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Let us consider a charge particle with constant magnetic moment and non-zero velocity 

component parallel to the local magnetic field.  If curvature of the magnetic field line is 

non-zero, then the particle’s field-aligned moving frame will become a non-inertial frame.  

If the parallel speed 

� 

v||  is nearly a constant, the equation of motion in the 

� 

v||  non-inertial 

moving frame, can be approximately written as   

� 

m dv
dt

=
ˆ R B mv||

2

RB

+ qv ×B          (D.1) 

where 

� 

v = vgyro + vdrift , 

� 

vgyro  is the high frequency gyro motion velocity, and 

� 

vdrift  is the 

low frequency (or time independent) drift velocity.  Averaging Eq. (D.1) over one gyro 

period (

� 

τ = 2π /Ω c , where 

� 

Ωc = |q |B /m ), we can obtain equation for low frequency 

guiding-center motion in the 

� 

v||  non-inertial moving frame  

� 

ˆ R B mv||
2

RB

+ qvdrift ×B = 0          (D.2) 

Solution of 

� 

vdrift  can be written as  

� 

vdrift =

ˆ R B mv||
2

qRB

×B

B2 = mv||
2

qB2 (
ˆ R B
RB

×B)         (D.3) 

Since  

� 

−
ˆ R B
RB

= d ˆ B 
ds

= ˆ B ⋅ ∇ ˆ B = B
B
⋅ ∇(B

B
)

= B ⋅ ∇B
B2 − BB ⋅ ∇B

B3

=
−B × (∇ ×B) + ∇ B2

2
B2 −

ˆ B ̂  B ⋅ ∇B
B

= −B × (∇ ×B)
B2 + ∇B

B
−

ˆ B ̂  B ⋅ ∇B
B

= −B × (∇ ×B)
B2 + (1− ˆ B ̂  B ) ⋅ ∇B

B

= −B × (∇ ×B)
B2 + ∇⊥B

B

 

where 1= x̂x̂ + ŷŷ + ẑẑ is the unit tensor.  For any given vector 

� 

A , we have 

� 

A =A ⋅1=1⋅A . 
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If the magnetic field is along the z-direction, then 

� 

ˆ B ̂  B = ˆ z ̂  z , and  

� 

1− ˆ B ̂  B = ˆ x ̂  x + ˆ y ̂  y =
1 0 0
0 1 0
0 0 0

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 
 

Any vector 

� 

A  can be decomposed into two parts, one is parallel to the local magnetic field 

(

� 

A ||), another is perpendicular to the local magnetic field (

� 

A⊥ ).  Namely, 

� 

A =A || +A⊥ .  It 

can be shown that  

� 

A || = ˆ B ̂  B ⋅A  

and 

� 

A⊥ = (1− ˆ B ̂  B ) ⋅A  

Likewise, we have  

� 

∇⊥B = ∇B − ˆ B ̂  B ⋅ ∇B = (1− ˆ B ̂  B ) ⋅ ∇B  

Substituting  

� 

−
ˆ R B
RB

= −B × (∇ ×B)
B2 + ∇⊥B

B
  

into Eq. (D.3), yields 

� 

vdrift = mv||
2

qB2 (
ˆ R B
RB

×B) = −mv||
2

qB2 (−
ˆ R B

RB

×B)

= −mv||
2

qB2 [(−B × (∇ ×B)
B2 + ∇⊥B

B
) ×B]

= mv||
2

qB2 [B2(∇ ×B)
B2 − BB ⋅ (∇ ×B)

B2 − ∇⊥B
B

×B]

= mv||
2

qB2 [(1− ˆ B ̂  B ) ⋅ (∇ ×B) − ∇⊥B
B

×B]

= mv||
2

qB2 [(∇ ×B)⊥ −
∇⊥B

B
×B]

 

Namely, curvature drift velocity can be written as 

� 

vdrift = mv||
2

qB2 (
ˆ R B
RB

×B)  

or 

� 

vdrift = mv||
2

qB2
[(∇ ×B)⊥ −

∇⊥B
B

×B]  

 


