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Appendix A. Static Electric Field and Magnetic Field

A.1. General Solutions

For static electric field and magnetic field, we have
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where V-A =0 (Coulomb gauge) has been assumed.

Let us consider a Green’s function, which satisfies Poisson equation with a source term

of three-dimensional delta function, i.e.,
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One can easily show that solution of this Green’s function, is
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Thus,
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Namely,
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Likewise
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where we choose integration constant Vi such that V-A =0. Namely,
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A.2. Solutions of Special Cases

(A1)

(A.2)

If source terms, pc(r') and J(r"), in Egs. (A.1) and (A.2) are confined in a small volume,

then we can assume that

Ir—r’l=lrl=r,

Let the total charge in the source volume be
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Then, the scalar potential in Eq. (A.1) can be rewritten as
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Electrostatic electric field, in spherical coordinate system (r,0,¢), becomes
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Likewise, we can assume the source term in Eq. (A.2) is a local electric current density along
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z direction, i.e.,

J=4J..

If we also assume that the integration volume is a cylindrical region with cross-section Aa,

and length A/, so that

Jav = [[[ar =([[da)Al = Aa.AL

By definition, the local electric current becomes

I.= J J. da,,

As a result, we can rewrite the vector potential A =ZA

(R,0.2), as
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in cylindrical coordinate system

(A.5)

Thus, magnetic field, B=V XA, in cylindrical coordinate system, becomes
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Let us consider the following special cases:

Case 1: magnetic field on z=0 plane
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Case 2: magnetic field nearly along the z-axis with z>>R —0,
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Case 3: magnetic field at center of a circle current loop with circle radius R
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Case 4: magnetic field at distance r from an infinite long line current

B(r) = ¢§°;

(A.10)
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