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Chapter 6.  Linear Waves in the MHD Plasma 

 

Topics or concepts to learn in Chapter 6:   

1. Linearize the MHD equations 

2. The eigen-mode solutions of the MHD waves 

(a) The characteristics of the entropy mode 

(b) The characteristics of the intermediate mode (or Alfvén mode or shear Alfvén mode) 

(c) The characteristics of the fast mode (or compressional Alfvén mode) 

(d) The characteristics of the slow mode  

3. The Friedrichs diagrams of the phase velocity and the group velocity of the MHD waves. 

 

Suggested Readings: 

(1)  Chapter 7 in Nicholson (1983)  

(2)  Chapter 4 in Krall and Trivelpiece (1973) 

(3)  Chapter 4 in F. F. Chen (1984) 

 

6.1. Linearized Wave Equations in a Uniform Isotropic MHD Plasma  

 

Table 6.1 Column (1) lists governing equations of magnetohydrodynamic (MHD) 

plasma with isotropic pressure and zero heat flux.  Derivation of these equations has been 

introduced in Chapter 3.  Appendix C shows that the MHD Ohm’s law can lead to frozen-in 

flux, which is an important characteristic of MHD plasma.  In addition to frozen-in flux, 

MHD linear wave modes are also important characteristics of MHD plasma.  

Substituting 

� 

V0 = 0  into Ohm’s law yields 

� 

E0 = 0 .  Far from the source region, 

perturbations can be assumed in plane-wave format.  A perturbation A1(x,t)  can be written 

as 

 A1(x,t) = A1(k,ω )cos(k ⋅x −ω t + φA ) = Re{ A1(k,ω )exp[i(k ⋅x −ω t)]}  

where  
A1(k,ω ) = A1(k,ω )e

iφA  is a complex number.  The wave amplitude A1(k,ω )  

satisfies O(A1) = O(ε)O(A0 ) .  Following procedures described in Sections 5.1 and 5.2, a set 

of linearized MHD equations in (ω , k ) domain are obtained and listed in Table 6.1 

Column(2) for V0 = 0 , E0 = 0 , and 

� 

∇A0 = 0, where 

� 

A0 denotes a background variable.   
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Table 6.1. Governing equations of MHD plasma with isotropic pressure and zero heat flux 

(1) MHD equations in (

� 

t, x ) domain (2) linearized MHD equations in (

� 

ω,k) domain 

Mass continuity equation 

� 

( ∂
∂ t

+ V ⋅ ∇)ρ = −ρ∇ ⋅V  
Mass continuity equation 

� 

(−iω) ˜ ρ 1 = −ρ0(ik) ⋅ ˜ V 1    (6.1) 

MHD momentum equation 

ρ( ∂
∂ t

+ V ⋅∇)V = −∇p + J × B  

MHD momentum equation 

 ρ0 (−iω ) V1 = −(ik) p1 + J1 × B0    (6.2) 

MHD energy equation 

3
2
[( ∂
∂ t

+ V ⋅∇)ln(pρ−5 /3 )] = 0  

MHD energy equation 

 
(−iω ) p1 =

γ p0
ρ0
(−iω ) ρ1     (6.3) 

MHD charge continuity equation 

∇ ⋅ J = 0  

MHD charge continuity equation 

� 

(ik) ⋅ ˜ J 1 = 0       (6.4) 

MHD Ohm’s law 

E + V × B = 0  

MHD Ohm’s law 

� 

˜ E 1 + ˜ V 1 × B0 = 0     (6.5) 

Maxwell’s equations: 

∇ ⋅E→ 0  

∇ ⋅B = 0  

∇ × E = −
∂B
∂ t

 

∇ × B = µ0J  

Maxwell’s equations: 

 (ik) ⋅ E1 → 0       (6.6) 

� 

(ik) ⋅ ˜ B 1 = 0      (6.7) 

 (ik) × E1 = iω B1      (6.8) 

 (ik) × B1 = µ0 J1      (6.9) 

 

Our goal is to reduce the system equations listed in Table 6.1 Column (2) into a set of 

equations for plasma flow velocity 

� 

˜ V 1.  We shall focus on the momentum equation (6.2).  

In order to eliminate 

� 

˜ p 1  in Eq. (6.2), we substitute Eq. (6.1) into Eq. (6.3) to eliminate 

� 

˜ ρ 1, 

then substitute the resulting equation into Eq. (6.2) to eliminate 

� 

˜ p 1 .  Likewise, to eliminate 

� 

˜ J 1 in Eq. (6.2), we can substitute Eq. (6.5) into Eq. (6.8) to eliminate 

� 

˜ E 1, then substitute the 

resulting equation into Eq. (6.9) to eliminate 

� 

˜ B 1, and then substitute the resulting equation 

into Eq. (6.2) to eliminate 

� 

˜ J 1.   
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Substituting Eq. (6.1) into Eq. (6.3) yields  

    
!p1 =

γ p0

ρ0

!ρ1 = CS 0
2 !ρ1 = CS 0

2 ρ0k ⋅ !V1

ω
           (6.3') 

Substituting Eq. (6.5) into Eq. (6.8) to eliminate    
!E1 , then substituting the resulting equation 

into Eq. (6.9) to eliminate    
!B1 , it yields 

 
!J1 =

ik × !B1
µ0

=
ik × k ×

!E1
ω

µ0
=
ik × k × (−

!V1 ×B0 )
ω

µ0
= ik × [k × (B0 ×

!V1)]
µ0ω

   (6.9') 

Substituting Eqs. (6.3') and (6.9') into Eq. (6.2) yields 

 
ρ0 (−iω ) !V1 = −ikCS0

2 ρ0k ⋅ !V1
ω

+ ik × [k × (B0 ×
!V1)]

µ0ω
×B0       (6.2') 

Multiplying Eq. (6.2') by iω / ρ0k
2  yields 

 

ω 2

k2
!V1 = CS0

2 k̂k̂ ⋅ !V1 +CA0
2 B̂0 × {k̂ × [k̂ × (B̂0 × !V1)}   

where   CA0 ≡ B0 / µ0ρ0  is called Alfvén speed, and   CS 0 ≡ γ p0 / ρ0  is called sound 

speed. 
 

As a result, we can obtain a set of equations for flow velocity    
!V1 , which can be written 

as 

   D ⋅ !V1 = 0                 (6.10) 

where 

  
D = [ω

2

k 2 −CA0
2 ( B̂0 ⋅ k̂)2]1− (CA0

2 +CS 0
2 ) k̂k̂ +CA0

2 ( B̂0 ⋅ k̂)( B̂0k̂ + k̂B̂0 )      (6.11) 

For convenience, we can choose a coordinate system such that background magnetic 
field is along the   ẑ -axis, and wave number  k  lies on  x - z  plane.  Namely,  

   B0 = ẑ B0                 (6.12) 

and 

   k = k( ẑcosθ + x̂sinθ )              (6.13) 

where θ  is the angle between  k  and   B0 .  Substituting Eqs. (6.12) and (6.13) into Eqs. 

(6.10) and (6.11) yields 

   

(ω 2 / k 2 )−α 0 −δ
0 (ω 2 / k 2 )−CA0

2 cos2θ 0

−δ 0 (ω 2 / k 2 )− β

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

!V1x

!V1y

!V1z

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= 0     (6.14) 

where 
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  α = CA0
2 cos2θ + (CA0

2 +CS 0
2 )sin2θ = CA0

2 +CS 0
2 sin2θ        (6.15) 

  β = CA0
2 cos2θ + (CA0

2 +CS 0
2 )cos2θ − 2CA0

2 cos2θ = CS 0
2 cos2θ       (6.16) 

  δ = CS 0
2 cosθ sinθ               (6.17) 

Note that solutions of   ω
2 / k 2  for different wave modes can be considered as eigen 

values of the following matrix 

  

α 0 δ
0 CA0

2 cos2θ 0

δ 0 β

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 

Characteristics of different wave modes can be obtained from the corresponding eigen 

vectors.  

 

Exercise 6.1. 

Review eigen values and eigen vectors of a symmetric matrix.  Determine eigen values 

 λ1 ,  λ2 ,  λ3 , and the corresponding normalized eigen vectors   ê1 ,   ê2 ,   ê3 , of the following 

symmetric matrix  

  

M =
1 1 0
1 1 1
0 1 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 

Show that these eigen vectors of the symmetric matrix form an orthonormal basis and after 

coordinate transformation, the representation of matrix  M  in this new basis 

  ′B ={ê1, ê2 , ê3}  becomes 

  

M =

λ1 0 0

0 λ2 0

0 0 λ3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

′B

 

 

6.2. Linear Wave Modes in the MHD Plasma 

 

Number of linearized equations with time derivative term can lead to the same number 

of linear wave modes.  There are seven equations in Table 6.1 that consist of a time 

derivative term.  It will be shown in this section that, for  θ ≠ 0  and  θ ≠ π / 2 , seven linear 

wave modes can be found in MHD plasma.  Three of them are forward propagating waves.  
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Based on their wave speeds, these three wave modes are called fast-mode wave, 

intermediate-mode wave, and slow-mode wave.  The intermediate mode wave is also called 

Alfvén-mode wave or shear-Alfvén wave.  The other four wave modes are backward 

propagating fast-mode wave, intermediate-mode wave, slow-mode wave, and 

non-propagating entropy-mode wave.  The fast mode, Alfvén mode, and slow mode are 

eigen modes of Eq. (6.14).  The entropy mode is an additional wave mode, which can be 
obtained from equation of ρ1  (i.e., continuity equation). 

 

6.2.1. Entropy Mode 

 
Entropy mode in MHD plasma is characterized by ρ1 ≠ 0 , but V1x =V1y =V1z = 0  and 

ω = 0 .  For ω = 0 , the phase speed also vanishes.  Thus, entropy mode is frozen in the 

plasma flow.   
In general, if V1x =V1y =V1z = 0 , but ρ1 ≠ 0  and/or B1 ≠ 0 , then ω  must be zero 

(ω = 0 ), and  −(ik) !p1 + !J1 ×B0 = 0 . 

Proof: 
For V1x =V1y =V1z = 0 , Eq. (6.10) or (6.14) is automatically fulfilled.   

Substituting V1 = 0  into Eq. (6.5) yields E1 = 0 .   

Substituting V1 = 0  into Eq. (6.1) yields  ω !ρ1 = 0 .   

Substituting E1 = 0  into Eq. (6.8) yields  ω
!B1 = 0 .   

Thus, if ρ1 ≠ 0  and/or B1 ≠ 0 , then we must have ω = 0 .  

Substituting V1 = 0  into Eq. (6.2) yields  

 −(ik) !p1 + !J1 ×B0 = 0              (6.2a) 

Substituting Eq. (6.9) into Eq. (6.2a) yields 

 
−k !p1 −

k( !B1 ⋅B0 )
µ0

+ (k ⋅B0 )
!B1

µ0
= 0            (6.2b) 

Eq. (6.7) implies B1 ⊥ k , thus Eq. (6.2b) can be decomposed into two components.  One of 

them is in k  direction.  The other is in B1  direction.  That is 

 
−k( !p1 +

!B1 ⋅B0
µ0

) = 0              (6.2c) 

and 

   (k ⋅B0 ) !B1 = 0                (6.2d) 
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Eq. (6.2d) implies if   B1 ≠ 0  then   k ⋅B0 = 0 .  Likewise, if   k ⋅B0 ≠ 0  then   B1 = 0 .   

Thus, solutions of  ω = 0  can be classified into the following types: 

 

If   B1 ≠ 0 ,   ρ1 = p1 = 0 , and   k ⋅B0 = 0 , then wave mode with  ω = 0  can be considered as 

perpendicular-propagated Alfvén-mode wave .  Eq. (6.2c) yields   B1 ⋅B0 = 0  in this case.  

 

If   B1 ≠ 0 ,   p1 ≠ 0 , and   k ⋅B0 = 0 , then wave mode with  ω = 0  can be considered as 

perpendicular-propagated slow-mode wave.  Eq. (6.2c) yields   B1 ⋅B0 ≠ 0  in this case. 

 

If  ω = 0 ,  ρ1 ≠ 0  and   k ⋅B0 ≠ 0 , then Eq. (6.2d) and (6.2c) yield   p1 = 0  and   B1 = 0 .   

This wave mode is called entropy mode.  Note that for  ω = 0 , Eq. (6.3) is automatically 

fulfilled. 

 

It can be shown that solutions of nonlinear MHD equilibrium states consist of Contact 

Discontinuity (CD), Tangential Discontinuity (TD), Rotational Discontinuity (RD), and 

Shock Waves.  (e.g., Kantrowitz and Petschek, 1966; and Chao, 1970. Or see Chapter 2 in 

my lecture notes of Nonlinear Space Plasma Physics.) 

 

It can be shown that Tangential Discontinuity (TD) can be considered as a nonlinear version 

of perpendicularly propagated Alfvén-mode wave or slow-mode wave.  Contact 

Discontinuity (CD) can be considered as a nonlinear version of entropy-mode wave in MHD 

plasma.   

 

6.2.2. Alfvén Mode (or Intermediate Mode)  

6.2.2.1. Phase Velocity of the Alfvén-mode Wave 

Alfvén mode in MHD plasma is characterized by    
!V1x = !V1z = 0  but 

   
!V1y ≠ 0 .  For 

   
!V1x = !V1z = 0  but 

   
!V1y ≠ 0 , Eq. (6.14) yields 

  
ω 2

k 2 = CA0
2 cos2θ               (6.18) 

Eq. (6.18) is the wave dispersion relation of Alfvén-mode wave.  Since the phase speed of 

Alfvén mode is in between fast-mode and slow-mode wave speed, the Alfvén mode is also 
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called intermediate mode.  It can be shown that Rotational Discontinuity (RD) can be 

considered as a nonlinear version of Alfvén-mode wave in MHD plasma.   

 

6.2.2.2. Group Velocity of the Alfvén-mode Wave 
From Alfvén-mode wave dispersion relation   ω = ±k CA0 cosθ , we can determine group 

velocity of Alfvén mode to be 

   
v g =

dω
d k

= x̂
∂ω
∂ kx

+ ẑ
∂ω
∂ kz

= ± ẑCA0 = ± B̂0CA0  

 

6.2.2.3. Characteristics of the Wave Fields in the Alfvén-mode Wave 

Exercise 6.2. 
(1) Show that for Alfvén wave  ρ1 = 0 ,   p1 = 0 , and   B1 = 0 .  Show that   B1  can be 

determined from    B1 = B1 ⋅ B̂0 .  

(2) Determine perturbation directions of   V1 ,   E1 ,   B1 , and   J1  for Alfvén-mode wave. 

(3) Determine relationship between   B1  and   V1  in Alfvén-mode wave.  Show that 

variations of   B1  and   V1  are in phase if  π / 2 <θ < π , but out-off phase if 

 0 <θ < π / 2 . 

 

6.2.3. Fast Mode and Slow Mode  

6.2.3.1. Phase Velocity of the Fast-mode and Slow-mode Waves 

For 
   
!V1y = 0  but 

   

!V1x

!V1z

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
≠ 0

0
⎛

⎝⎜
⎞

⎠⎟
  

Eq. (6.14) yields 

  

det
(ω 2 / k 2 )−α −δ

−δ (ω 2 / k 2 )− β

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= ω 2

k 2

⎛
⎝⎜

⎞
⎠⎟

2

− ω 2

k 2 (α + β )+αβ −δ 2 = 0  

where α , β , and δ  are given in Eqs. (6.15)~(6.17), which yields 

  α + β = CA0
2 +CS 0

2 sin2θ +CS 0
2 cos2θ = CA0

2 +CS 0
2  

and 

  αβ −δ 2 = (CA0
2 +CS 0

2 sin2θ )CS 0
2 cos2θ −CS 0

4 cos2θ sin2θ = CA0
2 CS 0

2 cos2θ  

Thus, we have 

  

ω 2

k 2

⎛
⎝⎜

⎞
⎠⎟

2

− ω 2

k 2 (CA0
2 +CS 0

2 )+CA0
2 CS 0

2 cos2θ = 0          (6.20) 
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Eq. (6.20) has two roots of   ω
2 / k 2 .  They are the fast-mode (+) and slow-mode (–) 

dispersion relation  

  

ω 2

k 2

⎛
⎝⎜

⎞
⎠⎟ Fast

Slow

= (vph
2 )Fast

Slow
= 1

2
{(CA0

2 +CS 0
2 ) ± (CA0

2 +CS 0
2 )2 − 4CA0

2 CS 0
2 cos2θ}   (6.21) 

 

6.2.3.2. Group Velocity of the Fast-mode and Slow-mode Waves 

The group velocity of a wave is defined by 

   
v g =

dω
d k

= k̂ ∂ω
∂ k

+ θ̂ 1
k
∂ω
∂θ

            (6.22) 

Since, for MHD waves, the phase velocity is a wavelength-independent function. i.e., 
ω
k
= vph (θ ) .                 (6.23) 

Thus, the k -component of the group velocity can be obtained by 
∂ω
∂ k

= ∂
∂ k
[kvph (θ )]= vph (θ ) .             (6.24) 

Whereas, the θ -component of the group velocity can be obtained by 

1
k
∂ω
∂θ

= ∂
∂θ
(ω
k
) = ∂

∂θ
[vph (θ )]=

1
2vph (θ )

∂
∂θ
[vph

2 (θ )]        (6.25) 

From MHD dispersion relation, we can determine phase speed of the Fast-mode and 

Slow-mode waves.  Namely, we have 

∂
∂θ
[vph

2 (θ )]Fast
Slow

= ± 1
2

∂
∂θ

(CA0
2 +CS0

2 )2 − 4CA0
2 CS0

2 cos2θ       (6.26) 

Substituting (6.26) into (6.25), the θ -component of the group velocity can be rewritten as 

(1
k
∂ω
∂θ
)Fast
Slow

= ± 1
[vph (θ )]Fast

Slow

CA0
2 CS0

2 cosθ sinθ
(CA0

2 +CS0
2 )2 − 4CA0

2 CS0
2 cos2θ

      (6.27) 

Substituting the equations (6.24) and (6.27) into equation (6.22), we can obtain the group 

velocity of the fast-mode and slow-mode waves   

(vg )Fast
Slow

= k̂(vph )Fast
Slow

± θ̂ 1
[vph (θ )]Fast

Slow

CA0
2 CS0

2 cosθ sinθ
(CA0

2 +CS0
2 )2 − 4CA0

2 CS0
2 cos2θ

    (6.28) 

where 
  
(vph )Fast

Slow

 is given in Eq. (6.21). 

Note that the denominator of the θ -component group velocity in equation (6.27) 

vanishes at θ = 90°  for the slow-mode wave.  It also vanishes at θ = 0° or 180°  when 

CA0 = CS0  for both slow-mode and fast-mode waves.  We shall use the L'Hôpital's rule to 
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determine the θ -component group velocity in these special cases. Namely, when the 

denominator in equation (6.26) vanishes, the θ -component of the group velocity can be 

obtained by 

(1
k
∂ω
∂θ
)Fast
Slow

= [
∂vph (θ )
∂θ

]Fast
Slow

= ±

∂
∂θ
(CA0

2 CS0
2 cosθ sinθ )

[
∂vph (θ )
∂θ

]Fast
Slow

(CA0
2 +CS0

2 )2 − 4CA0
2 CS0

2 cos2θ + [vph (θ )]Fast
Slow

∂
∂θ

(CA0
2 +CS0

2 )2 − 4CA0
2 CS0

2 cos2θ

 

= ± CA0
2 CS0

2 cos2θ

[
∂vph (θ )
∂θ

]Fast
Slow

(CA0
2 +CS0

2 )2 − 4CA0
2 CS0

2 cos2θ ± 4[vph
2 (θ )]Fast

Slow
[
∂vph (θ )
∂θ

]Fast
Slow

   (6.29) 

where (6.25) and (6.26) have been used to obtained Eq. (6.29).  Eq. (6.29) yields 

[
∂vph (θ )
∂θ

]Fast
Slow

2 = CA0
2 CS0

2 cos2θ
4[vph

2 (θ )]Fast
Slow

± (CA0
2 +CS0

2 )2 − 4CA0
2 CS0

2 cos2θ
      (6.30) 

 

Special Case A:  The slow-mode θ -component group velocity at θ = 90° . 

Equation (6.30) yields  

 

lim
θ→90°ε

(1
k
∂ω
∂θ
)Slow =  limθ→90°

CA0
2 CS0

2 cos2θ
4[vph

2 (θ )]Slow − (CA0
2 +CS0

2 )2 − 4CA0
2 CS0

2 cos2θ
=  CA0

2 CS0
2

(CA0
2 +CS0

2 )
 

                 (6.31) 

where the minus sign and the plus sign are chosen to match the group velocity at 

θ → 90° − ε  and at θ → 90° + ε , respectively, with ε → 0+ . 

For CA0 = CS0  and  θ → 90°  ε , the slow-mode group velocity is equal to  

 
(vg )Slow = θ̂ lim

θ→90°ε
(1
k
∂ω
∂θ
)Slow = θ̂

CA0

2
          (6.32) 

 

Special Case B:  The slow-mode and fast-mode group velocity at CA0 = CS0  and θ = 0° . 

Equation (6.30) yields  

lim
θ→0°

CA0=CS 0

(1
k
∂ω
∂θ
)Fast
Slow

= ±CA0

2
            (6.33) 

where the sign is chosen to match the group velocity at θ → 0° + ε  with ε > 0 . 
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6.2.3.3. Characteristics of the Wave Fields in the Fast-mode and Slow-mode Waves 

 

Exercise 6.3. 

(1) Determine phase relationship of 

� 

ρ1 and 

� 

B1, for fast-mode and slow-mode waves.   

(2) Determine perturbation directions of 

� 

V1 , 

� 

E1 , 

� 

B1 , and 

� 

J1  for fast-mode and 

slow-mode waves.   

(3) Show that     
!V1Fast ⋅ !V1Slow = 0 . 

 

Answer of Exercise 6.3(3)  Proof     
!V1Fast ⋅ !V1Slow = 0  

Eq. (6.14) yields  

   (
!V1x )Fast[(ω

2 / k 2 )Fast −α ]− ( !V1z )Fastδ = 0  

and  

   (
!V1x )Slow[(ω 2 / k 2 )Slow −α ]− ( !V1z )Slowδ = 0  

Substituting the above two equations into     
!V1Fast ⋅ !V1Slow , it yields 

    

!V1Fast ⋅ !V1Slow = ( !V1x )Fast ( !V1x )Slow + ( !V1z )Fast ( !V1z )Slow

= ( !V1x )Fast ( !V1x )Slow +{( !V1x )Fast[(ω
2 / k 2 )Fast −α ] / δ}{( !V1x )Slow[(ω 2 / k 2 )Slow −α ] / δ}

= ( !V1x )Fast ( !V1x )Slow{1+ [(ω 2 / k 2 )Fast −α ][(ω 2 / k 2 )Slow −α ] / δ 2}

= ( !V1x )Fast ( !V1x )Slow{δ 2 + (ω 2 / k 2 )Fast (ω
2 / k 2 )Slow −α[(ω 2 / k 2 )Fast + (ω 2 / k 2 )Slow]+α 2}/ δ 2

= ( !V1x )Fast ( !V1x )Slow{δ 2 +α 2 + 1
4

[b2 − (b2 − 4c)]−αb}/ δ 2

= ( !V1x )Fast ( !V1x )Slow{δ 2 +α 2 + c −αb}/ δ 2

 

where 

  

b = (α + β )
c =αβ −δ 2  

Thus 

    
!V1Fast ⋅ !V1Slow = ( !V1x )Fast ( !V1x )Slow{δ 2 +α 2 + (αβ −δ 2 )−α (α + β )}/ δ 2 = 0  

Answer of Exercise 6.3(1)   

(6.1):     (−iω ) !ρ1 = −ρ0(ik) ⋅ !V1  

(6.3') : 
 
!p1 =

γ p0
ρ0
!ρ1 = CS0

2 !ρ1  

(6.2) :     ρ0(−iω ) !V1 = −(ik) !p1 + !J1 ×B0  
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(6.9) :     (ik)× !B1 = µ0
!J1  

Substituting (6.9) into (6.2), it yields  

    ρ0(−iω ) !V1 = −(ik) !p1 + (ik × !B1)×B0 / µ0          (6.2') 

Substituting (6.3') into  k ⋅ (6.2') to eliminate  
!J1 , then substituting (6.1) into the resulting 

equation to eliminate  
!V1  and substituting (6.3') into the resulting equation to eliminate 

 !p1 , it yields 

 ρ0 (−iω )k ⋅ !V1 = −k ⋅(ik) !p1 + k ⋅[(ik × !B1)×B0 ] / µ0  

 
⇒ (−iω 2 ) !ρ1 = −ik2CS0

2 !ρ1 + i
k ⋅B0k ⋅ !B1

µ0
− ik2 B0 ⋅

!B1
µ0

       (6.2") 

where    k ⋅ !B1 = 0 .  It can be shown that B − B0 = B1 = B1 ⋅(B0 / B0 )  

Thus, the above equation (6.2") can be rewritten as 

 
(ω 2 )

!ρ1
ρ0

= k2CS0
2 !ρ1
ρ0

+ k2 B0
2

ρ0µ0

!B1
B0

= k2CS0
2 !ρ1
ρ0

+ k2CA0
2
!B1
B0

 

 
⇒ (ω

2

k2
−CS0

2 )
!ρ1
ρ0

= CA0
2
!B1
B0

            (6.2''') 

Thus, for   ω
2 / k 2 > CS 0

2 , variations of  ρ1  and   B1  are in phase. 

For   ω
2 / k 2 < CS 0

2 , variations of  ρ1  and   B1  are out-off phase. 

It can be shown that, for fast-mode wave, we have   (ω
2 / k 2 )Fast ≥ CS 0

2 .  Thus, for 

fast-mode wave, variations of  ρ1  and   B1  are in phase.  For slow-mode wave, we have 

  (ω
2 / k 2 )Slow ≤ CS 0

2 .   Thus, for slow-mode wave, variations of  ρ1  and   B1  are out-off 

phase.  

Note that (6.3') yields variations of  ρ1  and   p1  are in phase.  Substituting equation 

(6.3') into equation (6.2''') to eliminate  !ρ1  it yields 

 
(ω

2

k2
−CS0

2 )
!p1

CS0
2 ρ0

= CA0
2
!B1
B0

  

or  
 
(ω

2

k2
−CS0

2 )
!p1

γ p0
= CA0

2
!B1
B0

 

Thus, for   ω
2 / k 2 > CS 0

2 , variations of   p1  and   B1  are in phase. 

For   ω
2 / k 2 < CS 0

2 , variations of   p1  and   B1  are out-off phase.  
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6.2.4. Friedrichs Diagrams of the Phase Velocity and Group Velocity of the MHD 

Waves 

 

Exercise 6.4. 
(1) Ignoring the entropy mode, plot the phase velocities of the three MHD wave modes: 

fast-, Alfvén-, and slow-modes, on the Friedrichs diagram, where the polar 

coordinate 
   
(r,θ ) = (ω / k,θk ,B0

) .  

(2) Ignoring the entropy mode, plot the group velocities of the three MHD wave modes: 

fast-, Alfvén-, and slow-modes, on the Friedrichs diagram, where the polar 

coordinate 
   
(r,θ ) = (vg ,θvgB0

) .   

 

Students are encouraged to read the classical paper written by Kantrowitz and Petschek (1966) 

for detail discussion on the MHD wave modes.  The application of the group-velocity 

Friedrichs diagram on wave expansion near the source region can be found in the two papers 

by Lai and Lyu (2006, 2008). 
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