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Appendix A.  Static Electric Field and Magnetic Field 

 

A.1. General Solutions 

For static electric field and magnetic field, we have 

∂B
∂ t

= 0  ∂E
∂ t

= 0  

∇ × E = 0  ∇ ⋅B = 0  

E = −∇Φ  B = ∇ × A  

∇ ⋅E =
ρc
ε0

 ∇ × B = µ0J  

−∇2Φ =
ρc (r)
ε0

 −∇2A = µ0J(r)  

where 

� 

∇ ⋅A = 0  (Coulomb gauge) has been assumed. 

 

Let us consider a Green’s function, which satisfies Poisson equation with a source term 

of three-dimensional delta function, i.e., 

� 

∇2G = δ (r) = δ (r)
4π r2

 

where δ (r)d r∫ = 1 = δ (r)r2 sinθ dr dθ dφ∫∫∫  and δ (r)dr∫ = 1 

One can easily show that solution of this Green’s function, is 

� 

G(r) = − 1
4π r

= − 1
4π | r |

 

Proof: 

� 

1
r2

d
dr
r2 d
dr
G = δ (r)

4π r2

⇒ d
dr
r2 d
dr
G = δ (r)

4π

⇒ r2 d
dr
G = 1

4π

⇒ d
dr
G = 1

4π r2

⇒ G = − 1
4π r
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Thus, 

� 

−∇2Φ = ρc (r)
ε0

= ρc ( ′ r )
ε0

δ (r − ′ r )d ′ r ∫

= ρc ( ′ r )
ε0

∇2G(r − ′ r )d ′ r ∫

= ∇2 ρc ( ′ r )
ε0

G(r − ′ r )d ′ r ∫

= ∇2 ρc ( ′ r )(−1)
4πε0 | r − ′ r |

d ′ r ∫

 

Namely,  

� 

Φ(r) = ρc ( ′ r )
4πε0 | r − ′ r |

d ′ r ∫          (A.1) 

Likewise 

� 

A(r) = µ0J( ′ r )
4π | r − ′ r |

d ′ r ∫ + ∇ψ        (A.2) 

where we choose integration constant 

� 

∇ψ  such that 

� 

∇ ⋅A = 0.  Namely, 

� 

∇2ψ = ∇ ⋅A(r) −∇ ⋅ ( µ0J( ′ r )
4π | r − ′ r |

d ′ r ∫ ) = −∇ ⋅ ( µ0J( ′ r )
4π | r − ′ r |

d ′ r ∫ )  

 

A.2. Solutions of Special Cases 

 

If source terms, 

� 

ρc( ′ r )  and 

� 

J( ′ r ), in Eqs. (A.1) and (A.2) are confined in a small volume, 

then we can assume that 

� 

| r − ′ r |≈ | r |= r ,  

Let the total charge in the source volume be  

� 

Q = ρc ( ′ r )d ′ r ∫   

Then, the scalar potential in Eq. (A.1) can be rewritten as  

� 

Φ(r) = Q
4πε0r

           (A.3) 

Electrostatic electric field, in spherical coordinate system 

� 

(r,θ,φ) , becomes 

� 

E(r) = Q
4πε0r

2
ˆ r           (A.4) 

Likewise, we can assume the source term in Eq. (A.2) is a local electric current density along 
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z direction, i.e.,  

� 

J = ˆ z Jz . 

If we also assume that the integration volume is a cylindrical region with cross-section 

� 

Δaz  

and length 

� 

Δ lz , so that  

d ′r∫ = d 3 ′r∫∫∫ = ( daz∫∫ )Δlz ≈ ΔazΔlz  

By definition, the local electric current becomes  

Iz= Jz daz∫∫ ,  

As a result, we can rewrite the vector potential 

� 

A = ˆ z Az  in cylindrical coordinate system 

� 

(R,φ,z) , as  

� 

A(r) = µ0(IzΔ lz )
4π R2 + z2

ˆ z + ∇ψ         (A.5) 

where  

� 

∇2ψ = −∇ ⋅ ( µ0(IzΔ lz )
4π R2 + z2

ˆ z ) 

Thus, magnetic field, 

� 

B = ∇ ×A , in cylindrical coordinate system, becomes 

� 

B(r) = ˆ φ µ0(IzΔ lz)
4π

R
(R2 + z2)3 / 2         (A.6) 

 

Let us consider the following special cases: 

Case 1: magnetic field on 

� 

z = 0  plane  

� 

B(r) = ˆ φ µ0(IzΔ lz)
4π

1
R2          (A.7) 

Case 2: magnetic field nearly along the z-axis with 

� 

z >> R→ 0 ,  

� 

B(r) ≈ ˆ φ µ0(IzΔ lz)
4π

R
z3          (A.8) 

Case 3: magnetic field at center of a circle current loop with circle radius 

� 

R 

� 

B(r) = ˆ z 
µ0(Iφ 2πR)

4π
1

R2 = ˆ z 
µ0Iφ
2R

       (A.9) 

Case 4: magnetic field at distance r from an infinite long line current  

� 

B(r) = ˆ φ µ0Iz
2π r

           (A.10) 
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