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Chapter 7.  Particle Motions With Multiple Time Scales  

 

Topics or concepts to learn in Chapter 7:  

1. Periodic motions in different time scales 

2. Gyro motion and magnetic moment 

3. Bounce motion and the mirror point.  What is pitch angle? What is loss-cone distribution? 

4. Drift motions and their applications to the space plasma phenomena 

(a) How to separate motions in different time scale? 

(b) 

� 

E × B  drift and the moving frame dependent electric field 

(c) Gravitational drift 

(d) Curvature drift 

(e) Gradient-B drift 

(f) The diamagnetic effect: the diamagnetic drift, the diamagnetic current, and the 

magnetization current. 

(g) The polarization drift, the polarization current and the Alfvén waves 

(h) The ponderomotive force 

 

Suggested Readings: 

(1)  Chapter 2 in Nicholson (1983)  

(2)  Appendix I in Krall and Trivelpiece (1973) 

(3)  Chapter 2 in F. F. Chen (1984) 

 

7.1. Periodic Motions and Drift Motions of a Charged Particle 

 

 Action variable (
 
J = pdq∫ ) is adiabatic invariant under slow change of parameters 

(Goldstein, 1980).  Action of a quasi-periodic motion is conserved if parameters, which 

affect the periodic motion, are nearly steady and nearly uniform.  Three periodic motions 

may be found in magnetized plasma.  They are (1) gyro motion around the magnetic field, 

(2) bounce motion in a magnetic mirror machine and (3) periodic drift motion around a 

magnetic mirror machine, where magnetic mirror machine is characterized by non-uniform 

magnetic field strength along magnetic field line. 
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Exercise 7.1. 

Consider a charge particle moving in a nearly steady and nearly uniform magnetic field.  

Show that if variation of magnetic field 

� 

δB(x,t)  is small compare with the background 

magnetic field 

� 

B  in one gyro period and in one gyro radius (i.e., 

� 

δB << B ), then the 

particle’s magnetic moment is conserved.  That is 

µ =

1
2
mv⊥

2

B
≈ constant  

 

Exercise 7.2. 

Consider a charge particle moving in a steady magnetic mirror machine, in which 

magnitude of magnetic field is non-uniform along the magnetic field line.  Discuss 

changes of particle’s velocity along its bounce trajectory for different pitch angles at 

minimum B along a field line.  Discuss the formation of the loss-cone distribution. 

 

 Before introducing the third type of periodic motion (i.e., a periodic drift motion), we 

need first introduce different types of drift motion in a magnetized plasma.  Let us consider 

a charged particle moving in a nearly steady and nearly uniform magnetic field.  If this 

particle’s magnetic moment is conserved, its perpendicular velocity 

� 

v⊥  can be decomposed 

into two components.  One is a high frequency gyro velocity 

� 

vgyro .  The other is a low 

frequency or nearly time independent drift motion 

� 

vdrift .  Namely,  

� 

v⊥ = vgyro + vdrift  

In general, a low frequency equation of motion can be obtained by averaging the original 

equation of motion over a gyro period.  We can obtain the guiding center drift velocity 

� 

vdrift  

from the low frequency equation of motion.  

 

7.1.1. 

� 

E × B Drift 

 

 Let us consider a charge particle moving in a system with a uniform magnetic field 

� 

B 

and a uniform electric field 

� 

E, which is in the direction perpendicular to the local magnetic 

field 

� 

B.  If this particle has no velocity component parallel to the local magnetic field and 

magnetic moment of this particle is conserved, then we can decompose velocity of this 

particle into  
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� 

v = vgyro + vdrift  

where 

� 

vgyro  is the high frequency gyro motion velocity and 

� 

vdrift  is a time independent 

guiding center drift velocity.  Equation of motion of this charge particle is  

� 

m dv
dt

= q(E + v ×B)              (7.1) 

Averaging Eq. (7.1) over one gyro period (

� 

τ = 2π /Ω c , where 

� 

Ωc = |q |B /m ), we can obtain 

equation for low frequency guiding-center motion, 

� 

E + vdrift ×B = 0               (7.2) 

Solution of 

� 

vdrift  in Eq. (7.2) is the 

� 

E × B drift velocity 

� 

vdrift = E ×B
B2

               (7.3) 

Note that if both ions and electrons follow 

� 

E × B drift, then there will be no low frequency 

electric current generated by ions’ and electrons’ 

� 

E × B-drift.  In the Earth ionosphere 

E-region, electrons follow 

� 

E × B  drift, but ions do not.  As a result, electrons’ 

� 

E × B  drift 

can lead to Hall current in the E-region ionosphere.  Hall current is in 

� 

−E × B  direction.  

Large-scale plasma flow in magnetosphere and interplanetary space are mainly governed by 

� 

E × B  drift, whereas, electric field information is mainly carried by Alfvén wave along the 

magnetic field line.  Thus, Alfvén wave and 

� 

E × B drift together play important roles on 

determining large-scale plasma flow in space. 

 

Exercise 7.3. 

Let us consider an electron moving in a system with 

� 

E = ˆ y 60mV / m , 

� 

B = ˆ z 200nT .  

Please determine gyro speed, sketch trajectory of the electron, and describe the physical 

meaning of the trajectory, if at 

� 

t = 0 , the initial velocity of the electron is  

(1) 

� 

v = + ˆ x 800km /s   

(2) 

� 

v = + ˆ x 600km / s  

(3) 

� 

v = + ˆ x 400km /s  

(4) 

� 

v = + ˆ x 300km /s  

(5) 

� 

v = + ˆ x 200km / s  

Exercise 7.4. 

Explain formation of (1) the plasma tail (or ion tail) of a comet, (2) the plasmasphere of 

Earth, and (3) the plasma sheet in the Earth magnetotail based on 

� 

E × B  drift of 

plasmas.  Discuss the formation of cross-field electric field (

� 

E⊥B ) in these three cases. 
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7.1.2. Gravitational Drift 

 

 Let us consider a charge particle moving in a system with uniform magnetic field 

� 

B 

and uniform gravitational field 

� 

g , which is in the direction perpendicular to the local 

magnetic field 

� 

B.  If this particle has no velocity component parallel to the local magnetic 

field and magnetic moment of this particle is conserved, then we can decompose velocity of 

this particle into  

� 

v = vgyro + vdrift  

where 

� 

vgyro  is the high frequency gyro motion velocity and 

� 

vdrift  is a time independent 

guiding center drift velocity.  Equation of motion of this charge particle is  

� 

m dv
dt

= mg + qv ×B              (7.4) 

Averaging Eq. (7.4) over one gyro period (

� 

τ = 2π /Ω c , where 

� 

Ωc =| q |B /m ), we can obtain 

equation for low frequency guiding-center motion, 

� 

mg + qvdrift × B = 0               (7.5) 

Solution of 

� 

vdrift  in Eq. (7.5) is the gravitational drift velocity  

� 

vdrift = mg ×B
qB2

              (7.6) 

Drift speed of gravitational drift increases with increasing particle’s mass.  Gravitational 

drift provides an important electric current source in the low-latitude ionosphere and in the 

solar atmosphere.   

 

Exercise 7.5. 

Show that the gravitational drift in the low-latitude ionosphere is unstable to a surface 

perturbation at bottom-side of the nighttime ionosphere.  This is called gravitational 

Rayleigh-Taylor (GRT) instability.  The GRT instability can produce plasma cavities in 

the ionosphere and initiate the observed equatorial spread F (ESF) irregularities (e.g., 

Kelley, 1989, pp.121-122).  

 

7.1.3. Curvature Drift 

 

Consider a charge particle with constant magnetic moment and non-zero velocity component 

parallel to the local magnetic field.  If curvature of the magnetic field line is non-zero, then 
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the particle’s field-aligned moving frame will become a non-inertial frame.  Let us consider 

a time scale in which the particle’s parallel speed 

� 

v||  is nearly constant.  Equation of motion 

in this non-inertial moving frame can be approximately written as   

� 

m dv
dt

=
ˆ R B mv||

2

RB

+ qv ×B             (7.7) 

We can decompose velocity of this particle into  

� 

v = vgyro + vdrift  

where 

� 

vgyro  is the high frequency gyro motion velocity and 

� 

vdrift  is a low frequency (or 

nearly time independent) drift velocity.  Averaging Eq. (7.7) over one gyro period 

(

� 

τ = 2π /Ω c , where 

� 

Ωc =| q |B /m ), we can obtain equation for low frequency guiding-center 

motion in the 

� 

v||  non-inertial moving frame  

� 

ˆ R B mv||
2

RB

+ qvdrift ×B = 0             (7.8) 

Solution of 

� 

vdrift  in Eq. (7.8) is the curvature drift velocity, which can be written as  

� 

vdrift = mv||
2

qB2 (
ˆ R B
RB

×B)              (7.9) 

It is shown in Appendix D that curvature drift velocity in Eq. (7.9) can be rewritten as 

� 

vdrift = mv||
2

qB2
[(∇ ×B)⊥ −

∇⊥B
B

×B]            (7.10) 

Drift speed of curvature drift increases with increasing 

� 

mv||
2  (which is proportion to 

particle’s kinetic energy in the direction parallel to local magnetic field).  Curvature drift 

carried by energetic ions during magnetic storm and substorm periods can enhance partial 

ring current in the pre-midnight and midnight region. 

 
Figure 7.1. A sketch of the curvature drift of an ion moving in a non-uniform magnetic field. 
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7.1.4. Gradient B Drift 

 

 Let us consider a charge particle moving in a system with non-uniform magnetic field 

� 

B(r) .  If the non-uniformity of the magnetic field is small enough such that we can use the 

first two terms in Taylor expansion to estimate magnetic field based on magnetic field 

information at guiding center of the charge particle. Namely,  

B(r) = B(rg.c. ) + (r − rg.c. ) ⋅ (∇B) rg .c . + ⋅ ⋅ ⋅ ⋅          (7.11) 

where r − rg.c. = rgyro . 

 If this particle has no velocity component parallel to the local magnetic field and 

magnetic moment of this particle is conserved then we can decompose velocity of this 

particle into  

� 

v = vgyro + vdrift  

where 

� 

vgyro  is the high frequency gyro motion velocity and 

� 

vdrift  is a time independent 

guiding center drift velocity.  Equation of motion of this charge particle can be 

approximately written as 

m
dv
dt

= qv × B ≈ q(vgyro + vdrift ) × [B(rg.c. ) + rgyro ⋅ ∇B]        (7.12) 

Averaging Eq. (7.12) over one gyro period (

� 

τ = 2π /Ω c , where 

� 

Ωc = |q |B /m ), we can obtain 

equation for low frequency guiding-center motion  

vdrift × B(rg.c. ) + vgyro × (rgyro ⋅ ∇B) = 0           (7.13) 

where the notation 

� 

f  denotes time average value of 

� 

f .  It is shown in Appendix E that 

the average value in Eq. (7.13) can be rewritten as  

vgyro × rgyro ⋅ ∇B =
mvgyro

2

2qB
(−∇⊥B)  

Thus, Eq. (7.13) becomes 

� 

vdrift ×B(rg.c.) +
mvgyro

2

2qB
(−∇⊥B) = 0            (7.14) 

Solution of 

� 

vdrift  in Eq. (7.14) is the gradient-B drift velocity (or grad-B drift velocity) 

vdrift =
mvgyro

2

2qB
(−∇⊥B) × B

B2
            (7.15) 

The gradient-B drift speed increases with increasing 

� 

mvgyro
2 /2 .   
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For vdrift << vgyro , the perpendicular speed, 

� 

v⊥ , of the charge particle is approximately equal 

to 

� 

vgyro .  Thus, it is commonly using the following expression to denote gradient-B drift 

� 

vdrift = mv⊥
2

2qB
(−∇⊥B) ×B

B2
             (7.16) 

In this case, the gradient-B drift speed increases with increasing perpendicular kinetic energy.  

Gradient-B drift cancels magnetic gradient effect in magnetization current to be discussed in 

section 7.2.  As a result, the net current (diamagnetic current, to be discussed in section 7.2) 

has little dependence on the magnetic gradient.  Both gradient-B drift and curvature drift of 

the energetic particles in the ring current region can reduce time scale of the third periodic 

motion (periodically drifting around the Earth) from 24-hour co-rotating period to only a few 

hours.  Thus, the third adiabatic invariant condition may be applicable to these energetic 

particles in the ring current region. 

 

7.2. Fluid Drift 

 

Let us consider a non-uniform plasma system with a sharp density or pressure gradient in the 

direction perpendicular to the ambient magnetic field.  Since gyro motion of a charge 

particle can reduce/enhance magnetic field magnitude inside/outside its orbit.  The net 

effects of gyro motions in high-density (or high-pressure) region can result in an effective 

electric current located at the density-gradient (or pressure-gradient) region.  In this section, 

we shall use ions’ and electrons’ momentum equations to determine drift velocity of ions and 

electrons at the pressure-gradient region.  Similarly, one-fluid momentum equation is used 

to determine effective electric current (so-called diamagnetic current) at the pressure-gradient 

region.   

 

7.2.1. Ions’ Diamagnetic Drift  

 

Momentum equation of ion fluid 

� 

nimi(
∂Vi

∂ t
+ Vi ⋅ ∇Vi) = −∇pi + nie(E + Vi ×B)         (7.17) 

where 

� 

ni, Vi, and pi  are ions’ number density, flow velocity, and thermal pressure, 

respectively.  For steady state (∂ / ∂t = 0 ) and for 

� 

Vi ⋅ ∇Vi = 0 , 

� 

E = 0 , Eq. (7.17) yields 

� 

−∇pi + nieVi ×B = 0              (7.18) 



Chapter 7.  Particle Motions With Multiple Time Scales  
 

104 

Thus, we obtain ions’ diamagnetic drift velocity 

� 

Vi = −∇pi ×B
nieB

2                (7.19) 

 

7.2.2. Electrons’ Diamagnetic Drift  

 

Momentum equation of electron fluid 

� 

neme (
∂Ve

∂ t
+ Ve ⋅ ∇Ve ) = −∇pe − nee(E + Ve ×B)        (7.20) 

where 

� 

ne,Ve, and pe  are electrons’ number density, flow velocity, and thermal pressure, 

respectively.  For steady state (

� 

∂ /∂t = 0) and for 

� 

Ve ⋅ ∇Ve = 0 , 

� 

E = 0, Eq. (7.20) yields 

� 

−∇pe − neeVe × B = 0              (7.21) 

Thus, we obtain electrons’ diamagnetic drift velocity 

� 

Ve = −∇pe ×B
ne (−e)B

2 = ∇pe ×B
neeB

2             (7.22) 

 

7.2.3. Diamagnetic Current Density 

 

We define one-fluid mass density 

� 

ρ  to be 

� 

ρ = nimi + neme               (7.23) 

and flow velocity 

� 

V  to be ions and electrons center of mass flow velocity 

� 

V = nimiVi + nemeVe

nimi + neme

             (7.24) 

We can also define one-fluid thermal pressure satisfies 

� 

nimi(
∂Vi

∂ t
+ Vi ⋅ ∇Vi) + ∇pi

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ + neme (

∂Ve

∂ t
+ Ve ⋅ ∇Ve ) + ∇pe

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  

� 

= ρ(∂V
∂ t

+ V ⋅ ∇V) + ∇p             (7.25) 

Then, Eq. (7.17) + Eq. (7.18) yields one-fluid momentum equation 

� 

ρ(∂V
∂ t

+ V ⋅ ∇V) = −∇p + ρcE + J ×B          (7.26) 

For steady state (

� 

∂ /∂t = 0) and for 

� 

V ⋅ ∇V = 0 , 

� 

E = 0 , Eq. (7.26) becomes 

� 

−∇p+ J ×B = 0               (7.27) 

Thus, we obtain diamagnetic current density 
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� 

J = −∇p ×B
B2

               (7.28) 

Most current sheets in the space plasma are maintained by a density or pressure gradient.  

One can obtain electric current direction at magnetopause, plasmapause, and plasma sheet 

boundary layer (PSBL) based on Eq. (7.28).   

 

Exercise 7.6. 

Determine electric current direction at:  

(1) dayside magnetopause  

(2) nightside magnetopause 

(3) plasmapause  

(4) plasma sheet boundary layer 

 

For convenience, we shall use V to denote flow velocity and use v to denote a single particle 

velocity.  Fluid drift motion plays an important role on generating electric currents in our 

magnetosphere.  These current systems can generate new magnetic field components to 

make our magnetosphere different from a dipole field structure.   

 

7.2.4. Magnetization Current 

 

The diamagnetic current obtained in last subsection is indeed a net current of (1) current due 

to diamagnetic motion of charge particles, which is called magnetization current (Longmire, 

1963), (2) current due to particles’ curvature drift, and (3) current due to particles’ gradient-B 

drift. 

 

By definition, magnetization current is  

� 

J = ∇ ×M = ∇ × (−µi
i
∑ ˆ B )            (7.29) 

where 

� 

−µi
ˆ B  is the magnetic moment of the ith particle.   

 

Exercise 7.7. 

Show that for low temperature plasma with isotropic pressure the net current due to 

curvature drift and gradient-B drift discussed in sections 7.1.3 and 7.1.4 and the 

magnetization current in Eq. (7.29) is equal to the diamagnetic current in Eq. (7.28).   
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For high temperature plasma, we have to use kinetic approach to determine the net current.  

The net current obtained from kinetic approach is not identical to the diamagnetic current in 

Eq. (7.28).  Kinetic approach is an advanced subject of plasma physics, which will be 

discussed later in Chapters 8-11.   

 

 

7.3. Drift Motion in Time-Dependent Fields  

 

7.3.1. Polarization Drift 

 

 The low frequency wave, such as the Alfvén-mode/Fast-mode wave in the MHD plasma, 

can carry electric field along the B-field line/stream line.  The time variation of the electric 

field at the wave front of the low frequency wave can lead to polarization drift of particles 

and result in polarization current.   

 Let us consider a uniform magnetic field, 

� 

B = ˆ z B , and a time-dependent electric field, 

which increases linearly with time. Let 

� 

E = ˆ y E(t) = ˆ y ˙ E t . 

The equation of motion becomes 

� 

dv
dt

= q
m

( ˆ y ˙ E t + v × ˆ z B)               (7.30) 

Let  

� 

v = vgyro + vE×B drift + vpolarization drift            (7.31) 

where 

� 

vE×B drift =
ˆ y ˙ E t × ˆ z B

B2 = ˆ x 
˙ E t
B

            (7.32) 

or 

� 

ˆ y ˙ E t + vE×B drift × ˆ z B = 0              (7.33) 

and  

� 

dvE×B drift

dt
= ˆ x 

˙ E 
B

              (7.34) 

Substituting Eqs. (7.31) and (7.32) into Eq. (7.30), and then averaging the resulting equation 

over the gyro period, 

� 

2π /(qB /m) , and then making use of the Eqs (7.33) and (7.34), it yields 

� 

dvE×B drift

dt
= ˆ x 

˙ E 
B

= q
m

(vpolarization drift × ˆ z B)          (7.35) 
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The solution of Eq. (7.35) is 

� 

vpolarization drift =
−(m

dvE×B drift

dt
) × ˆ z B

qB2 =
−( ˆ x m

˙ E 
B

) × ˆ z B

qB2 = ˆ y m
q

˙ E 
B2      (7.36) 

 

7.3.2. Ponderomotive Force 

 

 The motion of a charge particle under the influence of a high-frequency non-uniform 

longitudinal wave or transverse wave shows a drift motion with nearly constant acceleration.  

The acceleration of the drift motion is due to the presence of ponderomotive force of the 

non-uniform wave field.  

 

7.3.2.1 Ponderomotive Force in a High-Frequency Non-uniform Longitudinal E-Field  

 

 Let us consider a high frequency non-uniform longitudinal electric field 

E = x̂ E0 (x)sinωt .  The equation of motion becomes  

dvx
dt

=
q
m
E0 (x)sinωt              (7.37) 

For 

� 

t = 0, 

� 

vx ≈ 0 , and 

� 

x ≈ x0 , integrating Eq. (7.37) once, it yields  

vx =
q
mω

E0 (x)(1− cosωt)             (7.38a) 

Integrating Eq. (7.38a) once, it yields  

x − x0 =
q

mω 2 E0 (x)(ωt − sinωt)            (7.38b) 

The non-uniform wave amplitude can be written as 

 

E0 (x) = E0 (x0 ) + (x − x0 )
dE0
dx x= x0

+
(x − x0 )

2

2
d 2E0
dx2 x= x0

+       (7.39) 

Substituting Eq. (7.38b) into Eq. (7.39), and then substituting the resulting equation into Eq. 

(7.37) it yields 

 

dvx
dt

=
q
m
{E0 (x0 ) + [

q
mω 2 E0 (x)(ωt − sinωt)]

dE0
dx x= x0

+}sinωt

=
q
m
{E0 (x0 )sinωt +

q
2mω 2

dE0
2

dx x= x0

ωt sinωt − q
2mω 2

dE0
2

dx x= x0

sin2ωt}
  (7.40) 

Averaging Eq. (7.40) over the wave period, 

� 

2π /ω , it yields 
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dvx
dt 2π /ω

≈
−q2

m2ω 2 (
1
2
+
1
4
) dE0

2

dx x= x0

= −
3
4

q2

m2ω 2

dE0
2

dx x= x0

      (7.41) 

where t sinωt 2π /ω = −1 /ω  and sin2ωt
2π /ω

= 1 / 2   

The ponderomotive force of the non-uniform high frequency longitudinal electric field is  

Fp = m
dv
dt 2π /ω

≈ x̂{− 3
4

q2

mω 2

dE0
2

dx
}           (7.42) 

 

7.3.2.2 Ponderomotive Force in a High-Frequency Non-uniform EM Wave Field  

 

 Let us consider a high-frequency non-uniform transverse electric field and magnetic 

field  

E = x̂ E0 (z)cosωt    

B = ŷ B0 (z)cosωt  

The equation of motion of a relative charge particle is  

dp
dt

= q(E + v × B) = x̂qE0 (z)cosωt + q
p
γm

× ŷB0 (z)cosωt       (7.43) 

or 

dpx
dt

= qE0 (z)cosωt − q
pz
γm

B0 (z)cosωt          (7.43a) 

dpz
dt

= q
px
γm

B0 (z)cosωt              (7.43b) 

For 

� 

t = 0, 

� 

p ≈ 0, and 

� 

z ≈ z0, integrating Eq. (7.43a) once, it yields  

px ≈
q
ω
E0 (z)sinωt               (7.44) 

Substituting Eq. (7.44) into Eq. (7.43b). it yields 

dpz
dt

≈
q
γm

[ q
ω
E0 (z)sinωt]B0 (z)cosωt =

q2

2γmω
E0 (z)B0 (z)sin2ωt     (7.45) 

Integrating Eq. (7.45) once, it yields  

pz ≈
q2

2γmω
E0 (z)B0 (z)

1− cos2ωt
2ω

          (7.46) 

Since 

� 

pz = γmvz , we have 
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vz ≈
q2

2(γm)2ω
E0 (z)B0 (z)

1− cos2ωt
2ω

          (7.46a) 

Integrating Eq. (7.46a) once, it yields  

z − z0 ≈
q2

(2ω )2
1

(γm)2
E0 (z)B0 (z)(t −

sin2ωt
2ω

)         (7.47) 

Define   

E00 (z) = E0 (z)B0 (z) / γ              (7.48) 

Substituting Eq. (7.48) into Eq. (7.45), it yields 

dpz
dt

≈
q2

(2ω )m
E00 (z)sin2ωt             (7.45a) 

Substituting Eq. (7.48) into Eq. (7.47), it yields 

z − z0 ≈
q2

(2ω )2m2

1
γ
E00 (z)(t −

sin2ωt
2ω

)           (7.47a) 

The non-uniform 

� 

E00(z)  can be written as 

 

E00 (z) = E00 (z0 ) + (z − z0 )
dE00
dz z= z0

+
(z − z0 )

2

2
d 2E00
dz2 z= z0

+      (7.49) 

Substituting Eq. (7.47a) into (7.49), then substituting the resulting equation into Eq. (7.45a), 

it yields 

dpz
dt

≈
q2

(2ω )m
E00 (z)sin2ωt

≈
q2

(2ω )m
{E00 (z0 ) + (z − z0 )

dE00
dz z= z0

+ ...}sin2ωt

≈
q2

(2ω )m
{E00 (z0 ) + [

q2

(2ω )2m2

1
γ
E00 (z)(t −

sin2ωt
2ω

)]dE00
dz z= z0

+ ...}sin2ωt

≈
q2

(2ω )m
{E00 (z0 )sin2ωt +

q2

(2ω )2m2

1
γ
(t sin2ωt − sin

2 2ωt
2ω

) 1
2
dE00

2

dz z= z0

}

  (7.50) 

Averaging the Eq. (7.50) over the period, 

� 

2π /(2ω) , it yields 
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dpz
dt 2π

2ω

≈
q2

(2ω )m
{E00 (z0 ) sin2ωt 2π

2ω
+

q2

(2ω )2m2

1
γ

t sin2ωt − sin
2 2ωt
2ω 2π

2ω

1
2
dE00

2

dz
z= z0

}

=
q2

(2ω )m
{E00 (z0 ) ⋅0 +

q2

(2ω )2m2

1
γ
(− 1
2ω

−
1
2
1
2ω
) 1
2
dE00

2

dz z= z0

}

=
−q4

(2ω )4m3

1
γ
3
4
dE00

2

dz z= z0

=
−q4

(2ω )4m3

1
γ
3
4
d(E0 (z)B0 (z) / γ )

2

dz z= z0

= Fp

 

                 (7.51a) 

where 

� 

Fp  is the ponderomotive force at 

� 

z = z0  

The following statements may not be correct if the wave reflection takes place. 

From Faraday’s law, we have 

� 

E0(z) = (ω /k)B0(z) . For high frequency EM wave, we have 

� 

cB0(z) = E0(z).  Since the momentum per unit mass 

� 

u ~ O(p /m) ~ O(qA /m) ~ O(qE /mω) , 

we can define an EM wave induced transverse momentum per unit mass to be 

uT (z) = qE0 (z) / m(2ω ) .   

For high frequency EM wave, Eq. (7.51a) can be written as  

dpz
dt 2π

2ω

=
−q4

(2ω )4m3

1
γ
3
4
d(E0 (z)B0 (z) / γ )

2

dz z= z0

=
−q4

(2ω )4m3

1
γ
3
4
d(E0

2 (z) / cγ )2

dz z= z0

=
−q4

(2ω )4m3

1
γ
3
2
(E0

2 (z)
cγ

) d
dz
(E0

2 (z)
cγ

)
z= z0

= −
m
γ
3
2
( q2E0

2 (z)
m2 (2ω )2cγ

) d
dz
( q2E0

2 (z)
m2 (2ω )2cγ

)
z= z0

= −
m
γ
3
2
(uT

2 (z)
cγ

) d
dz
(uT

2 (z)
cγ

)
z= z0

       (7.51b) 

Let 

� 

vT (z) = uT (z) /γ , it yields 

Fp =
dpz
dt 2π

2ω

= −
3
2
γm
c2

uT (z)vT (z)
d
dz
[uT (z)vT (z)]

z= z0

       (7.51c) 
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Likewise, the longitudinal momentum can be rewritten as 

pz =
q2

(2ω )2m
E0 (z)B0 (z)

γ
(1− cos2ωt)

=
q2

(2ω )2m
E00 (z)(1− cos2ωt)

=
q2

(2ω )2m
{E00 (z0 ) + (z − z0 )

dE00
dz z= z0

+ ...}(1− cos2ωt)

=
q2

(2ω )2m
{E00 (z0 ) + [

q2

(2ω )2m2

1
γ
E00 (z)(t −

sin2ωt
2ω

)]dE00
dz z= z0

+ ...}(1− cos2ωt)

=
q2

(2ω )2m
{E00 (z0 )(1− cos2ωt) + [

q2

(2ω )2m2

1
γ
(t − sin2ωt

2ω
)(1− cos2ωt)] 1

2
dE00

2

dz z= z0

+ ...}

 

                 (7.52) 

The average of the longitudinal momentum over a period of 

� 

2π /(2ω)  is 

pz 2π
2ω

=
q2

(2ω )2m
{E00 (z0 ) 1− cos2ωt 2π

2ω
+ [ q2

(2ω )2m2

1
γ
(t − sin2ωt

2ω
)(1− cos2ωt)

2π
2ω

] 1
2
dE00

2

dz z= z0

+ ...}

≈
q2

(2ω )2m
E00 (z0 )(1− 0)

+
q2

(2ω )2m
[ q2

(2ω )2m2

1
γ
(t − sin2ωt

2ω
− t cos2ωt + sin2ωt

2ω
cos2ωt)

2π
2ω

] 1
2
dE00

2

dz z= z0

=
q2

(2ω )2m
E00 (z0 ) + [

q4

(2ω )4m3

1
γ
( π
2ω

− 0 − 1
2ω

+ 0)] 1
2
dE00

2

dz z= z0

=
q2

(2ω )2m
E00 (z0 ) +

q4

(2ω )4m3

1
γ
(π −1)
2ω

1
2
dE00

2

dz z= z0

                 (7.53) 

The following statements may not be correct if the wave reflection takes place. 

For high frequency EM wave, Eq. (7.53) can be written as 
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pz 2π
2ω

=
q2

(2ω )2m
E00 (z0 ) +

q4

(2ω )4m3

1
γ
(π −1)
2ω

1
2
dE00

2

dz z= z0

=
q2

(2ω )2m
E0 (z0 )B0 (z0 )

γ
+

q4

(2ω )4m3

1
γ
(π −1)
2ω

(E0 (z)B0 (z)
γ

) d
dz
(E0 (z)B0 (z)

γ
)
z= z0

=
q2

(2ω )2m
E0
2 (z0 )
γ c

+
q4

(2ω )4m3

1
γ
(π −1)
2ω

(E0
2 (z)
γ c

) d
dz
(E0

2 (z)
γ c

)
z= z0

= m
uT
2 (z0 )
γ c

+ m
1
γ
(π −1)
2ω

uT
2 (z)
γ c

d
dz
(uT

2 (z)
γ c

)
z= z0

 

                 (7.54) 

 

Exercise 7.8 

Determine the ponderomotive force of a high-frequency non-uniform EM wave field 

with 

� 

p = (px0, py0, pz0)  at 

� 

t = 0 
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