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Chapter 8.  Equilibrium Solutions of the Vlasov Equation  

 

Topics or concepts to learn in Chapter 8:  

1. What is wave equation? 

2. How to find the general solution form of a wave-equation-like partial differential equation? 

3. Determine the field-free equilibrium solution of the Vlasov equation. 

4. Determine the equilibrium solution of the Vlasov equation with a given electrostatic 

potential profile. 

5. Determine the equilibrium solution of the Vlasov equation with a uniform background 

magnetic field. 

 

Suggested Readings: 

(1)  Section 6.2 in Nicholson (1983)  

(2)  Section 7.7 in Krall and Trivelpiece (1973) 

 

Linear wave analysis is a powerful tool in studying general wave dispersion relations in 

hydrodynamics and plasma physics.  However, linear wave analysis will be meaningless if 

the background state was not an equilibrium state.  In this chapter, we demonstrate how to 

obtain equilibrium solutions of Vlasov equation to pave the road for studying linear waves in 

Vlasov plasma in later Chapters 9 and 11. 

 

8.1. Characteristic Curves of a Partial Differential Equation 

 

Consider a function 

� 

A = A(x,t), which satisfies the following partial differential equation  

� 

∂A
∂ x

+ 1
c
∂A
∂ t

= 0               (8.1) 

Eq. (8.1) is a wave equation.  Eq. (8.1) implies that one can find two functions 

� 

ξ(x,t), and 

� 

η(x,t) , so that     

� 

∂A
∂η ξ = const.

= 0               (8.2) 

If Jacobian determinant of 

� 

ξ = ξ(x,t) and 

� 

η = η(x,t)  is non-zero, then we can find the 

inverse function 

� 

x(ξ,η) , and 

� 

t(ξ,η), such that 

� 

A = A (ξ(x,t),η(x,t)) = A (ξ(x, t)) = A(x(ξ,η), t(ξ,η)) .   
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Thus Eq. (8.2) can be written as, 

� 

∂A
∂η ξ = const.

= ∂A
∂ x

∂x
∂η ξ = const.

+ ∂A
∂ t

∂ t
∂η ξ = const.

= 0          (8.3) 

Comparing Eqs. (8.1) and (8.3), yields 

� 

∂x
∂η ξ = const.

=1               (8.4) 

� 

∂ t
∂η ξ = const.

= 1
c

               (8.5) 

Multiplying Eq. (8.5) by the wave speed 

� 

c  and then deducting the resulting equation from 

Eq.(8.4), it yields,  

� 

∂(x − ct)
∂η ξ = const.

= 0  

If we choose 

� 

ξ = x − ct , then 

� 

A = A (ξ(x, t)) = A (x − ct)  will be the solution of Eq. (8.1). 

Characteristic curves of Eq. (8.1) are 

� 

x − ct = ξ = const.  contours.  Each characteristic 

curve corresponds to a specific value of 

� 

ξ  and a specific value of 

� 

A .  To obtain solution 

of 

� 

A , over entire 

� 

x − t  domain, one needs provide just enough information on each 

characteristic curve.  Namely, one needs give initial or boundary conditions of 

� 

A  at one 

and only one point on each characteristic curve.   

 

8.2. Equilibrium Solutions of Time-Independent Vlasov-Maxwell Equations 

 

A set of equilibrium solutions of Vlasov-Maxwell system includes equilibrium distribution 

functions 

� 

fi0 = f i0(x,v) , 

� 

fe0 = fe0(x,v) , equilibrium electric field 

� 

E0(x), and equilibrium 

magnetic field 

� 

B0(x) .  This set of equilibrium solutions should satisfy the following 

equations. 

 

The steady-state Vlasov equation of the 

� 

α th species: 

� 

v ⋅ ∂ fα 0
∂x

+ eα
mα

(E0 + v ×B0) ⋅
∂ fα0
∂v

= 0           (8.6) 

 

The steady-state Maxwell’s equations: 

ε0∇ ⋅E0 = eα fα 0d
3v∫∫∫

α
∑             (8.7) 
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� 

∇ ⋅B0 = 0               (8.8) 

� 

∇ ×E0 = 0               (8.9) 

(∇ × B0 ) / µ0 = J0 = eα fα 0vd
3v∫∫∫

α
∑           (8.10) 

where 

� 

α = i,e , 

� 

ei = e , and 

� 

ee = −e . 

 

Eqs. (8.8) and (8.9) yield, respectively, 

� 

B0 = ∇ ×A 0                (8.11) 

� 

E0 = −∇Φ0                (8.12) 

 

Table 8.1. lists examples of equilibrium solutions of given 

� 

E0 and 

� 

B0. 

 

Table 8.1. Examples of equilibrium solutions of given 

� 

E0 and 

� 

B0. 

Case 1 Case 2 Case 3 

� 

E0 = B0 = 0 

� 

E0 = − ˆ x dΦ
dx

, B0 = 0  

� 

E0 = 0, B0 = ˆ z B0  

� 

fi0 = f i0(vx,vy,vz )  

� 

fe0 = fe0(vx,vy,vz ) 

and 

� 

fi0, 

� 

fe0  satisfy 

( fi0 − fe0 )d
3v∫∫∫ = 0  

v( fi0 − fe0 )d
3v∫∫∫ = 0  

� 

fi0 = f i0(
1
2
mivx

2 + eΦ(x),vy,vz)   

� 

fe0 = fe0(
1
2
mevx

2 − eΦ(x),vy,vz)   

and 

� 

fi0, 

� 

fe0  satisfy 

� 

d2Φ(x)
dx 2

= −e
ε0

( fi0 − fe0)d
3v∫∫∫  

v( fi0 − fe0 )d
3v∫∫∫ = 0  

� 

fi0 = f i0(vx
2 + vy

2,vz ) 

� 

fe0 = fe0(vx
2 + vy

2,vz )  

and 

� 

fi0, 

� 

fe0  satisfy 

( fi0 − fe0 )d
3v∫∫∫ = 0  

v( fi0 − fe0 )d
3v∫∫∫ = 0  

 

Exercise 8.1.  

Derive equilibrium solutions shown in Table 8.1 based on procedures described in Section 

8.1. 

 

Exercise 8.2.  

If we ignore Maxwell’s equations, we can find another type of solutions for the 

steady-state Vlasov equation in Case 3.  Show that for 

� 

E0 = 0,B0 = ˆ z B0 ,  

� 

fi0 = f i0(
eB0
mi

x + vy,
eB0
mi

y − vx, vz)   
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and  

fe0 = fe0 (
−eB0
me

x + vy ,
−eB0
me

y − vx , vz )   

are equilibrium solutions of the steady-state Vlasov equations but cannot be the 

equilibrium solutions of the steady-state Vlasov-Maxwell equations. 
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