waves in Magnetohydrodynamic Plasma 
 

6.0. How to Linearize a Nonlinear Equation 

 

We shall use the mass continuity equation as an example to demonstrate how to linearize a 

nonlinear equation.  Let 

� 

A0  denotes a background state and 

� 

A1  denotes a small 

perturbation, where O(A1) = O(ε)O(A0 ) .  Then, 

� 

A  can be written as  

A = A0 + A1 +O(ε
2 )O(A0 ) ≈ A0 + A1  (6.0.1) 

Substituting equation (6.0.1) into the mass continuity equation, it yields 

[ ∂
∂ t

+ (V0 + V1) ⋅∇](ρ0 + ρ1) = −(ρ0 + ρ1)∇ ⋅ (V0 + V1)  (6.0.2) 

The equilibrium state of continuity equation is 

(V0 ⋅∇)ρ0 = −ρ0∇ ⋅V0  (6.0.3) 

Subtracting equation (6.0.3) from equation (6.0.2) yields 

( ∂
∂ t

+ V0 ⋅∇)ρ1 + V1 ⋅∇ρ0 + V1 ⋅∇ρ1 = −ρ0∇ ⋅V1 − ρ1∇ ⋅V0 − ρ1∇ ⋅V1  (6.0.4) 

where V1 ⋅∇ρ1  and ρ1∇ ⋅V1  are of the order of 

� 

O(ε2) .  Ignoring these nonlinear 

second-order small terms, equation (6.0.4) is reduced to a linearized equation, 

( ∂
∂ t

+ V0 ⋅∇)ρ1 + V1 ⋅∇ρ0 = −ρ0∇ ⋅V1 − ρ1∇ ⋅V0  (6.0.5) 

The linearized equation shown in equation (6.0.5) can be used to study linear waves in a 

non-uniform background medium with either density gradient or velocity shear.    

 

6.1. Linear Plane Waves in Uniform MHD Plasma  

 

Magnetohydrodynamic (MHD) plasma is a plasma model under long wavelength and low 

frequency limit, in which the time scale and spatial scale of the MHD plasma phenomena are 

much longer than the ions' time scale and spatial scale, respectively.  Lecture 4 shows that 

the MHD Ohm’s law can lead to frozen-in flux, which is an important characteristic of MHD 

plasma.  In addition to the characteristics of frozen-in conditions, MHD linear wave modes 

are also important characteristics of the MHD plasma.  Governing equations of MHD 

plasma with isotropic pressure and zero heat flux are listed in Column (1) of Table 6.1.  
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Table 6.1. Governing equations of MHD plasma with isotropic pressure and zero heat flux 

(1) MHD equations in (

� 

t, x ) domain (2) linearized MHD equations in (

� 

ω,k) domain 

Mass continuity equation 

( ∂
∂ t

+ V ⋅∇)ρ = −ρ∇ ⋅V  

Mass continuity equation 

 

 
(−iω ) ρ1 = −ρ0 (ik) ⋅ V1     (6.1) 

MHD momentum equation 

ρ( ∂
∂ t

+ V ⋅∇)V = −∇p + J × B  

MHD momentum equation 

 

 
ρ0 (−iω ) V1 = −(ik) p1 + J1 × B0    (6.2) 

MHD energy equation 

3
2
[( ∂
∂ t

+ V ⋅∇)ln(pρ−5 /3 )] = 0  

MHD energy equation 

 

(−iω ) p1 =
γ p0
ρ0
(−iω ) ρ1     (6.3) 

MHD charge continuity equation 

∇ ⋅ J = 0  

MHD charge continuity equation 

 
(ik) ⋅ J1 = 0       (6.4) 

MHD Ohm’s law 

E + V × B = 0  

MHD Ohm’s law 

 
E1 + V1 × B0 = 0      (6.5) 

Maxwell’s equations: 

∇ ⋅E = 0  

∇ ⋅B = 0  

∇ × E = −
∂B
∂ t

 

∇ × B = µ0J  

Maxwell’s equations: 

 
(ik) ⋅ E1 = 0       (6.6) 

 
(ik) ⋅ B1 = 0       (6.7) 

 
(ik) × E1 = iω B1      (6.8) 

 
(ik) × B1 = µ0 J1      (6.9) 

 

For uniform background plasma, we can choose a moving frame such that 

� 

V0 = 0 .  

Substituting V0 = 0  into Ohm’s law, it yields E0 = 0 .  Far from the source region, 

perturbations can be assumed in plane-wave format.  A perturbation 

� 

A1(x, t)  can be written 

as 

 
A1(x,t) = A1(k,ω )cos(k ⋅x −ω t + φA ) = Re{ A1(k,ω )exp[i(k ⋅x −ω t)]}  

where 
 
A1(k,ω ) = A1(k,ω )e

iφA  is a complex number.  The wave amplitude 

� 

A 1(k,ω) 

satisfies O(A1) = O(ε)O(A0 ) , where 

� 

A0  denotes a background variable.  Following the 

procedures described in equations (6.0.1)~(6.0.5), a set of linearized MHD equations in 

(ω , k ) domain are obtained and are listed in Column (2) of Table 6.1. 
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Our goal is to reduce the system equations, listed in Column (2) of Table 6.1, into a vector 

equation of 

� 

˜ V 1.  We shall focus on the momentum equation (6.2).  In order to eliminate 

� 

˜ p 1  

in equation (6.2), we substitute equation (6.1) into equation (6.3) to eliminate 

� 

˜ ρ 1, then 

substitute the resulting equation into equation (6.2) to eliminate 

� 

˜ p 1 .  Likewise, to eliminate 

� 

˜ J 1 in equation (6.2), we substitute equation (6.5) into equation (6.8) to eliminate 

� 

˜ E 1, then 

substitute the resulting equation into equation (6.9) to eliminate 

� 

˜ B 1, and then substitute the 

resulting equation into equation (6.2) to eliminate 

� 

˜ J 1.   

 

Substituting equation (6.1) into equation (6.3) yields  

 

p1 =
γ p0
ρ0
ρ1 = CS0

2 ρ1 = CS0
2 ρ0k ⋅ V1

ω
 (6.3') 

Substituting equation (6.5) into equation (6.8) to eliminate 

� 

˜ E 1, then substituting the resulting 

equation into equation (6.9) to eliminate 

� 

˜ B 1, it yields 

 

J1 =
ik × B1
µ0

=
ik × k ×

E1
ω

µ0
=
ik × k × (−

V1 × B0 )
ω

µ0
=
ik × [k × (B0 × V1)]

µ0ω
 (6.9') 

Substituting equations (6.3') and (6.9') into equation (6.2) yields 

 

ρ0 (−iω ) V1 = −ikCS0
2 ρ0k ⋅ V1

ω
+
ik × [k × (B0 × V1)]

µ0ω
× B0  (6.2') 

Multiplying equation (6.2') by 

� 

−iω /ρ0k
2  yields 

 

−
ω 2

k2
V1 = −CS0

2 k̂k̂ ⋅ V1 −
B0
2

µ0ρ0
{k̂ × [k̂ × (B̂0 × V1)]} × B̂0   

or  

 

ω 2

k2
V1 = CS0

2 k̂k̂ ⋅ V1 + CA0
2 B̂0 × {k̂ × [k̂ × (B̂0 × V1)]}  (6.2") 

where CA0 ≡ B0 / µ0ρ0  is called Alfvén speed, and CS0 ≡ γ p0 / ρ0  is called sound 

speed. 

 

As a result, we can obtain a set of equations for flow velocity 

� 

˜ V 1, which can be written as 

 
D ⋅ V1 = 0  (6.10) 

where 
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D = [ω
2

k2
− CA0

2 (B̂0 ⋅ k̂)
2 ]1− (CA0

2 + CS0
2 ) k̂k̂ + CA0

2 (B̂0 ⋅ k̂)(B̂0 k̂ + k̂B̂0 )  (6.11) 

 

For convenience, we can choose a coordinate system such that background magnetic field is 

along the 

� 

ˆ z -axis, and wave number 

� 

k  lies on 

� 

x -

� 

z  plane.  Namely,  

B0 = ẑ B0   (6.12) 

and 

k = k(ẑ cosθ + x̂ sinθ)  (6.13) 

where 

� 

θ  is the angle between 

� 

k  and 

� 

B0.  Substituting equations (6.12) and (6.13) into 

equations (6.10) and (6.11) yields 

 

(ω 2 / k2 ) −α 0 −δ
0 (ω 2 / k2 ) − CA0

2 cos2θ 0

−δ 0 (ω 2 / k2 ) − β

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

V1x
V1y
V1z

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= 0  (6.14) 

where 

α = CA0
2 cos2θ + (CA0

2 + CS0
2 )sin2θ = CA0

2 + CS0
2 sin2θ  (6.15) 

β = CA0
2 cos2θ + (CA0

2 + CS0
2 )cos2θ − 2CA0

2 cos2θ = CS0
2 cos2θ  (6.16) 

δ = CS0
2 cosθ sinθ  (6.17) 

 

Another way to obtain equation (6.14): 

Since 

a × b =
0 −az +ay
+az 0 −ax
−ay +ax 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

bx
by
bz

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

−azby + aybz
+azbx − axbz
−aybx + axby

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 

Thus 

B̂0× = ẑ× =
0 −1 0
1 0 0
0 0 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟  

k̂× = (x̂sinθ + ẑ cosθ)× =
0 − cosθ 0

+ cosθ 0 − sinθ
0 + sinθ 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟  

Equation (6.2") can be rewritten as  
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ω 2

k2
V1 = CA0

2 (B̂0×)(k̂×)(k̂×)(B̂0×) ⋅ V1 + CS0
2 (k̂k̂) ⋅ V1  

or 

 

ω 2

k2
V1 = CA0

2
0 −1 0
1 0 0
0 0 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

0 − cosθ 0
+ cosθ 0 − sinθ
0 + sinθ 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

0 − cosθ 0
+ cosθ 0 − sinθ
0 + sinθ 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

0 −1 0
1 0 0
0 0 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
V1

+ CS0
2

sinθ
0
cosθ

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
( sinθ 0 cosθ ) V1

 

It yields 

 

ω 2

k2
V1 =M ⋅ V1 =

Mxx Mxy Mxz

Myx Myy Myz

Mzx Mzy Mzz

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

V1x
V1y
V1z

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

where 

Mxx Mxy Mxz

Myx Myy Myz

Mzx Mzy Mzz

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

=

CA0
2 + CS0

2 sin2θ 0 CS0
2 cosθ sinθ

0 CA0
2 cos2θ 0

CS0
2 cosθ sinθ 0 CS0

2 cos2θ

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

 

 

Note that for 

� 

˜ V 1 ≠ 0 , solutions of 

� 

ω2 / k2  for different wave modes can be considered as 

eigen values of the following matrix 

α 0 δ
0 CA0

2 cos2θ 0
δ 0 β

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 

Characteristics of different wave modes can be obtained from the corresponding eigen 

vectors.  

 

Exercise 6.1. 

Review eigen values and eigen vectors of a symmetric matrix.  Determine eigen values 

� 

λ1 , 

� 

λ2 , 

� 

λ3 , and the corresponding normalized eigen vectors 

� 

ˆ e 1 , 

� 

ˆ e 2 , 

� 

ˆ e 3 , of the following 
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symmetric matrix  

M =
1 1 0
1 1 1
0 1 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟  

Show that these eigen vectors of the symmetric matrix form an orthogonal basis and after 

coordinate transformation, the representation of matrix 

� 

M  in this new basis 

′B = {ê1, ê2 , ê3}  becomes 

M =
λ1 0 0
0 λ2 0
0 0 λ3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

′B

 

 

 

6.2. Linear Wave Modes in MHD Plasma 

 

Number of linearized equations with time derivative term can lead to the same number of 

linear wave modes.  Amount the nine equations in Table 6.1, seven of them contain a time 

derivative term.  It will be shown in this section that, for 

� 

θ ≠ 0  and 

� 

θ ≠ π /2 , seven linear 

wave modes can be found in the MHD plasma.  Three of them are forward propagating 

waves.  Based on their wave speeds, these three wave modes are called fast-mode wave, 

intermediate-mode wave, and slow-mode wave.  The intermediate mode wave is also called 

Alfven-mode wave or share-Alfven wave.  The other four wave modes are backward 

propagating fast-mode wave, intermediate-mode wave, slow-mode wave, and a 

non-propagating entropy-mode wave.  The fast mode, Alfven mode, and slow mode are 

eigen modes of equation (6.14).  The entropy mode is an additional wave mode, which can 

be obtained from the continuity equation. 

 

6.2.1. Entropy-Mode Wave 

 

Entropy mode in MHD plasma is characterized by 

� 

˜ ρ 1 ≠ 0, but 

� 

˜ V 1x = ˜ V 1y = ˜ V 1z = 0  and 

� 

ω = 0.  

For 

� 

ω = 0 , the phase speed 

� 

ω / k  vanishes.  Thus, entropy mode is frozen in the plasma 

flow.  Contact Discontinuity (CD) can be considered as a nonlinear version of entropy mode 

in MHD plasma.   

 



Space Physics (I) [AP-3044] Lecture 6  by Ling-Hsiao Lyu  2006 July 
 

 6-7 

6.2.2. Alfven-Mode (or Intermediate-Mode) Wave 

 

Alfven mode in the MHD plasma is characterized by 

� 

˜ V 1x = ˜ V 1z = 0  but 

� 

˜ V 1y ≠ 0 .  For 

� 

˜ V 1x = ˜ V 1z = 0  but 

� 

˜ V 1y ≠ 0, equation (6.14) yields 

� 

ω 2

k 2
= CA 0

2 cos2θ  (6.18) 

Equation (6.18) is the wave dispersion relation of Alfven-mode wave.  Since the phase 

speed of Alfven mode is in between fast-mode and slow-mode wave speed, the Alfven mode 

is also called intermediate mode.  It can be shown that Rotational Discontinuity (RD) can be 

considered as a nonlinear version of Alfven-mode wave in MHD plasma.   

 

Characteristics of Alfven-mode wave: 

 

From Alfven-mode wave dispersion relation 

� 

ω = ±kCA 0 cosθ , we can determine group 

velocity of Alfven mode to be 

vg =
dω
dk

= x̂
∂ω
∂kx

+ ẑ
∂ω
∂kz

= ± ẑCA0 = ±B̂0CA0  

 

6.2.3. Fast-Mode and Slow-Mode Wave 

 

For 

� 

˜ V 1y = 0  but 

 

V1x
V1z

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
≠ 0

0
⎛
⎝⎜

⎞
⎠⎟

  

equation (6.14) yields 

det
(ω 2 / k2 ) −α −δ

−δ (ω 2 / k2 ) − β

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

ω 2

k2
⎛
⎝⎜

⎞
⎠⎟

2

−
ω 2

k2
(α + β) +αβ −δ 2 = 0  

where 

� 

α , 

� 

β , and 

� 

δ  are given in equations (6.15)~(6.17), which yields 

α + β = CA0
2 + CS0

2 sin2θ + CS0
2 cos2θ = CA0

2 + CS0
2  

and 

αβ −δ 2 = (CA0
2 + CS0

2 sin2θ)CS0
2 cos2θ − CS0

4 cos2θ sin2θ = CA0
2 CS0

2 cos2θ  

Thus, we have 
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ω 2

k2
⎛
⎝⎜

⎞
⎠⎟

2

−
ω 2

k2
(CA0

2 + CS0
2 ) + CA0

2 CS0
2 cos2θ = 0  (6.20) 

Equation (6.20) has two roots of 

� 

ω2 / k2 .  They are 

ω 2

k2
⎛
⎝⎜

⎞
⎠⎟ Fast
Slow

= (vph
2 )Fast

Slow
=
1
2
{(CA0

2 + CS0
2 ) ± (CA0

2 + CS0
2 )2 − 4CA0

2 CS0
2 cos2θ}  (6.21) 

where + sign equation is fast-mode wave dispersion relation and – sign equation is 

slow-mode wave dispersion relation. 

 

Characteristics of Fast-mode and Slow-mode waves: 

 

From Fast-mode and Slow-mode wave dispersion relation, we can determine group velocity 

of these two wave modes as 

(vg )Fast
Slow

=
ω
k
(k̂ ∂ω

∂k
+ θ̂ 1

k
∂ω
∂θ
) = k̂(vph )Fast

Slow
± θ̂ 1

(vph )Fast
Slow

CA0
2 CS0

2 cosθ sinθ
(CA0

2 + CS0
2 )2 − 4CA0

2 CS0
2 cos2θ

 (6.22) 

where 

� 

(v ph)Fast
Slow

 is given in equation (6.21). 

Proof of equation (6.22): 

 

By definition, group velocity is 

vg =
dω
dk

= k̂
∂ω
∂k

+ θ̂ 1
k
∂ω
∂θ

 

where 

� 

2ω ∂ω
∂k

= 2kω
2

k 2
 

and 

2ω ∂ω
∂θ

= k2
∂
∂θ
[1
2
{(CA0

2 + CS0
2 ) ± (CA0

2 + CS0
2 )2 − 4CA0

2 CS0
2 cos2θ}]

= k2 (1
2
)(± 1

2
) 4 ⋅2CA0

2 CS0
2 cosθ sinθ

(CA0
2 + CS0

2 )2 − 4CA0
2 CS0

2 cos2θ

 

Thus, we have 
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vphvg =
ω
k
(k̂ ∂ω

∂k
+ θ̂ 1

k
∂ω
∂θ
) = k̂ω

2

k2
± θ̂ CA0

2 CS0
2 cosθ sinθ

(CA0
2 + CS0

2 )2 − 4CA0
2 CS0

2 cos2θ

= k̂[1
2
{(CA0

2 + CS0
2 ) ± (CA0

2 + CS0
2 )2 − 4CA0

2 CS0
2 cos2θ}] ± θ̂ CA0

2 CS0
2 cosθ sinθ

(CA0
2 + CS0

2 )2 − 4CA0
2 CS0

2 cos2θ

 

or 

(vg )Fast
Slow

=
ω
k
(k̂ ∂ω

∂k
+ θ̂ 1

k
∂ω
∂θ
) = k̂(vph )Fast

Slow
± θ̂ 1

(vph )Fast
Slow

CA0
2 CS0

2 cosθ sinθ
(CA0

2 + CS0
2 )2 − 4CA0

2 CS0
2 cos2θ

 

 

6.2.4. Fredrick’s Diagrams of MHD Waves’ Phase Velocity and Group Velocity 

 

Exercise 6.2. 

(1) Ignoring entropy mode, plot phase velocity of three MHD wave modes on 

Fredrick’s diagram, where polar coordinate (r,θ) = (ω / k,θk,B0 ) . 

(2) Plot group velocity of three MHD wave modes on Fredrick’s diagram, where polar 

coordinate (r,θ) = (vg ,θvgB0 ) .   

 

Exercise 6.3. 

Consider MHD plane waves with 

� 

B0 = ˆ z B0  and k = k(ẑ cosθ + x̂ sinθ)  

(1) Show that 
 
B1 = B0k[ x̂(− V1x cosθ) + ŷ(− V1y cosθ) + ẑ( V1x sinθ)] . 

(2) Show that 
 

ρ1 = ρ0
k
ω
V1x
(ω
k
)2 − CA0

2

CS0
2 sinθ

. 

(3) Show that 
 

B1 = B − B0 =
B0 ⋅ B1
B0

= B0
V1xk sinθ

ω
 

(4) Show that, for 

� 

˜ B 1 ≠ 0 , we have 
 

ρ1
B1
=
(ω
k
)2 − CA0

2

CS0
2 sin2θ

ρ0
B0

 

(5) Show that for Alfven wave 

� 

˜ ρ 1 = 0 , 

� 

˜ p 1 = 0 , and 

� 

˜ B 1 = 0.   

(6) Show that 

� 

ρ1 and 

� 

B1 are in phase for the fast-mode wave, but out of phase for the 

slow-mode wave.   

(7) Show that, for Alfven mode, variations of 

� 

B1 and 

� 

V1 are in phase if 

� 

π /2 < θ < π , 

but out-off phase if 

� 

0 <θ < π /2. 



Space Physics (I) [AP-3044] Lecture 6  by Ling-Hsiao Lyu  2006 July 
 

 6-10 

(8) Determine the perturbation directions of 

� 

˜ E 1 and 

� 

˜ J 1 for Alfven-mode, fast-mode, 

and slow-mode waves.  

(9) Show that 

� 

˜ V 1Fast ⋅ ˜ V 1Slow = 0 . 

 

Proof of 
 
V1Fast ⋅ V1Slow = 0  

 

equation (6.14) yields  

 
( V1x )Fast[(ω

2 / k2 )Fast −α ]− ( V1z )Fastδ = 0  

and  

 
( V1x )Slow[(ω

2 / k2 )Slow −α ]− ( V1z )Slowδ = 0  

Substituting the above two equations into 

� 

˜ V 1Fast ⋅ ˜ V 1Slow , it yields 

 

V1Fast ⋅ V1Slow = ( V1x )Fast ( V1x )Slow + ( V1z )Fast ( V1z )Slow
= ( V1x )Fast ( V1x )Slow + {( V1x )Fast[(ω

2 / k2 )Fast −α ] /δ}{( V1x )Slow[(ω
2 / k2 )Slow −α ] /δ}

= ( V1x )Fast ( V1x )Slow{1+ [(ω
2 / k2 )Fast −α ][(ω

2 / k2 )Slow −α ] /δ
2}

= ( V1x )Fast ( V1x )Slow{δ
2 + (ω 2 / k2 )Fast (ω

2 / k2 )Slow −α[(ω
2 / k2 )Fast + (ω

2 / k2 )Slow ]+α
2} /δ 2

= ( V1x )Fast ( V1x )Slow{δ
2 +α 2 +

1
4
[b2 − (b2 − 4c)]−αb} /δ 2

= ( V1x )Fast ( V1x )Slow{δ
2 +α 2 + c −αb} /δ 2

 

where 

b = (α + β)
c = αβ −δ 2

 

Thus 

 
V1Fast ⋅ V1Slow = ( V1x )Fast ( V1x )Slow{δ

2 +α 2 + (αβ −δ 2 ) −α(α + β)} /δ 2 = 0  

 

Students are encouraged to read the classical paper written by Kantrowitz and Petschek (1966) 

for detail discussion on MHD wave modes. 

 

Reference 

 

Kantrowitz, A., and H. E. Petschek, MHD characteristics and shock waves, in Plasma 

Physics in Theory and Application, edited by W. B. Kunkel, p. 148, McGraw-Hill Inc., 

New York, 1966.  
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Solutions of nonlinear MHD equilibrium states consist of Contact Discontinuity (CD), 

Tangential Discontinuity (TD), Rotational Discontinuity (RD), and Shock Waves. 

 

Contact discontinuity (CD) is the nonlinear state of the entropy mode.  Rotational 

discontinuity (RD) is the nonlinear state of the intermediate mode.  Fast shock is the 

nonlinear state of the fast mode wave.  Slow shock is the nonlinear state of the slow mode 

wave.  

 

It can be shown that Tangential discontinuity (TD) can be considered as a nonlinear state of 

perpendicularly propagated Alfven-mode and/or slow-mode wave.  

Show that if 
 
V1x = V1y = V1z = 0 , but 

� 

˜ ρ 1 ≠ 0  and 

� 

˜ B 1 ≠ 0 , then 

� 

ω  must be zero (

� 

ω = 0), and 

 
−(ik) p1 + J1 × B0 = 0 . 

 

Proof: 

For 

� 

˜ V 1x = ˜ V 1y = ˜ V 1z = 0 , equation (6.10) or (6.14) is automatically fulfilled.   

Substituting 

� 

˜ V 1 = 0  into equation (6.5) yields 

� 

˜ E 1 = 0 .   

Substituting 

� 

˜ V 1 = 0  into equation (6.1) yields 

� 

ω ˜ ρ 1 = 0.   

Substituting 

� 

˜ E 1 = 0  into equation (6.8) yields 

� 

ω ˜ B 1 = 0.   

Thus, if 

� 

ρ1 ≠ 0  and 

� 

B1 ≠ 0 , we must have 

� 

ω = 0.  

Substituting 

� 

˜ V 1 = 0  into equation (6.2) yields  

� 

−(i k) ˜ p 1 + ˜ J 1 × B0 = 0  (6.2a) 

Substituting equation (6.9) into equation (6.2a) yields 

 

−k p1 −
k( B1 ⋅B0 )

µ0
+
(k ⋅B0 ) B1

µ0
= 0  (6.2b) 

For 

� 

˜ B 1 ≠ 0, equation (6.7) implies 

� 

˜ B 1⊥k , thus equation (6.2b) can be decomposed into two 

parts.  One of them is parallel or anti-parallel to the direction of 

� 

k .  The other one is in the 

direction of 

� 

˜ B 1.  That is 

 

−k( p1 +
B1 ⋅B0
µ0

) = 0  (6.2c) 

and 

 
(k ⋅B0 ) B1 = 0  (6.2d) 
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Equation (6.2d) implies that if 

� 

˜ B 1 ≠ 0  then 

� 

k ⋅B0 = 0 .  (Likewise, if 

� 

k ⋅B0 ≠ 0  then 

� 

˜ B 1 = 0 .  This is the entropy mode discussed before.)  

 

In summary, there are three types of non-propagating wave mode (

� 

ω = 0) in MHD plasma : 

1. Perpendicular-propagated Alfvén-mode wave, which is characterized by 

� 

ω = 0 , 

� 

˜ B 1 ≠ 0 , 

� 

˜ ρ 1 = ˜ p 1 = 0 , 

� 

˜ B 1 ⋅B0 = 0  and 

� 

k ⋅B0 = 0.  

2. Perpendicular-propagated slow-mode wave, which is characterized by 

� 

ω = 0 , 

� 

˜ B 1 ≠ 0 , 

� 

˜ p 1 ≠ 0 , 

� 

˜ B 1 ⋅B0 ≠ 0, and 

� 

k ⋅B0 = 0 .   

3. Entropy mode, which is characterized by 

� 

ω = 0 , 

� 

˜ ρ 1 ≠ 0 , 

� 

˜ p 1 = 0 , 

� 

˜ B 1 = 0 , and 

� 

k ⋅B0 ≠ 0. 


