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Appendix B. Grad-B Drift 

 

Consider a charge particle moving in a system with non-uniform magnetic field B(r) .  

However, the non-uniformity of the magnetic field is small enough that we can 

approximately use Taylor expansion to estimate the magnetic field seen by the charge particle 

along its gyro orbit in terms of the magnetic field observed at its guiding center location. 

Namely, for r = rg.c. + rgyro , we have 

B(r) = B(rg.c. ) + rgyro ⋅∇B + ⋅ ⋅ ⋅ ⋅  (B.1) 

If this particle has no velocity component parallel to the local magnetic field and magnetic 

momentum of this particle is conserved then we can decompose its velocity 

� 

v  into  

v = vgyro + vdrift  

where vgyro  is the high frequency gyro motion velocity and vdrift  is a nearly 

time-independent guiding center drift velocity.  The equation of motion of this charge 

particle is  

m
dv
dt

= qv × B ≈ q(vgyro + vdrift ) × [B(rg.c. ) + rgyro ⋅∇B]  (B.2) 

The low frequency guiding-center equation of motion becomes 

vdrift × B(rg.c. ) + vgyro × (rgyro ⋅ ∇B) = 0  (B.3) 

where the notation f  denotes the time average value of 

� 

f .  Now let us consider a 

simplified case.  Let B = B(x, y)ẑ , then we have  

∇B = ∇(Bẑ) = ∂B(x, y)
∂ x

x̂ẑ +
∂B(x, y)

∂ y
ŷẑ  

Equation of gyro motion component with respect to guiding center is 

m
dvgyro
dt

= qvgyro × B  (B.4) 

drgyro
dt

= vgyro  (B.5) 

Solution of gyro motion Eq. (B.4) and Eq. (B.5) can be written as 

vgyro = vgyro[ x̂ cos(Ωt +ϕ ) −
q
q
ŷsin(Ωt +ϕ )]  (B.6) 

rgyro =
vgyro
Ω
[ x̂ sin(Ωt +ϕ ) +

q
q
ŷcos(Ωt +ϕ )]  (B.7) 
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Thus, 

rgyro ⋅∇B =
vgyro
Ω
sin(Ωt +ϕ )∂B(x, y)

∂ x
ẑ +

vgyro
Ω

q
q
cos(Ωt +ϕ )]∂B(x, y)

∂ y
ẑ  

vgyro × rgyro ⋅∇B

=
vgyro
2

Ω
cos(Ωt +ϕ )sin(Ωt +ϕ )∂B(x, y)

∂ x
(x̂ × ẑ) −

vgyro
2

Ω
q
q
sin2 (Ωt +ϕ )∂B(x, y)

∂ x
(ŷ × ẑ)

+
vgyro
2

Ω
q
q
cos2 (Ωt +ϕ )∂B(x, y)

∂ y
(x̂ × ẑ) −

vgyro
2

Ω
sin(Ωt +ϕ )cos(Ωt +ϕ )∂B(x, y)

∂ y
(ŷ × ẑ)

 

where Ω = q B / m , thus 

vgyro
2

Ω
q
q

=
mvgyro

2

qB
 

Since  

sin(Ωt +ϕ )cos(Ωt +ϕ ) = 0  

cos2 (Ωt +ϕ ) = sin2 (Ωt +ϕ ) =
1
2

 (B.8) 

we have 

vgyro × rgyro ⋅∇B = −
mvgyro

2

2qB
∂B(x, y)

∂ x
(ŷ × ẑ) +

mvgyro
2

2qB
∂B(x, y)

∂ y
(x̂ × ẑ)  

= −
mvgyro

2

2qB
[∂B(x, y)

∂ x
x̂ +

∂B(x, y)
∂ y

ŷ] =
mvgyro

2

2qB
(−∇⊥B)  (B.9) 

Substituting Eq. (B.9) into Eq. (B.3), it yields 

vdrift × B(rg.c. ) +
mvgyro

2

2qB
(−∇⊥B) = 0  (B.10) 

Solution of 

� 

vdrift  in Eq. (B.10) is the grad-B drift velocity in the first-order approximation.  

It can be written as  

vdrift =
mvgyro

2

2qB
(−∇⊥B) × B

B2
 (B.11) 

For vdrift << vgyro , the perpendicular speed, v⊥ , of the charge particle is approximately equal 

to vgyro .  Thus, it is commonly using the following expression to denote the first-order 

grad-B drift velocity. 

vdrift =
mv⊥

2

2qB
(−∇⊥B) × B

B2
 (B.12) 


