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Chapter 9.  Electrostatic Linear Waves in the Vlasov Plasma 

 

Topics or concepts to learn in Chapter 9:  

1. What is Landau contour? Why do we need to use the Landau contour when we determine 

the electrostatic dispersion relation in the kinetic plasma? 

2. Landau damping? 

3. What is the kinetic electrostatic dispersion relation of a plasma with field-free background 

equilibrium? 

4. Using Nyquist method to determine whether a uniform plasma with a given velocity 

distribution is stable or not. 

5. Gardner's Theorem 

6. Penrose Criterion 

 

Suggested Readings: 

(1)  Sections 6.3~6.9 in Nicholson (1983)  

(2)  Sections 8.1~8.7 and Section 9.6 in Krall and Trivelpiece (1973) 

(3)  Sections 7.1~7.9 in F. F. Chen (1984) 

(4)  Penrose (1960) 

 

9.1. Landau Contour  

 

In this chapter, we use the electrostatic waves as an example to show the importance of the 

Landau contour in studying linear waves in the Vlasov plasma.  Basic equations to be used 

in this study include Vlasov equations of the 

� 

α th species: 

� 

∂ fα
∂ t

+ v ⋅ ∂ fα
∂x

+ eα
mα

(E + v ×B) ⋅ ∂ fα
∂v

= 0          (9.1) 

and Poisson equation 

� 

∇ ⋅E = −∇2Φ = e
ε0
(ni − ne ) = e

ε0
( f i − fe )dv∫∫∫         (9.2) 

Let us consider a field-free (

� 

E0 = 0, B0 = 0) plasma.  Equilibrium distributions of the 

field-free plasma satisfy the following conditions 

fi0 dv∫∫∫ = fe0 dv∫∫∫ = n0   

and  
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fα 0 = fα 0 (v) .   

For linear electrostatic waves, we can assume that E = E1 = −∇Φ1 , B = B1 = 0 , and 

fα = fα 0 + fα1 , where fα1 << fα 0 .  In general, the linearized Vlasov equation (9.1) can be 

written as  

Lα 0 fα1 = −Lα1 fα 0               (9.3) 

where  

Lα 0 =
∂
∂ t

+ v ⋅ ∂
∂x

+ eα
mα

(E0 + v ×B0 ) ⋅
∂
∂v

         (9.4) 

Lα1 =
eα
mα

(E1 + v ×B1) ⋅
∂
∂v

            (9.5) 

are the zeroth order and the first order differential operators, respectively.  For linear 

electrostatic waves in field-free background plasma, Lα 0  and Lα1  are reduced to the 

following forms, 

Lα 0 =
∂
∂ t

+ v ⋅ ∂
∂x

               (9.6) 

Lα1 =
eα
mα

(− ∂ Φ1

∂x
) ⋅ ∂
∂v

             (9.7) 

Substituting Eqs. (9.6) and (9.7) into Eq. (9.3) yields  

∂ fα1
∂ t

+ v ⋅ ∂ fα1
∂x

= eα
mα

∂ Φ1

∂x
⋅ ∂ fα 0
∂ v

           (9.8) 

Linearizing Poisson equation (9.2) yields 

∂ 2Φ1

∂x2
= e
ε0

( fe1 − fi1)dv∫∫∫             (9.9) 

Integration transform methods, such as Fourier transform and Laplace transform can reduce 

linear differential equations to algebraic equations.  Thus, they are commonly used in linear 

wave analysis.  

 

Fourier transform is defined by 

 
F[A(x,t)]= A(k,t) = 1

(2π )3
e− ik⋅xA(x,t)dx

−∞

∞

∫−∞

∞

∫−∞

∞

∫        (9.10) 

Inverse-Fourier transform is defined by  

 F
−1[A(k,t)]= A(x,t) = eik⋅xA(k,t)dk

−∞

∞

∫−∞

∞

∫−∞

∞

∫         (9.11) 
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Laplace transform is defined by 

  L [A(k,t)]=
!A(k, p) = e− ptA(k,t)dt

0

∞

∫   with Re(p) ≥ p0       (9.12) 

where p0  is chosen such that e− p0t A(k,t)→ 0  as t→∞ . 

Inverse-Laplace transform is defined by 

  
L −1[ !A(k, p)]= A(k,t) = 1

2π i
ept !A(k, p)dp

p0−i∞

p0+i∞∫         (9.13) 

It can be easily shown that  

 
F[ ∂

∂ x
A(x,t)]= ikA(k,t)             (9.14) 

and  

  
L [ ∂

∂ t
A(k,t)]= p !A(k, p)− A(k,t = 0)           (9.15) 

Or, in more general forms 

 
F[∂

n A(x,t)
∂ xn

]= (ik)n A(k,t)             (9.16) 

and 

  
L [ ∂

n

∂ t n
A(k,t)]= pn !A(k, p)− [pn−1A(k,t = 0)+ pn−2 ∂A(k,t)

∂ t t=0

+ ⋅⋅⋅+ ∂ n−1A(k,t)
∂ t n−1 t=0

]  (9.17) 

As a result, Fourier transform and Laplace transform convert the (x,t)  domain linear 

differential equation to an algebraic equation in (k, p)  domain. 

 

Fourier transform and Laplace transform of Eqs. (9.8) and (9.9), yields 

 
[p!fα1(k,v, p)− fα1(k,v,t = 0)]+ iv⋅k !fα1(k,v, p) =

eα
mα

ik !Φ1(k, p) ⋅
∂ fα 0 (v)
∂v

   (9.18) 

 
k2 !Φ1(k, p) =

e
ε0

[ !fi1(k,v, p)− !fe1(k,v, p)]dv∫∫∫         (9.19) 

where Re(p) ≥ p0 . 

 

Let k = k̂k , k ⋅v = ku  and f (v)dv∫∫∫ = F(u)du∫ .  Integrating equation (9.18) over a 

velocity space with components perpendicular to the wave propagation direction k̂ , it yields 

 
[p !Fα1(k,u, p)− Fα1(k,u,t = 0)]+ iku !Fα1(k,u, p) =

eα
mα

ik !Φ1(k, p)
dFα 0 (u)
du

   (9.20) 
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or 

 
!Fα1(k,u, p) =

eα
mα

ik !Φ1(k, p)
dFα 0 (u)
du

+ Fα1(k,u,t = 0)

p + iku
       (9.21) 

Poisson equation (9.19) can be rewritten as  

 
k2 !Φ1(k, p) =

e
ε0

[ !Fi1(k,u, p)− !Fe1(k,u, p)]du∫         (9.22) 

Substituting Eq. (9.21) into Eq. (9.22) yields 

 

k2 !Φ1(k, p) =
e
ε0

[ !Fi1(k,u, p) − !Fe1(k,u, p)]du∫

=
eα
ε0
[ eα
mα

ik !Φ1(k, p)
dFα 0 (u) / du
p + iku∫ du + Fα1(k,u,t = 0)

p + iku∫ du]
α
∑

= ik !Φ1(k, p)
eα
ε0
[ eα
mα

dFα 0 (u) / du
p + iku∫ du]

α
∑ +

eα
ε0
[ Fα1(k,u,t = 0)

p + iku∫ du]
α
∑

 

or 

 

k2 !Φ1(k, p) =

eα
ε0
[ Fα1(k,u,t = 0)

p + iku∫ du]
α
∑

1− 1
k2

[
ω pα 0
2

n0
dFα 0 (u) / du
u − (ip / k)∫ du]

α
∑

  where 

� 

Re(p) ≥ p0 .    (9.23) 

where 

� 

ω pα0
2 = n0e

2 /ε0mα . 

 

The Poisson equation can be written as ∇⋅E = ρc / ε0 = [ρcb (E, B)+ ρcf ] / ε0  or 

� 

∇ ⋅D = ρcf .  

We consider the plasma as a dielectric medium without free charge density (i.e., the charge 

density free from the inference of the electric field and magnetic field), which yields 

� 

ρcf = 0 .  

Let D1(x,t) = ε0 (ε
⇒

r ⋅E)1 = D(x − ′x ,t) ⋅E1( ′x ,t)d ′x∫∫∫ + 1
k2

∇N(x,t) .  It yields  

  
L {F[∇⋅D1(x,t)]} = ik ⋅[ !D(k, p) ⋅ !E1(k, p)]+ ik ⋅

ik !N(k, p)
k2

= k2 !Dkk (k, p) !Φ1(k, p)− !N(k, p)  

For ∇⋅D1(x,t) = 0 , it yields  k
2 !Φ1(k, p) = !N(k, p) / !Dkk (k, p) .  Since  

!D(k, p)  is closely 

related to the dielectric function ε
⇒

r , it is commonly called  
!D(k, p)  the dielectric tensor.  

For electrostatic wave, let  D(k, p) = !Dkk (k, p) , which is given by the denominator in Eq. 

(9.23).  Namely, 
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� 

D(k, p) =1− 1
k 2

[
ω pα 0
2

n0
dFα0(u) /du
u − (ip /k)∫ du]

α
∑   where 

� 

Re(p) ≥ p0 .     (9.24) 

Thus, inverse-Laplace transform of Eq. (9.23) becomes 

  
L−1[k2 !Φ1(k, p)] = k

2Φ1(k, t) =
1
2π i

ept
eα
ε0
[ Fα1(k,u,t = 0)

p + iku∫ du]
α
∑

D(k, p)
dp

p0 − i∞

p0 + i∞∫    (9.25) 

Since 

� 

ept → 0 as 

� 

Re(p)→−∞ , we usually deform the integration contour of the 

inverse-Laplace transform to  

  
L-1[ !A(p)] = 1

2π i
ept !A(p)dp

p0 − i∞

p0 + i∞∫ =
1
2π i

ept !A(p)dp
−∞− i∞

−∞+ i∞

∫ + Rje
pj t

j
∑ = Rje

pj t

j
∑   (9.26) 

where 

� 

p j  is the pole of the function 

� 

˜ A ( p) and 

� 

R j  is the residue of 

� 

˜ A ( p)  at pole 

� 

p j .   

 However, care must be taken when we deform integration contour of the 

inverse-Laplace transform.  As we can see, both the denominator and the numerator in Eq. 

(9.25) consist of another integration in the velocity space with a pole at 

� 

u = ip /k .  When we 

change the integration path of 

� 

p in the inverse-Laplace transform, the location of pole in the 

velocity-space integration will also move to another location.  Before changing the 

integration path in the inverse-Laplace transform, the pole is always located in the upper half 

plane of the complex- u  space (i.e., Im(u) > 0 ), because we choose the path 

Re(p) ≥ p0 > 0  in Eqs. (9.24) and (9.25).  Therefore, the integration along the Re(u)  axis 

(i.e., the path along Im(u) = 0 ) is the same as the integration along the path of Im(u)→ −∞ .  

However, after deforming the integration contour of the inverse-Laplace transform from Eq. 

(9.25) to Eq. (9.26), the integration along the Re(u)  axis will be different from the 

integration along the path of Im(u)→ −∞ , if the pole 

� 

Re(p j ) ≤ 0 .  Since the function 

� 

˜ A ( p)  in Eq. (9.26) must be an analytic function except at poles 

� 

p j  (i.e., the analytic 

continuation of 

� 

˜ A ( p)), we need to choose a different integration path when 

� 

Re(p j ) ≤ 0  

such that the integration in the complex-u  space is still the same as the integration along the 

path of Im(u)→ −∞ .  Landau (1946) pointed out that, if 

� 

Re(p j ) ≤ 0 , we must choose an 

integration path of 

� 

u, in which the pole in the velocity-space integration always locate on the 

left-hand side of the integration path, so that there is no singularity between the integration 

path and the path of Im(u)→ −∞  in the complex-u  space.  The new integration path in 

the velocity space is called Landau contour, which is defined below:  
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h( p) = g(u)
u − (ip / k)

du
L
∫ =

g(u)
u − (ip / k)

du if Re( p) > 0
−∞

+∞

∫

℘ g(u)
u − (ip / k)

du +π ig(ip / k) if Re( p) = 0
−∞

+∞

∫
g(u)

u − (ip / k)
du + 2π ig(ip / k) if Re( p) < 0

−∞

+∞

∫

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

  (9.27) 

where the principle value of the integration at Re(p) = 0  is defined by 

  
℘ g(u)

u − (ip / k)
du

−∞

+∞

∫ = lim
δ→0+

[ g(u)
u − (ip / k)

du
−∞

( ip/k )−δ

∫ + g(u)
u − (ip / k)

du
( ip/k )+δ

+∞

∫ ]    (9.28) 

 

After choosing Landau contour, we can now remove the condition 

� 

Re(p) ≥ p0  in Eqs. (9.23), 

(9.24), and rewrite them as  

� 

˜ Φ 1(k, p) =

1
ik 3

eα
ε0

[ F α1(k,u,t = 0)
u − (ip /k)

du
L∫ ]

α
∑

D(k, p)
         (9.29) 

D(k, p) = 1− 1
k2

[
ω pα 0
2

n0

dFα 0 (u) / du
u − (ip / k)

du
L∫ ]

α
∑          (9.30) 

Inverse-Laplace transform of 

� 

˜ Φ 1(k, p) can be simplified as  

  
L−1[ !Φ1(k, p)] = Φ1(k, t) =

1
2π i

ept !Φ1(k, p)dpp0 − i∞

p0 + i∞∫ = Rj (k, p)e
pj (k )t

j
∑    (9.31) 

where 

� 

p j (k)  is a root of 

� 

D(k, p) = 0, 

� 

R j (k, p) = lim
p→p j

{[p − p j (k)] ˜ Φ 1(k, p)} is the residue of 

� 

˜ Φ 1(k, p)  at 

� 

p = p j (k) .  

� 

˜ Φ 1(k, p)  and 

� 

D(k, p)  are given in Eqs. (9.29) and (9.30), 

respectively.  For a given wave number 

� 

k , deformation of integration contour of 

inverse-Laplace transform in 

� 

p -domain and corresponding Landau contour due to 

displacement of poles in 

� 

u-domain are illustrated in Figure 9.1. 

 

We can write above results in terms of frequency by defining 

� 

ω = ip , or 

� 

p = −iω .  The 

inverse-Laplace transform becomes 

  

L−1[ !Φ1(k,ω )] = Φ1(k, t)

=
−i
2π i

e− iω t !Φ1(k,ω )dω( p0 − i∞)/(− i )

( p0 + i∞)/(− i )∫ Im(ω ) > p0

=
1
2π

e− iω t !Φ1(k,ω )dωip0 −∞

ip0 +∞∫ Im(ω ) > p0
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To remove the condition 

� 

Im(ω) > p0 , we need define Landau contour 

  

h(ω ) = g(u)
u − (ω / k)

du
L
∫ =

g(u)
u − (ω / k)

du if Im(ω ) > 0
−∞

+∞

∫

℘ g(u)
u − (ω / k)

du +π ig(ω / k) if Im(ω ) = 0
−∞

+∞

∫
g(u)

u − (ω / k)
du + 2π ig(ω / k) if Im(ω ) < 0

−∞

+∞

∫

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

  (9.27a) 

where  

  
℘ g(u)

u − (ω / k)
du

−∞

+∞

∫ = lim
δ→0+

[ g(u)
u − (ω / k)

du
−∞

(ω /k )−δ

∫ + g(u)
u − (ω / k)

du
(ω /k )+δ

+∞

∫ ]    (9.28a) 

Thus, 

� 

˜ Φ 1(k,ω) becomes 

 
!Φ1(k,ω ) =

1
ik 3

eα
ε0
[ Fα1(k,u,t = 0)

u − (ω / k)
du

L∫ ]
α
∑

D(k,ω )
         (9.29a) 

where 

D(k,ω ) = 1− 1
k2

[
ω pα 0
2

n0

dFα 0 (u) / du
u − (ω / k)

du
L∫ ]

α
∑          (9.30a) 

The inverse-Laplace transform of 

� 

˜ Φ 1(k,ω) becomes 

  
L−1[ !Φ1(k,ω )] = Φ1(k, t) = Rj (k,ω )e

− iω j (k )t

j
∑         (9.31a) 

where 

� 

ω j (k)  is a root of 

� 

D(k,ω) = 0 , and 
 
Rj (k,ω ) = lim

ω→ω j

{[ω −ω j (k)] !Φ1(k,ω )}  is the 

residue of 

� 

˜ Φ 1(k,ω)  at 

� 

ω = ω j (k) .  

� 

˜ Φ 1(k,ω)  and 

� 

D(k,ω)  are given in Eq. (9.29a) and 

(9.30a), respectively.  For a given wave number 

� 

k, deformation of integration contour of 

inverse-Laplace transform in 

� 

ω -domain and corresponding Landau contour due to 

displacement of poles in 

� 

u-domain are illustrated in Figure 9.2. 
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Figure 9.1. Integration contours of the inverse-Laplace transform and Landau contours, 
where panel (a) shows original integration contour of the inverse-Laplace transform in the 
p -domain defined in (9.25), panel (b) shows original integration path and poles (u = ip / k ) 

in the u -domain, panel (c) shows deformation of the integration contours of the 
inverse-Laplace transform in the p -domain described in Eq. (9.26), and panel (d) shows 
displacement of poles and integration path of the Landau contours in the u -domain.  
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Figure 9.2. Integration contours of the inverse-Laplace transform and Landau contours, 
where panel (a) shows original integration contour of the inverse-Laplace transform in the 
ω -domain defined in (9.25), panel (b) shows original integration path and poles (u =ω / k ) 
in the 

� 

u -domain, panel (c) shows deformation of the integration contours of the 
inverse-Laplace transform in the ω -domain described in Eq. (9.26), and panel (d) shows 
displacement of poles and integration path of the Landau contours in the 

� 

u-domain.  
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9.2. Linear Dispersion Relations of Electrostatic Waves 

 

Let 

� 

ω = ωr + iω i  and 

� 

D(k,ω) = Re[D(k,ω)]+ iIm[D(k,ω)] .  The dispersion relation 

D(k,ω ) = 0  implies Re[D(k,ω )]= 0  and Im[D(k,ω )]= 0 .  Substitution Eq. (9.27a) into 

Eq. (9.30a) yields, 

   

D(k,ω ) =

1− 1
k 2 {

ω pα 0
2

n0

dFα 0(u) / du
u − (ω / k)

du
−∞

+∞

∫ }
α
∑ if ω i > 0

1− 1
k 2 {

ω pα 0
2

n0

[℘
dFα 0(u) / du
u − (ω r / k)

du
−∞

+∞

∫ +π i
dFα 0(u)

du
u=

ω r
k

] }
α
∑ if ω i = 0

1− 1
k 2 {

ω pα 0
2

n0

[
dFα 0(u) / du
u − (ω / k)

du
−∞

+∞

∫ + 2π i
dFα 0(u)

du
u=ω

k

]
α
∑ } if ω i < 0

⎧

⎨

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

  (9.32) 

The integration in Eq. (9.32) can be rewritten as 

dFα 0 (u) / du

u − ω r + iω i

k

du
−∞

+∞

∫ = (u − ω r

k
+ iω i

k
) dFα 0 (u) / du

(u − ω r

k
)2 + (ω i

k
)2
du

−∞

+∞

∫

= (u − ω r

k
) dFα 0 (u) / du

(u − ω r

k
)2 + (ω i

k
)2
du

−∞

+∞

∫ + iω i

k
dFα 0 (u) / du

(u − ω r

k
)2 + (ω i

k
)2
du

−∞

+∞

∫
   (9.33) 

Substituting Eq. (9.33) into Eq. (9.32), we can obtain 

� 

D(k,ω)  under different 

� 

ω i  

conditions. 

 

Case 1 

� 

ω i > 0  

Re[D(k,ω )] = 1− 1
k2

[
ω pα 0
2

n0
(u − ω r

k
) dFα 0 (u) / du

(u − ω r

k
)2 + (ω i

k
)2
du

−∞

∞

∫ ]
α
∑

= 1− 1
k2

[
ω pα 0
2

n0

[(u − ω r

k
)2 − (ω i

k
)2 ]Fα 0 (u)

[(u − ω r

k
)2 + (ω i

k
)2 ]2

du
−∞

∞

∫ ]
α
∑

     (9.34) 

Im[D(k,ω )] = −
ω i

k
1
k2

[
ω pα 0
2

n0

dFα 0 (u) / du

(u − ω r

k
)2 + (ω i

k
)2
du

−∞

∞

∫ ]
α
∑       (9.35) 
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Case 2 

� 

ω i = 0   

(Note that the solutions of Case 2 are included in the solutions of Case 3.  The expression of 

� 

Re[D(k,ωr )] and 

� 

Im[D(k,ωr)] presented in Case 2 is only good for the Nyquist method to 

be discussed in Section 9.4) 

   

Re[D(k,ω r )]= 1− 1
k 2 [

ω pα 0
2

n0

℘
dFα 0(u) / du

(u −
ω r

k
)

du
−∞

∞

∫ ]
α
∑

= 1− 1
k 2 [

ω pα 0
2

n0

℘
Fα 0(u)− Fα 0(u =

ω r

k
)

(u −
ω r

k
)2

du
−∞

+∞

∫ ]
α
∑

     (9.36) 

� 

Im[D(k,ωr)] = −π 1
k 2

[
ω pα 0
2

n0
dFα0(u)
du u=

ω r

k

]
α
∑          (9.37) 

Note that the result of integration by part of the principle-value integration in equation (9.36) 

can be found in Section 9.4 in the proof of equation (9.45). 

 

Case 3 

� 

ω i < 0 , but 

� 

ω i → 0  and ω i <<ω r ,  

   

Re[D(k,ω r )]= 1− 1
k 2 [

ω pα 0
2

n0

℘
dFα 0(u) / du

(u −
ω r

k
)

du
−∞

∞

∫ ]
α
∑

= 1− 1
k 2 [

ω pα 0
2

n0

℘
Fα 0(u)− Fα 0(u =

ω r

k
)

(u −
ω r

k
)2

du
−∞

+∞

∫ ]
α
∑

     (9.38) 

   

Im[D(k,ω )]= −
ω i

k
1
k 2 [

ω pα 0
2

n0

℘
dFα 0(u) / du

(u −
ω r

k
)2

du
−∞

∞

∫ ]
α
∑ −π 1

k 2 [
ω pα 0

2

n0

dFα 0(u)
du

u=
ω r
k

]
α
∑  (9.39) 

Note that the result of integration by part of the principle-value integration in equation (9.38) 

can be found in Section 9.4 in the proof of equation (9.45). 
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Case 4 

� 

ω i < 0 ,  

Re[D(k,ω )] = 1− 1
k2

[
ω pα 0
2

n0
(u − ω r

k
) dFα 0 (u) / du

(u − ω r

k
)2 + (ω i

k
)2
du

−∞

∞

∫ ]
α
∑

+ 2π 1
k2

{
ω pα 0
2

n0
Im[dFα 0 (u)

du u=
ωr + iω i

k

]
α
∑ }

= 1− 1
k2

[
ω pα 0
2

n0

[(u − ω r

k
)2 − (ω i

k
)2 ]Fα 0 (u)

[(u − ω r

k
)2 + (ω i

k
)2 ]2

du
−∞

∞

∫ ]
α
∑

+ 2π 1
k2

{
ω pα 0
2

n0
Im[ ′Fα 0 (u =

ω r + iω i

k
)]

α
∑ }

     (9.40) 

Im[D(k,ω )] = −
ω i

k
1
k2

[
ω pα 0
2

n0

dFα 0 (u) / du

(u − ω r

k
)2 + (ω i

k
)2
du

−∞

∞

∫ ]
α
∑

− 2π 1
k2

{
ω pα 0
2

n0
Re[dFα 0 (u)

du u=
ωr + iω i

k

]
α
∑ }

      (9.41) 

 

9.3. Landau Damping  

 

Since wave amplitude is proportional to 

� 

eω i t , wave amplitude decreases with time if 

� 

ω i < 0. 

Decreasing on wave amplitude is called wave damping.  Wave amplitude in Case 4 may 

damp too fast that can hardly observed.  Waves in Case 3 with 

� 

ω i → 0 are waves with 

slow damping rate.  By solving Eq. (9.38) one can obtain solution of 

� 

ωr  for given wave 

number 

� 

k  and distribution functions 

� 

Fα0(u).  Then we can substitute this 

� 

ωr  into Eq. 

(9.39) to obtain the damping rate 

� 

ω i , i.e.,  

 

  

ω i = k

π [
ω pα 0

2

n0

dFα 0(u)
du

u=
ω r
k

]
α
∑

[
ω pα 0

2

n0

℘
−dFα 0(u) / du

(u −
ω r

k
)2

du
−∞

∞

∫ ]
α
∑

           (9.42) 

 

Since ω pe >>ω pi , if [dFe0 (u) / du]u=ω r /k
< 0 , the denominator in Eq. (9.42) should be 
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positive and numerator in Eq. (9.42) is negative.  Thus, an electrostatic wave with frequency 

� 

ωr  and phase speed 

� 

ωr /k , will under go Landau damping if 

� 

[dFe0(u) /du]u=ω r / k
< 0 .  

Landau damping can only be found in kinetic plasma linear dispersion relation.   

 

Physical picture of Landau damping process can be understood by phase-space trajectories of 

charge particles in wave moving frame.  It can also be shown that the damping process does 

not occur uniformly in space, and the damping rate in Eq. (9.42) is only applicable to the 

initial phase of the Landau damping at a time interval 

� 

Δt < π /ωb , where 

� 

2π /ωb  is the 

average bounce period of trapped particles (e.g., Nicholson, 1983, page 96). 

 

 

9.4. Nyquist Method 

 

For the case with slow damping rate as discussed in Case 3, the normal mode wave frequency 

� 

ωr  can be obtained by solving Eq. (9.38).  Solution obtained from Eq. (9.38) is similar to 

the one obtained from fluid dispersion relation if the background plasma is of normal 

distribution in velocity space.  We can estimate wave frequency 

� 

ωr  from fluid equations 

and then substitute it into Eq. (9.42) to obtain Landau damping rate 

� 

ω i .  

 

For ω i > 0 , wave amplitude increases with time.  The system is unstable to electrostatic 

perturbations.  One needs to solve Eqs. (9.34) and (9.35) simultaneously, to obtain solutions 

of ω r  and ω i .  However, it is not an easy task to solve the integration equations (9.34) 

and (9.35), simultaneously.  Using Nyquist method, one can determine stability of a system 

under electrostatic perturbation qualitatively, without actually solving Eqs. (9.34) and (9.35).  

 

Let us consider the following integrations in D -domain and in ω -domain  

 
i2πN = dlnD

CD
!∫ = dD

DCD
!∫ = ∂D(k,ω ) /∂ω

D(k,ω )Cω

!∫ dω         (9.43) 

where N  denotes number of zeros of dielectric function D  in the closed loop CD  in the 

D  domain or the closed loop Cω  in the ω  domain.   If we choose Cω  to be a closed 

loop over the upper-half of the complex ω  plane, then N  will be the number of unstable 

modes in the system.   Namely, if N > 0 , the system is unstable to electrostatic 
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disturbance.   

 

What is CD  if Cω  is a closed loop over the upper-half of the complex ω  plane?  

It can be shown that  

 
[∂D(k,ω ) /∂ω

D(k,ω )
]dω

Cω

!∫ = { lim
Rω→∞

[∂D(k,Rω e
iθ ) /∂θ

D(k,Rω e
iθ )

]dθ
0

π

∫ }+ [∂D(k,ω r ) /∂ω r

D(k,ω r )
]dω r−∞

∞

∫   (9.44) 

where ω =ω r + iω i = Rωe
iθ .  Eq. (9.34) and Eq. (9.35) yield  

lim
Rω→∞

Re[D(k,ω )]= 1   

and  

lim
Rω→∞

Im[D(k,ω )]= 0 .   

Thus the first term on the right-hand side of the integration path in Eq. (9.44) is reduced to a 

point at D(k,ω ) = 1 in the complex D -domain.   

 

The integration path of the second term on the right-hand side of Eq. (9.44) is along the real 

axis, where ω i = 0 .  Thus, we have to use Eqs. (9.36) and (9.37) to determine the 

corresponding integration path in the complex D -domain.  Namely, for ω i = 0  

Re[D(k,ω r )]= 1−
1
k2

[
ω pα 0

2

n0
℘ dFα 0 (u) / du

(u − ω r

k
)
du

−∞

∞

∫ ]
α
∑        (9.36a) 

Im[D(k,ω r )]= −π 1
k2

[
ω pα 0

2

n0
dFα 0 (u)
du u=ω r

k

]
α
∑          (9.37a) 

Since  dFα 0 (u) / du u→±∞
→ 0∓ , Eq. (9.37a) yields Im[D(k,ω r → ±∞)]→ 0± .   

 

Figure 9.3 illustrates (a) a distribution function Fe0 (u) , and corresponding integration path 

1→ 2→ 3→ 4  in (b) ω -domain and in (c) D -domain.  The possible corresponding 

integration path 4→ 5→ 6→ 7→1 in D -domain will be discussed later in Figure 9.4. 

 

For N > 0 , the integration path CD  must circle around the branch point 

(Re(D), Im(D)) = (0,0)  N  times.  It is possible to estimate N  by examining the 

intersections of the loop CD  and the real axis in D -domain.   
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Let Im[D(k,ω r ,n−1)]= Im[D(k,ω r ,n )]= Im[D(k,ω r ,n+1)]= 0 , where ω r ,n−1 <ω r ,n <ω r ,n+1  are 

three consecutive roots of Im(D) = 0  along the real axis in the ω -domain.  Then, loop 

CD  will intersect with the real axis in the D -domain at points Dr ,n−1 = Re[D(k,ω r ,n−1)] , 

Dr ,n = Re[D(k,ω r ,n )] , and Dr ,n+1 = Re[D(k,ω r ,n+1)] .  If Dr ,n−1 ⋅Dr ,n < 0  and Dr ,n ⋅Dr ,n+1 < 0 , 

then loop CD  will circle around the branch point (Re(D), Im(D)) = (0,0)  at least once, 

which implies N > 0  and the system is unstable to electrostatic perturbations.   

 

One can determine Dr ,n = Re[D(k,ω r ,n )]  from Eq. (9.36a), where ω r ,n  is the root of 

Im[D(k,ω r ,n )]= 0  in Eq. (9.37a).  For convenience, we use integrating by parts to rewrite 

Eq. (9.36a) as 

Re[D(k,ω r )]= 1−
1
k2

{
ω pα 0

2

n0
[℘

Fα 0 (u)− Fα 0 (u =
ω r

k
)

(u − ω r

k
)2

du
−∞

∞

∫ ]}
α
∑      (9.45) 

For ω pe >>ω pi , Im[D(k,ω r ,n )]= 0  implies dFe0 (u) / du = 0 .  If electron distribution 

function, Fe0 , has local maximum or local minimum at u = un , then [dFe0 / du]u=un = 0 .  

We can choose ω r ,n = kun  so that Im[D(k,ω r ,n )]= 0 .  The corresponding real part D  at 

u = un , i.e., Dr ,n = Re[D(k,ω r ,n )]  is given in Eq. (9.45).   

 

Using the example shown in Figure 9.3, one can estimate real part D  based on Eq. (9.45) at 

points, where u =ω r / k .  Figure 9.4 illustrates possible integration path CD  in D -domain 

for different wave number k , where (a) is for large wave number k , (b) is for medium 

wave number k , and (c) is for small wave number k .  No unstable mode can be found 

when the wave number is too small or too large.  One unstable wave mode can be found in 

the case with medium wave number k .   

 

Exercise 9.1.   

If Re(D) at point 5 is greater than 1, sketches possible integration path CD  for the three 

cases shown in Figure 9.4. 
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Figure 9.3.  Integration path in the 
ω -domain and the D -domain of the 
Nyquist method for a given distribution 
function Fe0 (u) .  See text for discussion in 
details. 

Figure 9.4.  Possible integration paths CD  
in the D -domain for different wave 
number k  and for the given distribution 
function Fe0 (u)  shown in Figure 9.3.   
See text for discussion in details. 

 

 



Chapter 9.  Electrostatic Linear Waves in the Vlasov Plasma 
 

133 

Discussion: 

Some textbooks (e.g., Nicholson, 1983; Sturrock, 1994) used incorrect statements to prove 

the above equation (9.45).  The authors in those textbooks claimed that because 

dFα 0 (u) / du  at u =ω r / k  is equal to zero, therefore one can add a dummy constant 

−dFα 0 (u) / du u=ω r /k
 in the numerator of Eq. (9.36a). 

Namely, 

Re[D(k,ω r )]= 1−
1
k2

[
ω pα 0

2

n0
℘

dFα 0 (u) / du − [dFα 0 (u) / du]u=ω r /k

(u − ω r

k
)

du
−∞

∞

∫ ]
α
∑   (9.36b) 

 

They believe that “integration by parts of Eq. (9.36b) can yield Eq. (9.45).”  However, the 

authors in those textbooks cannot explain the following paradox.  Since one can also add a 

dummy constant dFα 0 (u) / du u=ω r /k
 in the numerator of Eq. (9.36a), which yields 

Re[D(k,ω r )]= 1−
1
k2

[
ω pα 0

2

n0
℘

dFα 0 (u) / du + [dFα 0 (u) / du]u=ω r /k

(u − ω r

k
)

du
−∞

∞

∫ ]
α
∑   (9.36c) 

Following “their” integration by parts procedure, Eq. (9.36c) can result in an equation, which 

is totally different from Eq. (9.45).  This paradox is a result of incorrect “integration by 

parts” of principle value of a discontinuous integration function.  

 

A correct proof of equation (9.45) is given below.  According to the following statements, 

Eq. (9.45) is correct even if dFα 0 (u =ω r / k) / du  is not equal to zero. 
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Proof of Eq.(9.45): 

Re[D(k,ω r )]= 1−
1
k2

[
ω pα 0

2

n0
℘ dFα 0 (u) / du

(u − ω r

k
)
du

−∞

∞

∫ ]
α
∑

= 1− 1
k2

{
ω pα 0

2

n0
lim
δ→0
[ dFα 0 (u) / du

(u − ω r

k
)
du

−∞

ω r
k
−δ

∫ + dFα 0 (u) / du

(u − ω r

k
)
duω r

k
+δ

∞

∫ ]}
α
∑

= 1− 1
k2

{
ω pα 0

2

n0
lim
δ→0
[ Fα 0 (u)

(u − ω r

k
)
−∞

ω r
k
−δ

+ Fα 0 (u)

(u − ω r

k
)2
du

−∞

ω r
k
−δ

∫ + Fα 0 (u)

(u − ω r

k
)
ω r
k
+δ

∞

+ Fα 0 (u)

(u − ω r

k
)2
duω r

k
+δ

∞

∫ ]}
α
∑

= 1− 1
k2

{
ω pα 0

2

n0
lim
δ→0
[℘ Fα 0 (u)

(u − ω r

k
)2
du

−∞

∞

∫ + Fα 0 (u =
ω r

k
)( 1
−δ

− 1
δ
)]}

α
∑

= 1− 1
k2

{
ω pα 0

2

n0
[℘ Fα 0 (u)

(u − ω r

k
)2
du

−∞

∞

∫ + Fα 0 (u =
ω r

k
)℘ −1

(u − ω r

k
)2
du

−∞

∞

∫ ]}
α
∑

= 1− 1
k2

{
ω pα 0

2

n0
[℘

Fα 0 (u)− Fα 0 (u =
ω r

k
)

(u − ω r

k
)2

du
−∞

∞

∫ ]}
α
∑

 

Gardner's Theorem (Gardner, 1963) 

For a distribution function with only one single maximum at u = u1 , we have 

Fα 0 (u)− Fα 0 (u1) < 0  for all u .  Thus Re[D(k,ω r )]  in Eq. (9.45) is always greater than 1. 

Namely, loop CD  and the real axis Im(D) = 0  have only two intersections and both 

intersections are for Re(D) > 0 .  Thus, the system is stable to all electrostatic perturbation.  

A more general proof based on nonlinear stability analysis can be found in literature (Gardner, 

1963).  On the other hand, if the distribution function has more then one local maximum, 

then there must be at least one local minimum on the distribution.  If there is a local 

minimum at u = un  ([dFe0 / du]u=un = 0 ), and  

℘ Fe0 (u0 )− Fe0 (u)
(u − u0 )

2 du
−∞

∞

∫ < 0  

then one can always find unstable waves with wavelength long enough such that  

℘ Fe0 (un )− Fe0 (u)
(u − un )

2 du
−∞

∞

∫ < − k
2n0

ω pe0
2 <0 

It can be shown that the system is unstable to electrostatic perturbations at certain range of 
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wave numbers as discussed in Figure 9.4 and Exercise 9.2. (e.g., Nicholson, 1983, page 104)  

 

Penrose Criterion (Penrose, 1960): 

If a system is unstable to electrostatic perturbation, then there is at least one local minimum 

in the electron distribution at u = u0 , such that [dFe0 / du]u=u0 = 0  and 

℘ Fe0 (u0 )− Fe0 (u)
(u − u0 )

2 du
−∞

∞

∫ < 0  
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The answer to Exercise 9.1 is given below. 

 


