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Appendix B. Ohm’s Law in One-Fluid Plasma

In addition to the various types of equation of state (energy equation), the Ohm’s law in the

one-fluid plasma is another equation that has many different approximations.

Substituting p=n(m;+ m,) into Eq. (3.53), the generalized Ohm’s law can be rewritten as
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where n=p/(m,+m,).
Multiplying Eq. (B.1) by ,uocz / a)ie(= m, /ne®) yields,
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For m, <<m,; Eq. (B.2) can be approximated by
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(B.3)

This is the first approximation of the generalized Ohm’s law.

Ampere’s law can be rewritten as

1 = VxB—iz‘z—];: (B.4)

Taking time derivative of Eq. (B.4), it yields
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where Faraday’s law has been used in deriving Eq. (B.5). Substituting Eq. (B.5) into Eq.
(B.3), it yields
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Thus, we can conclude that the first two terms in Eq. (B.6), i.e.,
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contain second order or third order time and/or spatial derivatives of the electric field or the

magnetic field. The last three terms in Eq. (B.6), i.e.,
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contain first order derivative terms of electric field or magnetic field in space. Only the

term —(E+VXxB) in Eq. (B.6) contains no time derivative or spatial derivative of the

electric field and magnetic field. It can be shown that the first two terms and the third last

term p E/ne in Eq. (B.6) can be ignored when the spatial scale length is much greater than

the electron inertial length (¢/®,,). The last two terms in Eq. (B.6) can be ignored when

the scale length is much greater than the ions' inertial length (¢/ @, ).

For magnetohydrodynamic (MHD) plasma, the spatial scale length is much greater than the
ions' inertial length. Thus, the MHD Ohm's law becomes,

(B.7)

For ion-scale phenomena, the spatial scale length is much greater than the electrons' inertial
length but equal or slightly larger than the ions' inertial length. Thus, the ion-scale Ohm's

law becomes,
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An easy way to obtain Eq. (B.8):

Equation (B.8) can also be obtained directly from the electrons' momentum equation, i.e.,
m,n, (a3 +V,-V)V, =-V.P, —en,(E+V, xB) (B.9)
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For ion-scale phenomena, we can ignore the electron-inertial term on the left-hand side of Eq.

(B.9), it yields
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It can be shown that, for In,—n, I<<n,=n and for m, <<m,, the flow velocity of the

electrons is approximately equal to,
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Substituting Eq. (B.10) into Eq. (B.9a), it yields equation (B.8).

For isotropic electron pressure (P, =1p,) and for In, —n, I<<n, Eq. (B.8) is reduced to
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where subscripts || and L denote directions perpendicular to and parallel to the local

magnetic field, respectively.

For V,p, =0, Egs. (B.11) and (B.11a) are reduced to
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where Egs. (B.13) and (B.13a) are commonly called the Hall-MHD Ohm's law.

For the electron-scale phenomena or for the ion-electron cross-scale phenomena, the Ohm's
law is given by Eq. (B.3) or Eq. (B.6). To study the electron-scale fluid phenomena, or the
ion-electron cross-scale fluid phenomena, it would be better to use the electron-ion two-fluid

equations, instead of the one-fluid equations with complicated generalized Ohm's law.



