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Appendix D. Curvature Drift

Let us consider a charge particle with constant magnetic moment and non-zero velocity
component parallel to the local magnetic field. If curvature of the magnetic field line is
non-zero, then the particle’s field-aligned moving frame will become a non-inertial frame.
If the parallel speed v, is nearly a constant, the equation of motion in the v, non-inertial
moving frame, can be approximately written as
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where v=v, +V,., V

eyro is the high frequency gyro motion velocity, and v, is the

gyro
low frequency (or time independent) drift velocity. Averaging Eq. (D.1) over one gyro
period (7=2m/Q_, where Q_ =lglB/m), we can obtain equation for low frequency

guiding-center motion in the v, non-inertial moving frame
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Solution of v, can be written as
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where 1=Xx+3Jy+2zZ is the unit tensor.  For any given vector A , we have

A=A-1=1.A.
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If the magnetic field is along the z-direction, then BB =23, and
1 00
1-BB=3+39=(0 1 0
0 00
Any vector A can be decomposed into two parts, one is parallel to the local magnetic field

(A ), another is perpendicular to the local magnetic field (A ). Namely, A=A ,+A . It

can be shown that

A,=BB-A

and

A =(1-BB)-A

Likewise, we have

V ,B=VB-BB-VB=(1-BB)-VB

Substituting
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into Eq. (D.3), yields
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Namely, curvature drift velocity can be written as
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