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F.1. Relativistic Klimontovich Equation 

 

Let us define a relativistic microscopic distribution function of the 

� 

α th species in 

six-dimensional phase space 

� 

Nα (x,u,t) = δ[x − x k (t)]δ[u−uk (t)]
k=1

N0

∑           (F.1) 

where 

� 

x k(t)  and 

� 

uk( t)  satisfy the following relativistic equations of motion 

� 

dx k (t)
dt

= uk (t)

1+ uk (t) ⋅uk (t)
c 2

            (F.2) 

� 

duk (t)
dt

= eα
mα

{Em[x k (t), t]+ uk (t)

1+ uk (t) ⋅uk (t)
c 2

×Bm[x k (t), t]}      (F.3) 

in which 

� 

Em(x, t)  and 

� 

Bm(x, t)  are the microscopic electric field and magnetic field, 

respectively.  Following the same procedure as discussed in Chapter 2, relativistic 

Klimontovich equation can be obtained by evaluating time derivative of 

� 

Nα (x,u,t) .  



Appendix F.  Deriving the Relativistic Vlasov Equation From the Relativistic 
Klimontovich Equation 

 

 

184 

� 

∂Nα (x,u,t)
∂ t

= ∂
∂ t

δ[x − x k (t)]δ[u−uk (t)]
k=1

N0

∑

= { ∂
∂ t

δ[x − x k (t)]
k=1

N0

∑ }δ[u−uk (t)]+ δ[x − x k (t)]{
∂
∂ t

δ[u−uk (t)]
k=1

N0

∑ }

= {∂δ[x − x k (t)]
∂x

⋅ [− dx k (t)
dt

]}
k=1

N0

∑ δ[u−uk (t)]+ δ[x − x k (t)]{
∂δ[u−uk (t)]

∂u
⋅ [− duk (t)

dt
]}

k=1

N0

∑

= { ∂
∂x

δ[x − x k (t)]δ[u−uk (t)]} ⋅ [−
uk (t)

1+ uk (t) ⋅uk (t)
c 2

]
k=1

N0

∑

+ { ∂
∂u

δ[x − x k (t)]δ[u−uk (t)]} ⋅ [−
eα
mα

{Em[x k (t), t]+ uk (t)

1+ uk (t) ⋅uk (t)
c 2

×Bm[x k (t), t]}]
k=1

N0

∑

= { ∂
∂x

δ[x − x k (t)]δ[u−uk (t)]} ⋅ [−
u

1+ u ⋅u
c 2

]
k=1

N0

∑

+ { ∂
∂u

δ[x − x k (t)]δ[u−uk (t)]} ⋅ [−
eα
mα

{Em (x,t) + u

1+ u ⋅u
c 2

×Bm (x,t)}]
k=1

N0

∑

= [− u

1+ u ⋅u
c 2

] ⋅ ∂
∂x

{δ[x − x k (t)]δ[u−uk (t)]}
k=1

N0

∑

+[− eα
mα

{Em (x,t) + u

1+ u ⋅u
c 2

×Bm (x,t)}] ⋅ ∂
∂u

{δ[x − x k (t)]δ[u−uk (t)]}
k=1

N0

∑

= − u

1+ u ⋅u
c 2

⋅ ∂Nα (x,u,t)
∂x

− eα
mα

{Em (x,t) + u

1+ u ⋅u
c 2

×Bm (x,t)} ⋅ ∂Nα (x,u,t)
∂u

 

or 

� 

∂Nα (x,u,t)
∂ t

+ v(u) ⋅ ∂Nα (x,u,t)
∂x

+ eα
mα

{Em (x,t) + v(u) ×Bm (x,t)} ⋅ ∂Nα (x,u,t)
∂u

= 0  (F.4) 

where 

� 

v(u) ≡ u

1+ u ⋅u
c 2

 

Eq. (F.4) is the relativistic Klimontovich equation of the microscopic distribution function 

� 

Nα (x,u,t) . 
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F.2. Relativistic Vlasov Equation 

 

Let 

� 

fα (x,u,t), 

� 

E(x,t) , and 

� 

B(x,t)  be the ensemble average of 

� 

Nα (x,u,t) , 

� 

Em (x,t) , and 

� 

Bm (x,t) , respectively.  Let 

� 

Nα (x,u,t) = fα (x,u,t) + δNα (x,u,t)  

� 

Em (x,t) = E(x,t) + δEm (x,t)  

� 

Bm (x,t) = B(x,t) + δBm (x,t)  

If we use 

� 

A  to denote ensemble average of 

� 

A , then we have 

� 

Nα (x,u,t) = fα (x,u,t) 

� 

Em (x,t) = E(x,t) 

� 

Bm (x,t) = B(x,t) 

and 

� 

δNα (x,u,t) = 0 

� 

δEm (x,t) = 0  

� 

δBm (x,t) = 0  

 

Taking ensemble average of Eq. (F.4) yields, 

� 

∂Nα (x,u,t)
∂ t

+ v(u) ⋅ ∂Nα (x,u,t)
∂x

+ eα
mα

{Em (x,t) + v(u) ×Bm (x,t)} ⋅ ∂Nα (x,u,t)
∂u

= 0 

or 

� 

∂ fα (x,u,t)
∂ t

+ v(u) ⋅ ∂ fα (x,u,t)
∂x

+ eα
mα

[E(x,t) + v(u) ×B(x,t)]⋅ ∂ fα (x,u,t)
∂u

+ eα
mα

[δEm (x,t) + v(u) ×δBm (x,t)]⋅ ∂δNα (x,u,t)
∂u

= 0
   (F.5) 

Let 

� 

Dfα (x,u,t)/Dt  denote the time derivative of the distribution function 

� 

fα (x,u,t)  along 

its characteristic curve in the 

� 

(x,u)  phase space, then Eq. (F.5) can be rewritten as  

� 

Dfα (x,u,t)
Dt

= ∂ fα (x,u,t)
∂ t

+ v(u) ⋅ ∂ fα (x,u,t)
∂x

+ eα
mα

[E(x,t) + v(u) ×B(x,t)] ⋅ ∂ fα (x,u,t)
∂u

= − eα
mα

[δEm (x,t) + v(u) ×δBm (x,t)]⋅ ∂δNα (x,u,t)
∂u

= δ fα (x,u,t)
δ t

collision

 (F.6) 
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For  

� 

= − eα
mα

[δEm (x,t) + v(u) ×δBm (x,t)]⋅ ∂δNα (x,u,t)
∂u

= δ fα (x,u,t)
δ t collision

= 0  

 

The Boltzmann equation Eq. (F.6) is reduced to Vlasov equation: 

� 

∂ fα (x,u,t)
∂ t

+ v(u) ⋅ ∂ fα (x,u,t)
∂x

+ eα
mα

[E(x,t) + v(u) ×B(x,t)]⋅ ∂ fα (x,u,t)
∂u

   (F.7) 

where 

� 

v(u) ≡ u

1+ u ⋅u
c 2

 


