Appendix A. Curvature Drift

Consider a charge particle with constant magnetic moment and non-zero velocity component parallel to the local magnetic field. If curvature of the magnetic field line is non-zero, then the particle's field-aligned moving frame will become a non-inertial frame. If the parallel speed $v_{\|}$is nearly a constant, the equation of motion in the $v_{\|}$non-inertial moving frame, can be approximately written as
$m \frac{d \mathbf{v}}{d t}=\frac{\hat{R}_{B} m v_{\|}^{2}}{R_{B}}+q \mathbf{v} \times \mathbf{B}$
Where $\mathbf{v}=\mathbf{v}_{\text {gyro }}+\mathbf{v}_{\text {drift }}, \mathbf{v}_{\text {gyro }}$ is the high frequency gyro motion velocity, and $\mathbf{v}_{\text {drift }}$ is the low frequency (or time independent) drift velocity. Averaging Eq. (A.1) over one gyro period ($\tau=2 \pi / \Omega_{c}$, where $\Omega_{c}=|q| B / m$), we can obtain equation for low frequency guiding-center motion in the $v_{\|}$non-inertial moving frame

$$
\begin{equation*}
\frac{\hat{R}_{B} m v_{\|}^{2}}{R_{B}}+q \mathbf{v}_{d r i j t} \times \mathbf{B}=0 \tag{A.2}
\end{equation*}
$$

where $\mathbf{v}_{\text {drift }}$ is the curvature drift velocity. The curvature drift velocity can be obtained from Eq. (A.2),
$\mathbf{v}_{d r i f t}=\frac{\frac{\hat{R}_{B} m v_{\|}^{2}}{q R_{B}} \times \mathbf{B}}{B^{2}}=\frac{m v_{\|}^{2}}{q B^{2}}\left(\frac{\hat{R}_{B}}{R_{B}} \times \mathbf{B}\right)$
Since
$-\frac{\hat{R}_{B}}{R_{B}}=\frac{d \hat{B}}{d s}=\hat{B} \cdot \nabla \hat{B}=\frac{\mathbf{B}}{B} \cdot \nabla\left(\frac{\mathbf{B}}{B}\right)=\frac{\mathbf{B} \cdot \nabla \mathbf{B}}{B^{2}}-\frac{\mathbf{B B} \cdot \nabla B}{B^{3}}$
$=\frac{-\mathbf{B} \times(\nabla \times \mathbf{B})+\nabla \frac{B^{2}}{2}}{B^{2}}-\frac{\hat{B} \hat{B} \cdot \nabla B}{B}=\frac{-\mathbf{B} \times(\nabla \times \mathbf{B})}{B^{2}}+\frac{\nabla B}{B}-\frac{\hat{B} \hat{B} \cdot \nabla B}{B}$
$=\frac{-\mathbf{B} \times(\nabla \times \mathbf{B})}{B^{2}}+(\mathbf{1}-\hat{B} \hat{B}) \cdot \frac{\nabla B}{B}$
where
$\mathbf{1}=\hat{x} \hat{x}+\hat{y} \hat{y}+\hat{z} \hat{z}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
is the unit tensor. For any given vector \mathbf{A}, we have $\mathbf{A}=\mathbf{A} \cdot \mathbf{1}=\mathbf{1} \cdot \mathbf{A}$.
If the magnetic field is along the z -direction, then $\hat{B} \hat{B}=\hat{z} \hat{z}$, and
$\mathbf{1}-\hat{B} \hat{B}=\hat{x} \hat{x}+\hat{y} \hat{y}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$
Any vector \mathbf{A} can be decomposed into two parts, one is parallel to the local magnetic field $\left(\mathbf{A}_{\|}\right)$, another is perpendicular to the local magnetic field $\left(\mathbf{A}_{\perp}\right) . \quad$ Namely, $\mathbf{A}=\mathbf{A}_{\|}+\mathbf{A}_{\perp} . \quad$ It can be shown that
$\mathbf{A}_{\|}=\hat{B} \hat{B} \cdot \mathbf{A}$
and
$\mathbf{A}_{\perp}=(\mathbf{1}-\hat{B} \hat{B}) \cdot \mathbf{A}$
Likewise, we have
$\nabla_{\perp} B=\nabla B-\hat{B} \hat{B} \cdot \nabla B=(\mathbf{1}-\hat{B} \hat{B}) \cdot \nabla B$
Substituting Eq. (A.5) into Eq. (A.4), it yields
$-\frac{\hat{R}_{B}}{R_{B}}=\frac{-\mathbf{B} \times(\nabla \times \mathbf{B})}{B^{2}}+\frac{\nabla_{\perp} B}{B}$
or
$\frac{\hat{R}_{B}}{R_{B}}=\frac{\mathbf{B} \times(\nabla \times \mathbf{B})}{B^{2}}-\frac{\nabla_{\perp} B}{B}$
Substituting Eq. (A.6) into Eq. (A.3), it yields

$$
\begin{aligned}
& \mathbf{v}_{d r i f t}=\frac{m v_{\|}^{2}}{q B^{2}}\left(\frac{\hat{R}_{B}}{R_{B}} \times \mathbf{B}\right) \\
& =\frac{m v_{\|}^{2}}{q B^{2}}\left[\left(\frac{\mathbf{B} \times(\nabla \times \mathbf{B})}{B^{2}}-\frac{\nabla_{\perp} B}{B}\right) \times \mathbf{B}\right] \\
& =\frac{m v_{\|}^{2}}{q B^{2}}\left[\frac{B^{2}(\nabla \times \mathbf{B})}{B^{2}}-\frac{\mathbf{B B} \cdot(\nabla \times \mathbf{B})}{B^{2}}-\frac{\nabla_{\perp} B}{B} \times \mathbf{B}\right] \\
& =\frac{m v_{\|}^{2}}{q B^{2}}\left[(\mathbf{1}-\hat{B} \hat{B}) \cdot(\nabla \times \mathbf{B})-\frac{\nabla_{\perp} B}{B} \times \mathbf{B}\right] \\
& =\frac{m v_{\|}^{2}}{q B^{2}}\left[(\nabla \times \mathbf{B})_{\perp}-\frac{\nabla_{\perp} B}{B} \times \mathbf{B}\right]
\end{aligned}
$$

Namely, the curvature drift velocity given in (A.3) can be written as

$$
\begin{equation*}
\mathbf{v}_{\text {drift }}=\frac{m v_{\|}^{2}}{q B^{2}}\left[(\nabla \times \mathbf{B})_{\perp}-\frac{\nabla_{\perp} B}{B} \times \mathbf{B}\right] \tag{A.7}
\end{equation*}
$$

