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Appendix B.  Ohm’s Law in One-Fluid Plasma 

 

In addition to the various types of equation of state (energy equation), the Ohm’s law in the 

one-fluid plasma is another equation that has many different approximations. 

 

Substituting 

� 

ρ = n(mi + me)  in to Eq. (3.53), the generalized Ohm’s law can be rewritten as 
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where 

� 

n ≡ ρ /(mi + me) . 

 

Multiplying Eq. (B.1) by 

� 

µ0c
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2 (= me /ne
2 ) yields, 
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For 

� 

me << mi  Eq. (B.2) can be approximated by 

� 
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  (B.3) 

This is the first approximation of the generalized Ohm’s law. 

 

Ampere’s law can be rewritten as 

� 

µ0J = ∇ ×B − 1
c 2

∂E
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             (B.4) 

Taking time derivative of Eq. (B.4), it yields 
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where Faraday’s law has been used in deriving Eq. (B.5).  Substituting Eq. (B.5) into Eq. 

(B.3), it yields 
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 (B.6) 

 

Thus, we can conclude that the first two terms in Eq. (B.6), i.e.,  
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contain second order or third order time and/or spatial derivatives of the electric field or the 

magnetic field.  The last three terms in Eq. (B.6), i.e.,  

� 

ρc

ne
E, 
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J
ne

×B, and 

� 

− 1
ne
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contain first order derivative terms of electric field or magnetic field in space.  Only the 

term − (E + V × B)  in Eq. (B.6) contains no time derivative or spatial derivative of the 

electric field and magnetic field.  It can be shown that the first two terms and the third last 

term ρcE / ne  in Eq. (B.6) can be ignored when the spatial scale length is much greater than 

the electron inertial length ( c /ω pe ).  The last two terms in Eq. (B.6) can be ignored when 

the scale length is much greater than the ions' inertial length (c /ω pi ).   

 

For magnetohydrodynamic (MHD) plasma, the spatial scale length is much greater than the 

ions' inertial length.  Thus, the MHD Ohm's law becomes,  

E = −V × B                 (B.7) 

 

For ion-scale phenomena, the spatial scale length is much greater than the electrons' inertial 

length but equal or slightly larger than the ions' inertial length.  Thus, the ion-scale Ohm's 

law becomes, 
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E = −V × B +
J
ne

× B −
1
ne

∇ ⋅Pe             (B.8) 

 

An easy way to obtain Eq. (B.8): 

Equation (B.8) can also be obtained directly from the electrons' momentum equation, i.e.,  

mene(
∂
∂t

+ Ve ⋅∇)Ve = −∇ ⋅Pe − ene(E + Ve × B)          (B.9) 

For ion-scale phenomena, we can ignore the electron-inertial term on the left-hand side of Eq. 

(B.9), it yields 

−
1
ene

∇ ⋅Pe − (E + Ve × B) = 0            (B.9a) 

It can be shown that, for | ni − ne |<< ne ≈ n  and for mi << me , the flow velocity of the 

electrons is approximately equal to, 

Ve = V −
J
ne

               (B.10) 

Substituting Eq. (B.10) into Eq. (B.9a), it yields equation (B.8).   

 

For isotropic electron pressure (Pe = 1pe ) and for | ni − ne |<< n , Eq. (B.8) is reduced to  
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J
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or 

E⊥ = −Ve × B −
1
ne

∇⊥ pe             (B.11a) 

and 

 

E

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1
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∇

pe               (B.12) 

where subscripts    and ⊥  denote directions perpendicular to and parallel to the local 

magnetic field, respectively. 

 

For ∇⊥ pe → 0 , Eqs. (B.11) and (B.11a) are reduced to  

E⊥ = −V × B +
J
ne

× B              (B.13) 

or  
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E⊥ = −Ve × B                (B.13a) 

where Eqs. (B.13) and (B.13a) are commonly called the Hall-MHD Ohm's law. 

 

For the electron-scale phenomena or for the ion-electron cross-scale phenomena, the Ohm's 

law is given by Eq. (B.3) or Eq. (B.6).  To study the electron-scale fluid phenomena, or the 

ion-electron cross-scale fluid phenomena, it would be better to use the electron-ion two-fluid 

equations, instead of the one-fluid equations with complicated generalized Ohm's law. 


