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Chapter 3.  Deriving the Fluid Equations From the Vlasov Equation 

 

Topics or concepts to learn in Chapter 3:  

1. The basic equations for study kinetic plasma physics: The Vlasov-Maxwell equations 

2. Definition of fluid variables: number density, mass density, average velocity, thermal 

pressure (including scalar pressure and pressure tensor), heat flux, and entropy function 

3. Derivation of plasma fluid equations from Vlasov-Maxwell equations: 

(a) The ion-electron two-fluid equations 

(b) The one-fluid equations and the MHD (magnetohydrodynamic) equations 

(c) The continuity equations of the number density, the mass density, and the charge density 

(d) The momentum equation  

(e) The momentum of the plasma and the E-, B- fields 

(f) The momentum flux (the pressure tensor) of the plasma and the E-, B- fields 

(g) The energy of the plasma and the E-, B- fields 

(h) The energy flux of the plasma and the E-, B- fields 

(i) The energy equations and “the equations of state” 

(j) The MHD Ohm’s law and the generalized Ohm’s law 

 

Suggested Readings: 

(1)  Section 7.1 in Nicholson (1983)  

(2)  Chapter 3 in Krall and Trivelpiece (1973) 

(3)  Chapter 3 in F. F. Chen (1984) 

 

3.1. The Vlasov-Maxwell System 

 

Vlasov equation of the 

� 

α th species, shown in Eq. (2.7), can be rewritten as  

� 

∂ fα (x,v,t)
∂ t

+ v ⋅ ∇fα (x,v,t) + eα
mα

[E(x,t) + v ×B(x,t)] ⋅ ∇v fα (x,v,t) = 0    (3.1) 

or 

� 

∂ fα (x,v,t)
∂ t

+ ∇ ⋅{vfα (x,v,t)}+ eα
mα

∇v ⋅{[E(x,t) + v ×B(x,t)] fα (x,v,t)} = 0   (3.1') 

where 

� 

∇ =∂ /∂x  and 

� 

∇ v = ∂ /∂v. 
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Maxwell’s equations in Table 1.1. can be rewritten as 

� 

∇ ⋅E(x,t) = ρc (x,t)
ε0

= 1
ε0

eαnα (x,t)
α
∑

= 1
ε0

eα fα (x,v,t)d
3v∫∫∫

α
∑

     (3.2) 

� 

∇ ⋅B(x,t) = 0         (3.3) 

� 

∇ ×E(x,t) = −∂B(x,t)
∂ t

       (3.4) 

� 

∇ ×B(x,t) = µ0J(x,t) + µ0ε0
∂E(x,t)

∂ t

= µ0[ eαnα (x,t)Vα (x,t)
α
∑ ]+ µ0ε0

∂E(x,t)
∂ t

= µ0[ eα vfα (x,v,t)d
3v∫∫∫

α
∑ ]+ µ0ε0

∂E(x,t)
∂ t

    (3.5) 

 

The Vlasov equations of ions and electrons and the Maxwell’s equations are the governing 

equations of the Vlasov-Maxwell system, which includes eight unknowns (

� 

fi, fe,E,B) and 

eight independent equations in a six-dimensional phase space. 
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3.2. The Fluid Variables 

 

Before introducing the fluid equations, we need to define fluid variables of plasma. 

The number density of the 

� 

α th species, in Eq. (3.2), is defined by 

nα (x,t) ≡ fα (x,v,t)d
3v∫∫∫             (3.6) 

The average velocity of the 

� 

α th species, in Eq. (3.5), is defined by 

Vα (x,t) ≡
vfα (x,v,t)d

3v∫∫∫
nα (x,t)

            (3.7) 

The particle flux of the 

� 

α th species is  

nαVα = vfα (x,v,t)d
3v∫∫∫             (3.8) 

The mass flux of the 

� 

α th species is  

mαnαVα = mαvfα (x,v,t)d
3v∫∫∫            (3.9) 

The charge flux of the 

� 

α th species is  

eαnαVα = eαvfα (x,v,t)d
3v∫∫∫             (3.10) 

The momentum flux, or the kinetic pressure, of the 

� 

α th species is  

mαnαVαVα +Pα (x,t) = mαvvfα (x,v,t)d
3v∫∫∫          (3.11) 

where 

� 

mαnαVαVα  is the dynamic pressure, and 

� 

Pα (x, t)  is the thermal pressure tensor. 

The thermal pressure tensor 

� 

Pα (x, t)  in Eq. (3.11) is defined by 

Pα (x,t) ≡ mα [v − Vα (x,t)][v − Vα (x,t)] fα (x,v,t)d
3v∫∫∫       (3.12) 

Since 

� 

Pα (x, t)  is a second rank symmetric tensor, trace of 

� 

Pα (x, t)  is invariant after an 

orthonormal coordinate transformation.  For an isotropic pressure, we have  

� 

Pα (x,t) =1 pα (x,t) =
pα (x,t) 0 0
0 pα (x,t) 0
0 0 pα (x,t)

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 
 

Thus, in general we can define a scalar thermal pressure 

� 

pα (x, t)   

� 

pα (x,t) ≡
1
3
trace[Pα (x,t)]            (3.13) 

The flux of the total kinetic pressure of the 

� 

α th species is  

mαnαVαVαVα + (PαVα )
S +Qα (x,t) = mαvvvfα (x,v,t)d

3v∫∫∫      (3.14) 

where the heat-flux tensor 

� 

Qα(x,t)  is a third rank tensor, which is defined by 
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Qα (x,t) ≡ mα [v − Vα (x,t)][v − Vα (x,t)][v − Vα (x,t)] fα (x,v,t)d
3v∫∫∫     (3.15) 

� 

(PαVα )
S  in Eq. (3.14) is a symmetric third rank tensor, which is defined by  

(PαVα )
S ≡ PαVα + VαPα + mα (v − Vα )Vα (v − Vα ) fα (x,v,t)d

3v∫∫∫     (3.16) 

 

The kinetic energy flux of the 

� 

α th species is  

� 

1
2
mαnαVα ⋅VαVα + 3

2
pαVα +Pα ⋅Vα + qα (x,t) = 1

2
mαv ⋅ vvfα (x,v,t)d

3v∫∫∫  

or 

� 

(1
2
mαnαVα

2 + 3
2
pα )Vα +Pα ⋅Vα + qα (x,t) = 1

2
mαv

2vfα (x,v,t)d
3v∫∫∫     (3.17) 

where the heat-flux vector 

� 

qα(x,t)  is defined by 

� 

qα (x,t) ≡
1
2
mα[v −Vα (x,t)] ⋅ [v −Vα (x,t)][v −Vα (x,t)] fα (x,v,t)d

3v∫∫∫    (3.18) 

 

For advanced study: 

If it is needed, we can define a fourth rank tensor 

� 

Rα (x, t)   

Rα (x,t) ≡ mα (v − Vα )(v − Vα )(v − Vα )(v − Vα ) fα (x,v,t)d
3v∫∫∫      (3.19) 

and a fifth rank tensor 

� 

Sα (x, t)  

Sα (x,t) ≡ mα (v − Vα )(v − Vα )(v − Vα )(v − Vα )(v − Vα ) fα (x,v,t)d
3v∫∫∫    (3.20) 

so that  

mαnαVαVαVαVα + (PαVαVα )
S + (QαVα )

S +Rα = mαvvvvfα (x,v,t)d
3v∫∫∫    (3.21) 

and 

mαnαVαVαVαVα + (PαVαVαVα )
S + (QαVαVα )

S + (RαVα )
S + Sα

= mαvvvvvfα (x,v,t)d
3v∫∫∫

     (3.22) 

where the superscript s  denotes a higher-rank symmetric tensor.  An example of the 

2nd-rank symmetric tensor is shown in (3.16). 

 

Exercise 3.0.1 

Let us define a generalized local entropy function 

� 

Sα  of the 

� 

α th species: 

� 

Sα = − fα
nα
ln fα∫ d3v + constant  
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Let 

� 

fα  be a normal distribution function with number density 

� 

nα , temperature 

� 

Tα , 

and zero average velocity.  Determine how the entropy 

� 

Sα  varies with varying of the 

number density 

� 

nα  and the thermal pressure 

� 

pα . 

 

In addition to the general definitions of the fluid variables, we shall encounter the following 

integrations in deriving the fluid equations in the next section. 

� 

∂
∂v

⋅{[E(x,t) + v ×B(x,t)] fα (x,v,t)}d
3v∫∫∫ = 0         (3.23) 

 

� 

v ∂
∂v

⋅{[E(x,t) + v ×B(x,t)] fα (x,v,t)}d
3v∫∫∫ = −nα (E + Vα ×B)      (3.24) 

 

� 

vv ∂
∂v

⋅{[E(x,t) + v ×B(x,t)] fα (x,v,t)}d
3v∫∫∫

= −nα (EVα )
S − nα[Vα (Vα ×B)]

S − {(v −Vα )[(v −Vα ) ×B]}
S fα (x,v,t)d

3v∫∫∫
  (3.25) 

 

The following two integrations are useful for the higher moment integrations of the Vlasov 

equation. 

� 

vvv ∂
∂v

⋅{[E(x,t) + v ×B(x,t)] fα (x,v,t)}d
3v∫∫∫

= −nα (EVαVα )
S − nα

mα

(EPα )S − nα[VαVα (Vα ×B)]
S − nα

mα

[Pα (Vα ×B)]
S

− {(v −Vα )(v −Vα )[(v −Vα ) ×B]}
S fα (x,v,t)d

3v∫∫∫

   (3.26) 

 

� 

vvvv ∂
∂v

⋅{[E(x,t) + v ×B(x,t)] fα (x,v,t)}d
3v∫∫∫

= −nα (EVαVαVα )
S − nα

mα

(EPαVα )
S − nα

mα

(EQα )
S

− nα[VαVαVα (Vα ×B)]
S − nα

mα

[PαVα (Vα ×B)]
S − nα

mα

[Qα (Vα ×B)]
S

− {(v −Vα )(v −Vα )(v −Vα )[(v −Vα ) ×B]}
S fα (x,v,t)d

3v∫∫∫

    (3.27) 

and so forth. 
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Exercise 3.1. 

Verify Eqs. (3.23), (3.24), (3.25), and (3.26). 

Hint:  There are three terms in the integration of Eq. (3.23), they are all in the following 

form: 

� 

[ ∂
∂vx

Ex fα (x,v,t)dvx∫ ]d2v∫∫ = Ex[ fα (x,v,t)]vx =−∞
vx = +∞d2v∫∫ = 0 

There are nine terms in the integration of Eq. (3.24), in which six of them are in the 

following form: 

� 

[vy
∂
∂vx

Ex fα (x,v,t)dvx∫ ]d2v∫∫ = vyEx[ fα (x,v,t)]vx =−∞
vx = +∞d2v∫∫ = 0 

and the rest three of them are in the following form: 

� 

[ vx
∂
∂vx

Ex fα (x,v,t)dvx∫ ]d2v∫∫
= Ex{[vx fα (x,v,t)]vx =−∞

vx = +∞ − fα (x,v,t)dvx}∫ d2v∫∫ = 0 − Exnα

 

There are 27 terms in the integration of Eq. (3.25), in which six of them are in the 

following form: 

� 

[vyvz
∂
∂vx

Ex fα (x,v,t)dvx∫ ]d2v∫∫ = vyvzEx[ fα (x,v,t)]vx =−∞
vx = +∞d2v∫∫ = 0 

another six of them are in the following type: 

� 

[vyvy
∂
∂vx

Ex fα (x,v,t)dvx∫ ]d2v∫∫ = vyvyEx[ fα (x,v,t)]vx =−∞
vx = +∞d2v∫∫ = 0 

another twelve of them are in the following form: 

� 

[ vyvx
∂
∂vx

Ex fα (x,v,t)dvx∫ ]d2v∫∫
= vyEx{[vx fα (x,v,t)]vx =−∞

vx = +∞ − fα (x,v,t)dvx}∫ d2v∫∫ = 0 −VαyExnα

 

and the rest three of them are in the following form: 

� 

[ vxvx
∂
∂vx

Ex fα (x,v,t)dvx∫ ]d2v∫∫
= Ex{[vxvx fα (x,v,t)]vx =−∞

vx = +∞ − 2vx fα (x,v,t)dvx}∫ d2v∫∫
= 0 − 2ExVαxnα = −(ExVαx +VαxEx )nα
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3.3. The Fluid Equations 

 

Fluid equations can be obtained from integration of the Vlasov equation in the velocity space.  

For instance (e.g., Rossi and Olbert, 1970; Chao, 1970):  

We can obtain the continuity equation of the 

� 

α th species from (3.1)α d
3v∫∫∫ .  

We can obtain the momentum equation of the 

� 

α th species from mαv(3.1)α d
3v∫∫∫ .  

We can obtain the pressure equation of the 

� 

α th species from mαvv(3.1)α d
3v∫∫∫ .  

We can obtain the energy equation of the 

� 

α th species from 

� 

1
2
mαv

2(3.1)α d
3v∫∫∫ .  

If we consider entire plasma system as a single fluid medium, the following integrations are 

useful in obtaining one-fluid plasma equations. 

mα (3.1)α d
3v∫∫∫

α
∑  yields the one-fluid mass continuity equation. 

mαv(3.1)α d
3v∫∫∫

α
∑  yields the one-fluid momentum equation. 

mαvv(3.1)α d
3v∫∫∫

α
∑  yields the one-fluid pressure equation. 

1
2
mαv

2 (3.1)α d
3v∫∫∫

α
∑  yields the one-fluid energy equation. 

eα (3.1)α d
3v∫∫∫

α
∑  yields the one-fluid charge continuity equation. 

eαv(3.1)α d
3v∫∫∫

α
∑  yields the one-fluid Ohm’s law. 

 

3.3.1. The Fluid Equations of the 

� 

α th Species 

 

The continuity equation of the 

� 

α th species, obtained from (3. ′1 )d 3v∫∫∫ , is 

� 

∂nα
∂ t

+ ∇ ⋅ (nαVα ) = 0              (3.28) 

The momentum equation of the 

� 

α th species, obtained from mαv(3. ′1 )d
3v∫∫∫ , is 

� 

∂
∂ t
(mαnαVα ) + ∇ ⋅ (mαnαVαVα +Pα ) − eαnα (E + Vα ×B) = 0       (3.29) 

The pressure equation of the 

� 

α th species, obtained from mαvv(3. ′1 )d
3v∫∫∫ , is 
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� 

∂
∂ t
(mαnαVαVα +Pα ) + ∇ ⋅ [mαnαVαVαVα + (PαVα )

S +Qα ]

−eαnα (EVα + VαE) − eαnα[Vα (Vα ×B) + (Vα ×B)Vα ]

−eα {(v −Vα )[(v −Vα ) ×B]+ [(v −Vα ) ×B](v −Vα )} fα (x,v,t)}d
3v∫∫∫ = 0

   (3.30) 

The energy equation of the 

� 

α th species, obtained from 

� 

1
2
mαv

2(3. ′ 1 )d3v∫∫∫ , is 

� 

∂
∂ t
(1
2
mαnαVα

2 + 3
2
pα ) + ∇ ⋅ [(1

2
mαnαVα

2 + 3
2
pα )Vα +Pα ⋅Vα + qα ]− eαnαE ⋅Vα = 0  (3.31) 

 As we can see that the continuity equation is a scalar equation, the momentum equation 

is a vector equation, the pressure equation is a second-rank-tensor equation, and the energy 

equation is a scalar equation.   Likewise, we can obtain a third-rank-tensor heat-flux 

equation from mαvvv(3. ′1 )d
3v∫∫∫ , and a fourth-rank-tensor equation from 

mαvvvv(3. ′1 )d
3v∫∫∫ , and so forth. 

 If the 

� 

α th species has reached to a thermal-dynamic-equilibrium state, then we have 

� 

Pα =1 pα , and all the higher order rank tensors are vanished, i.e., 

� 

Qα = 0 , 

� 

Rα = 0 , 

� 

Sα = 0 , … and so forth.  In this case, the six-dimensional Vlasov equation can be replaced 

by the three-dimensional equations (3.28), (3.29), and (3.31).  Otherwise, we have to use 

infinite number of three-dimensional equations to replace the six-dimensional Vlasov 

equation.  Thus, the fluid variables are meaningful and fluid equations are useful only when 

the 

� 

α th species is in a thermal-dynamic-equilibrium state and can remain in a 

quasi-thermal-dynamic-equilibrium state after they interaction with the waves. 

 

3.3.2. The Two-Fluid Equations in the Convective-Time-Derivative Form  

 

In fluid mechanics, it is commonly use 

� 

dA /dt  to denote the time derivatives of 

� 

A(x,t)  

along the trajectory of a fluid element in a velocity field 

� 

V(x,t) .  Namely, 

� 

dA /dt ≡ (∂ /∂ t+ V ⋅ ∇)A , where 

� 

V ⋅ ∇A  is the convective time derivative of 

� 

A(x,t) .  

Equations obtained in the last section 3.3.1 can be rewritten in a convective-time-derivative 

form.  The convective-time-derivative term is a second-order small term in the linear wave 

analysis of waves in a uniform background plasma.  Thus, equations obtained in this section 

are particularly useful in linear wave analysis. 

 

The continuity equation (3.28) can be rewritten as 
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� 

( ∂
∂ t

+ Vα ⋅ ∇)nα = −nα∇ ⋅Vα             (3.32) 

The momentum equation (3.29) can be rewritten as 

� 

mαnα (
∂
∂ t

+ Vα ⋅ ∇)Vα = −∇ ⋅Pα + eαnα (E + Vα ×B)        (3.33) 

The energy equation (3.31) can be rewritten as 

� 

3
2
[( ∂
∂ t

+ Vα ⋅ ∇)pα ]+ 3
2
pα (∇ ⋅Vα ) + (Pα ⋅ ∇) ⋅Vα + ∇ ⋅qα = 0       (3.34) 

For 

� 

∇ ⋅qα = 0  and isotropic pressure 

� 

Pα =1 pα , the energy equation (3.34) is reduced to the 

the well-known adiabatic equation of state 

� 

3
2
[ d
dt
ln(pαnα

−5 / 3)] = 3
2
[( ∂
∂ t

+ Vα ⋅ ∇)ln(pαnα
−5 / 3)]= 0        (3.35) 

 

Exercise 3.2. 

Verify Eqs. (3.33) and (3.34). 

 

Answer to Exercise 3.2. 

Proof of Eq. (3.33): 

Substituting Eq. (3.28) into Eq. (3.29) yields 

� 

∂
∂ t
(mαnαVα ) + ∇ ⋅ (mαnαVαVα +Pα ) − eαnα (E + Vα ×B)

= mαVα[
∂nα
∂ t

+ ∇ ⋅ (nαVα )]+ mαnα (
∂
∂ t

+ Vα ⋅ ∇)Vα + ∇ ⋅Pα − eαnα (E + Vα ×B)

= 0 + mαnα (
∂
∂ t

+ Vα ⋅ ∇)Vα + ∇ ⋅Pα − eαnα (E + Vα ×B) = 0

 

Proof of Eq. (3.34): 

Substituting Eqs. (3.28) and (3.33) into Eq. (3.31), it yields 

� 

∂
∂ t
(1
2
mαnαVα

2 + 3
2
pα ) + ∇ ⋅ [(1

2
mαnαVα

2 + 3
2
pα )Vα +Pα ⋅Vα + qα ]− eαnαE ⋅Vα

= 1
2
mαVα

2[∂nα
∂ t

+ ∇ ⋅ (nαVα )]+ Vα ⋅ [mαnα (
∂
∂ t

+ Vα ⋅ ∇)Vα + ∇ ⋅Pα − eαnα (E + Vα ×B)]

+ 3
2
[( ∂
∂ t

+ Vα ⋅ ∇)pα ]+ 3
2
pα (∇ ⋅Vα ) + (Pα ⋅ ∇) ⋅Vα + ∇ ⋅qα

= 0 + 0 + 3
2
[( ∂
∂ t

+ Vα ⋅ ∇)pα ]+ 3
2
pα (∇ ⋅Vα ) + (Pα ⋅ ∇) ⋅Vα + ∇ ⋅qα = 0
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In summary, Table 3.1 lists governing equations of ion-electron two-fluid plasma, in which 

both species have reached to a thermal-dynamic-equilibrium state so that 

� 

Pα =1 pα  and 

� 

qα = 0 .  There are 16 unknowns (

� 

nα ,

� 

Vα ,

� 

pα ,

� 

E,

� 

B) and 16 independent equations in this 

system. 

Table 3.1. The governing equations of the ion-electron two-fluid plasma  

with an isotropic pressure and zero heat flux 

SI Units Gaussian Units 

The electrons’ equations: 

� 

( ∂
∂ t

+ Ve ⋅ ∇)ne = −ne∇ ⋅Ve  

� 

mene (
∂
∂ t

+ Ve ⋅ ∇)Ve = −∇pe − ene (E + Ve ×B)  

� 

( ∂
∂ t

+ Ve ⋅ ∇)ln(pene
−5 / 3) = 0  

The electrons’ equations: 

� 

( ∂
∂ t

+ Ve ⋅ ∇)ne = −ne∇ ⋅Ve  

� 

mene (
∂
∂ t

+ Ve ⋅ ∇)Ve = −∇pe − ene (E + Ve ×B
c

)  

� 

( ∂
∂ t

+ Ve ⋅ ∇)ln(pene
−5 / 3) = 0  

The ions’ equations: 

� 

( ∂
∂ t

+ Vi ⋅ ∇)ni = −ni∇ ⋅Vi  

� 

mini(
∂
∂ t

+ Vi ⋅ ∇)Vi = −∇pi + eni(E + Vi ×B)  

� 

( ∂
∂ t

+ Vi ⋅ ∇)ln(pini
−5 / 3) = 0  

The ions’ equations: 

� 

( ∂
∂ t

+ Vi ⋅ ∇)ni = −ni∇ ⋅Vi  

� 

mini(
∂
∂ t

+ Vi ⋅ ∇)Vi = −∇pi + eni(E + Vi ×B
c

)  

� 

( ∂
∂ t

+ Vi ⋅ ∇)ln(pini
−5 / 3) = 0  

The Maxwell’s equations: 

� 

∇ ⋅E = e(ni − ne ) /ε0  

� 

∇ ⋅B = 0 

� 

∇ ×E = −∂B
∂ t

 

� 

∇ ×B = µ0e(niVi − neVe ) + 1
c 2

∂E
∂ t

 

The Maxwell’s equations: 

� 

∇ ⋅E = 4πe(ni − ne ) 

� 

∇ ⋅B = 0 

� 

∇ ×E = − 1
c
∂B
∂ t

 

� 

∇ ×B = 4π
c
e(niVi − neVe ) + 1

c
∂E
∂ t
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3.3.3. The One-Fluid Equations in the Conservative Form for Studying Nonlinear 

Wave in the MHD Plasma 

 

One-fluid equations in the conservative form (summarized in Table 3.2) will be obtained in 

this section.  Equations in conservative form are good for nonlinear wave analysis in the 

magnetohydrodynamic (MHD) plasma.  Before introducing the one-fluid plasma equations, 

we shall first define one-fluid plasma variables. 

 

3.3.3.1 The One-Fluid Variables 

 

The mass density of the one-fluid plasma is defined by 

� 

ρ ≡ (mαnα )
α
∑                (3.36) 

The charge density of the one-fluid plasma is defined by  

� 

ρc ≡ (eαnα )
α
∑                (3.37) 

The average (bulk) velocity of the one-fluid plasma is defined by  

� 

V ≡ 1
ρ

(mαnαVα )
α
∑               (3.38) 

The momentum of the one-fluid plasma is defined by 

� 

ρV ≡ (mαnαVα )
α
∑               (3.39) 

The electric current density of the one-fluid plasma is defined by 

� 

J ≡ (eαnαVα )
α
∑               (3.40) 

The total kinetic pressure of the one-fluid plasma is defined by 

� 

ρVV +P ≡ (mαnαVαVα + Pα )
α
∑            (3.41) 

where the thermal pressure tensor of the one-fluid plasma is defined by 

� 

P ≡ (mαnαVαVα +Pα )
α
∑ − ρVV            (3.42) 

or 

P(x,t) ≡ [ mα (v − V)(v − V) fα (x,v,t)d
3v]∫∫∫

α
∑         (3.42') 

The total kinetic pressure flux of the one-fluid plasma is defined by 
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� 

ρVVV + (P ⋅V)S +Q ≡ [(mαnαVαVαVα + (Pα ⋅Vα )
S +Qα ]

α
∑      (3.43) 

where the heat-flux tensor of the one-fluid plasma is defined by 

� 

Q ≡ [(mαnαVαVαVα + (Pα ⋅Vα )
S +Qα ]

α
∑ − ρVVV − (P ⋅V)S       (3.44) 

or 

Q(x,t) ≡ [ mα (v − V)(v − V)(v − V) fα (x,v,t)d
3v]∫∫∫

α
∑       (3.44') 

The total kinetic energy flux of the one-fluid plasma is defined by 

� 

(1
2
ρV 2 + 3

2
p)V +P ⋅V + q ≡ [(1

2
mαnαVα

2 + 3
2
pα )Vα +Pα ⋅Vα + qα ]

α
∑     (3.45) 

where the heat-flux vector of the one-fluid plasma is defined by 

� 

q ≡ [(1
2
mαnαVα

2 + 3
2
pα )Vα +Pα ⋅Vα + qα ]

α
∑ − (1

2
ρV 2 + 3

2
p)V −P ⋅V     (3.46) 

or 

� 

q(x,t) ≡ [ 1
2
mα (v −V) ⋅ (v −V)(v −V) fα (x,v,t)d

3v∫∫∫ ]
α
∑       (3.46') 

 

3.3.3.2 The One-Fluid Equations  

 

The one-fluid mass continuity equation, obtained from mα (3. ′1 )α d
3v∫∫∫

α
∑ , is 

� 

∂
∂ t

(mαnα )
α
∑ + ∇ ⋅ (mαnαVα )

α
∑ = 0  

or 

� 

∂
∂ t

ρ + ∇ ⋅ (ρV) = 0              (3.47) 

 

The one-fluid momentum equation, obtained from mαv(3. ′1 )α d
3v∫∫∫

α
∑ , is 

� 

∂
∂ t

(mαnαVα )
α
∑ + ∇ ⋅ (mαnαVαVα +Pα )

α
∑ − [eαnα (E + Vα ×B)]

α
∑ = 0 

or 

� 

∂
∂ t
(ρV) + ∇ ⋅ (ρVV +P) = ρcE + J ×B           (3.48) 
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Substituting the Maxwell’s equations (3.2)~(3.5) into Eq. (3.48) yields 

� 

∂
∂ t
(ρV + 1

c 2
E ×B

µ0

) + ∇ ⋅ (ρVV +P + ε0
1E 2

2
−ε0EE + 1B

2

2µ0

− BB
µ0

) = 0     (3.49) 

where 

� 

(E ×B) /µ0  is the Poynting vector of electromagnetic wave. 

 

Exercise 3.3. 

Show that 

� 

ρcE + J ×B = ∇ ⋅ (ε0EE −ε0
1E 2

2
+ BB

µ0

− 1B
2

2µ0

) − 1
c 2

∂
∂ t
(E ×B

µ0

) 

Answer to Exercise 3.3. 

ρcE + J × B

= (ε0∇ ⋅E)E + [ 1
µ0
(∇ × B) − ε0

∂E
∂ t
]× B

= (ε0∇ ⋅E)E +
1
µ0
B ⋅∇B −

1
2µ0

∇B2 − ε0
∂E
∂ t

× B

= (ε0∇ ⋅E)E +
1
µ0
B ⋅∇B +

1
µ0
B(∇ ⋅B) − 1

2µ0
∇B2 − ε0

∂
∂ t
(E × B) + ε0 (E ×

∂
∂ t
B)

= (ε0∇ ⋅E)E +∇ ⋅ (BB
µ0

−
1B2

2µ0
) − ε0

∂
∂ t
(E × B) − ε0E × (∇ × E)

= (ε0∇ ⋅E)E +∇ ⋅ (BB
µ0

−
1B2

2µ0
) − ε0

∂
∂ t
(E × B) + ε0E ⋅∇E −

ε0
2
∇E2

= ∇ ⋅ (ε0EE − ε0
1E2

2
+
BB
µ0

−
1B2

2µ0
) − 1

c2
∂
∂ t
(E × B

µ0
)

 

 

The one-fluid energy equation, obtained from 

� 

1
2
mαv

2(3. ′ 1 )α d
3v∫∫∫

α
∑ , is 

� 

∂
∂ t

(1
2
mαnαVα

2 + 3
2
pα )

α
∑ + ∇ ⋅ [(1

2
mαnαVα

2 + 3
2
pα )Vα +Pα ⋅Vα + qα ]

α
∑ − (eαnαE ⋅Vα )

α
∑ = 0 

or 

� 

∂
∂ t
(1
2
ρV 2 + 3

2
p) + ∇ ⋅ [(1

2
ρV 2 + 3

2
p)V +P ⋅V + q] = E ⋅ J      (3.50) 

 

Substituting the Maxwell’s equations (3.2)~(3.5) into Eq. (3.50), it yields 

� 

∂
∂ t
(1
2
ρV 2 + 3

2
p + ε0E

2

2
+ B2

2µ0

) + ∇ ⋅ [(1
2
ρV 2 + 3

2
p)V +P ⋅V + q+ E ×B

µ0

] = 0  (3.51) 
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Exercise 3.4. 

Show that 

� 

E ⋅ J = −∇ ⋅ (E ×B
µ0

) − ∂
∂ t
(ε0E

2

2
+ B2

2µ0

)  

 

Answer to Exercise 3.4. 

� 

E ⋅ J = E ⋅ [ 1
µ0

(∇ ×B) −ε0
∂E
∂ t
] = − 1

µ0

∇ ⋅ (E ×B) + 1
µ0

B ⋅ ∇ ×E − ε0
2
∂E 2

∂ t

= − 1
µ0

∇ ⋅ (E ×B) − 1
µ0

B ⋅ ∂B
∂ t

− ε0
2
∂E 2

∂ t
= −∇ ⋅ (E ×B

µ0

) − ∂
∂ t
(ε0E

2

2
+ B2

2µ0

)
 

 

The charge continuity, obtained from eα (3. ′1 )α d
3v∫∫∫

α
∑ , is 

� 

∂
∂ t

(eαnα )
α
∑ + ∇ ⋅ (eαnαVα )

α
∑ = 0  

or 

� 

∂
∂ t

ρc + ∇ ⋅ J = 0              (3.52) 

The one-fluid Ohm’s law can be obtained from eαv(3. ′1 )α d
3v∫∫∫

α
∑ .  There are two ways 

to expand the integration 

� 

eαvv ⋅
∂
∂x

fαd
3v∫∫∫

α
∑ , i.e., 

� 

eαvv ⋅
∂
∂x

fαd
3v∫∫∫

α
∑

= ∇ ⋅ eα[(v −Vα ) + Vα ][(v −Vα ) + Vα ] fαd
3v∫∫∫

α
∑

= ∇ ⋅ ( eα
mα

Pα + eαnαVαVα )
α
∑

= ∇ ⋅{ e
mi

Pi −
e
me

Pe +
VJ+ JV − ρcVV − JJ

en
[mi −me

mi + me

+ mime

(mi + me )
2
ρc

en
]

1− mi −me

mi + me

ρc

en
− mime

(mi + me )
2 (

ρc

en
)2

}

 

or 
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� 

eαvv ⋅
∂
∂x

fαd
3v∫∫∫

α
∑

= ∇ ⋅ eα[(v −V) + V][(v −V) + V] fαd
3v∫∫∫

α
∑

= ∇ ⋅ [ eα
mα

PαC.M. + (eαVnαVα − eαnαVV) + (eαnαVαV − eαnαVV) + eαnαVV]
α
∑

= ∇ ⋅ [ e
mi

PiC.M. −
e
me

PeC.M. + VJ+ JV − ρcVV]

 

where 

� 

n ≡ ρ /(mi + me) , and PαC.M. ≡ mα (v − V)(v − V) fα (x,v,t)d
3v∫∫∫ .   

Thus, the one-fluid Ohm’s law can be written as 

� 

∂
∂ t
J + ∇ ⋅{ e

mi

Pi −
e
me

Pe +
VJ+ JV − ρcVV − JJ

en
[mi −me

mi + me

+ mime

(mi + me )
2
ρc

en
]

1− mi −me

mi + me

ρc

en
− mime

(mi + me )
2 (
ρc

en
)2

} 

� 

− ρe2

mime

(E + V ×B) + e(mi −me )
mime

(ρcE + J ×B) = 0       (3.53) 

The one-fluid Ohm’s law can also be written as 

� 

∂
∂ t
J + ∇ ⋅ [ e

mi

PiC.M. −
e
me

PeC.M. + VJ+ JV − ρcVV]

� 

− ρe2

mime

(E + V ×B) + e(mi −me )
mime

(ρcE + J ×B) = 0       (3.54) 

Substituting the result of exercise 3.3 into equation (3.54), it yields 

� 

∂
∂ t
[J − e(mi −me )

mime

1
c 2
E ×B

µ0

]+ ∇ ⋅ [ e
mi

PiC.M. −
e
me

PeC.M. + VJ+ JV − ρcVV  

� 

+ e(mi −me )
mime

(ε0EE −ε0
1E 2

2
+ BB

µ0

− 1B
2

2µ0

)] = ρe2

mime

(E + V ×B)     (3.54') 

Eq. (3.54) is commonly called the generalized Ohm’s law.  Please see Appendix B for 

discussion of the generalized Omh’s Law in detail.  

 

Exercise 3.5. 

Verify Eqs. (3.53).  

Hint: 

� 

ρ = mini + mene , 

� 

ρc = e(ni − ne ) , 

� 

ρV = miniVi + meneVe , and 

� 

J = e(niVi − neVe )  

yields 

� 

ni,e = (ρ + me,i

ei,e
ρc ) /(mi + me ) , 

� 

Vi,e = (ρV + me.i

ei,e
J) /(ρ + me,i

ei,e
ρc ) 
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Table 3.2. The one-fluid equations in the conservative form 

SI Units Gaussian Units 

The mass continuity equation 

� 

∂
∂ t

ρ + ∇ ⋅ (ρV) = 0 

The mass continuity equation 

� 

∂
∂ t

ρ + ∇ ⋅ (ρV) = 0 

The momentum equation 

� 

∂
∂ t
(ρV + 1

c 2
E ×B

µ0

)

+∇ ⋅ [ρVV +P + ε0(
1E 2

2
−EE) + 1B

2

2µ0

− BB
µ0

] = 0
 

The momentum equation 

� 

∂
∂ t
(ρV + 1

c 2
E ×B
4π

)

+∇ ⋅ [ρVV +P + 1E
2

8π
− EE
4π

+ 1B
2

8π
− BB
4π
] = 0

 

The energy equation 

� 

∂
∂ t
(1
2
ρV 2 + 3

2
p + ε0E

2

2
+ B2

2µ0

)

+∇ ⋅ [(1
2
ρV 2 + 3

2
p)V +P ⋅V + q+ E ×B

µ0

] = 0
 

The energy equation 

� 

∂
∂ t
(1
2
ρV 2 + 3

2
p + E 2

8π
+ B2

8π
)

+∇ ⋅ [(1
2
ρV 2 + 3

2
p)V +P ⋅V + q+ E ×B

4π
] = 0

 

The charge continuity equation 

� 

∂
∂ t

ρc + ∇ ⋅ J = 0 

The charge continuity equation 

� 

∂
∂ t

ρc + ∇ ⋅ J = 0 

The generalized Ohm’s law 

� 

∂
∂ t
[J − e(mi −me )

mime

1
c 2
E ×B

µ0

]+

∇ ⋅ [ e
mi

PiC.M. −
e
me

PeC.M. + VJ+ JV − ρcVV

+ e(mi −me )
mime

(ε0EE −ε0
1E 2

2
+ BB

µ0

− 1B
2

2µ0

)]

= ρe2

mime

(E + V ×B)

 

The generalized Ohm’s law 

� 

∂
∂ t
[J − e(mi −me )

mime

1
c 2
E ×B
4π

]+

∇ ⋅ [ e
mi

PiC.M. −
e
me

PeC.M. + VJ+ JV − ρcVV

+ e(mi −me )
mime

(EE
4π

− 1E
2

8π
+ BB
4π

− 1B
2

8π
)]

= ρe2

mime

(E + V ×B
c

)
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3.3.4. The One-Fluid Equations in the Convective-Time-Derivative Form  

 

Equations obtained in the last section 3.3.3 can be rewritten in a convective-time-derivative 

form.  The convective-time-derivative term is a second-order small term in the linear wave 

analysis of waves in a uniform background plasma.  Thus, equations obtained in this section 

are particularly useful in linear wave analysis. 

 

The one-fluid continuity equation (3.47) can be rewritten as 

� 

( ∂
∂ t

+ V ⋅ ∇)ρ = −ρ∇ ⋅V              (3.55) 

The one-fluid momentum equation (3.48) can be rewritten as 

� 

ρ( ∂
∂ t

+ V ⋅ ∇)V = −∇ ⋅P + ρcE + J ×B           (3.56) 

The one-fluid energy equation (3.50) can be rewritten as 

� 

3
2
[( ∂
∂ t

+ V ⋅ ∇)p]+ 3
2
p(∇ ⋅V) + (P ⋅ ∇) ⋅V + ∇ ⋅q+ ρcE ⋅V − J ⋅ (E + V ×B) = 0  (3.57) 

 

Exercise 3.6. 

Verify Eqs. (3.56) and (3.57). 

 

Answer to Exercise 3.6. 

Proof of Eq. (3.56): 

Substituting Eq. (3.47) into Eq. (3.48), it yields 

� 

∂
∂ t
(ρV) + ∇ ⋅ (ρVV +P) − ρcE + J ×B

= V[ ∂
∂ t

ρ + ∇ ⋅ (ρV)]+ ρ( ∂
∂ t

+ V ⋅ ∇)V + ∇ ⋅P − ρcE − J ×B

= 0 + ρ( ∂
∂ t

+ V ⋅ ∇)V + ∇ ⋅P − ρcE − J ×B = 0

 

Proof of Eq. (3.57): 

Substituting Eqs. (3.47) and (3.56) into Eq. (3.50), it yields 
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� 

∂
∂ t
(1
2
ρV 2 + 3

2
p) + ∇ ⋅ [(1

2
ρV 2 + 3

2
p)V +P ⋅V + q]−E ⋅ J

= 1
2
V 2[ ∂

∂ t
ρ + ∇ ⋅ (ρV)]+ V ⋅ [ρ( ∂

∂ t
+ V ⋅ ∇)V + ∇ ⋅P − ρcE − J ×B]

+ 3
2
[( ∂
∂ t

+ V ⋅ ∇)p]+ 3
2
p(∇ ⋅V) + (P ⋅ ∇) ⋅V + ∇ ⋅q+ V ⋅ (ρcE + J ×B) −E ⋅ J

= 0 + 0 + 3
2
[( ∂
∂ t

+ V ⋅ ∇)p]+ 3
2
p(∇ ⋅V) + (P ⋅ ∇) ⋅V + ∇ ⋅q+ ρcE ⋅V − J ⋅ (E + V ×B) = 0

 

 

Magnetohydrodynamic (MHD) phenomena are very low frequency and very long wavelength 

phenomena in the plasma.  The time scale of the MHD phenomena is equal or greater than 

� 

103 ions’ characteristic time scale, such as the ion gyro period (

� 

2π /Ωci ), or the ions’ plasma 

oscillation period (

� 

2π /ω pi ).  The spatial scale of the MHD phenomena is equal or greater 

than 

� 

103 ions’ characteristic length, such as the ion gyro radius (

� 

v0 /Ωci ), or the ions’ inertial 

length (

� 

c /ω pi ).  

 

The quasi-neutrality assumption  

� 

ρc

ne
=
ni − ne
n

→ 0 

is applicable to the MHD plasma.  Thus, we can assume 

� 

ρc = 0  for the MHD plasma. As a 

result, for MHD plasma, the charge continuity equation (3.52) can be reduced to 

� 

∇ ⋅ J = 0                 (3.58) 

Since the curl of Eq. (3.5) is the charge continuity equation (3.52), the displacement current 

in the Maxwell’s equation can be ignored if 

� 

∂ρc /∂t = 0 .  Thus, for the MHD plasma, Eq. 

(3.5) is reduced to 

� 

∇ ×B = µ0J               (3.59) 

In the low-frequency and long-wavelength limit, the generalized Ohm’s law is reduced to the 

MHD Ohm’s law (see Appendix B), 

� 

E + V ×B = 0                (3.60) 

 

The MHD Ohm’s law leads to the frozen-in flux in the MHD Plasma (see Appendix C).  

 

For MHD plasma (which satisfies the MHD Ohm’s Law) with zero heat flux, the energy 

equation (3.57) can be reduced to the adiabatic equation of state.   
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Case 1: The adiabatic equation of state of an isotropic MHD plasma 

If 

� 

P = 1 p , 

� 

∇ ⋅q = 0 , 

� 

ρc = 0 , and 

� 

E + V ×B = 0 , the energy equation (3.57) is reduced to  

the following adiabatic equation of state 

� 

3
2
[ d
dt
ln(pρ−5 / 3)] = 3

2
[( ∂
∂ t

+ V ⋅ ∇)ln(pρ−5 / 3)]= 0         (3.61) 

 

Case 2: The adiabatic condition of an anisotropic MHD plasma 

If 

� 

P = e ||e || p|| + (1− e||e || )p⊥ = 1 p⊥ + e||e || (p|| − p⊥ ) , 

� 

∇ ⋅q = 0 , 

� 

ρc = 0 , and 

� 

E + V ×B = 0 , 

where 

� 

e || = B/B , the energy equation (3.57) is reduced to the following form  

� 

p||
2
[ d
dt
ln( p||B

2

ρ3
)]+ p⊥[

d
dt
ln( p⊥

ρB
)] = 0           (3.62) 

or 

� 

p||
2
[( ∂
∂ t

+ V ⋅ ∇)ln( p||B
2

ρ3
)]+ p⊥[(

∂
∂ t

+ V ⋅ ∇)ln( p⊥
ρB
)] = 0        (3.62') 

 

Under an assumption that no momentum exchange in the directions parallel to and 

perpendicular to the local magnetic field, Chew et al. (1956) obtained the well-known 

Chew-Goldberger-Low theory or the CGL double adiabatic equation of states, i.e.,  

� 

d(p||B
2 /ρ3)
dt

= 0               (3.63) 

and  

� 

d(p⊥ /ρB)
dt

= 0               (3.64) 

 

Eqs. (3.63) and (3.64) are a special set of solutions of equation (3.62).  It can be shown that 

Chew-Goldberger-Low theory is only applicable to a system with uniform magnetic field 

strength, so that the mirror motion is prohibited in the system.  Professor J. K. Chao has 

found an example from magnetosheath observations along the Sun-Earth line, which shows 

that Eq. (3.62) is a more general adiabatic condition than the Chew-Goldberger-Low theory. 
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Figure 3.1.  Magnetosheath observations along the Sun-Earth line. Panel (a) is a plot of 

p⊥[d ln(p⊥ / ρB)
2 / dt] .  Panel (b) is a plot of (p|| )[d ln(p||B

2 / ρ3) / dt] .  Panel (c) is a plot 

of p⊥[d ln(p⊥ / ρB)
2 / dt]+ p||[d ln(p||B

2 / ρ3) / dt] .  Wave amplitude in Panel (c) is much 

smaller than the wave amplitude in Panels (a) and (b).  Results shown in this figure indicate 

that Eq. (3.62) is a more general adiabatic condition than the Chew-Goldberger-Low theory 

or the so-called CGL double adiabatic equation of states (Chew et al., 1956).  Observational 

data shown in this figure are obtained from IRM/AMPTE at 0645UT-0715UT on September 

1, 1984.  (Courtesy of Professor J. K. Chao) 

 

Figure 3.1 shows the magnetosheath observations along the Sun-Earth line. Panel (a) is a plot 

of p⊥[d ln(p⊥ / ρB)
2 / dt] .  Panel (b) is a plot of (p|| )[d ln(p||B

2 / ρ3) / dt] .  Panel (c) is a 

plot of p⊥[d ln(p⊥ / ρB)
2 / dt]+ p||[d ln(p||B

2 / ρ3) / dt] .  Wave amplitude in Panel (c) is 

much smaller than the wave amplitude in Panels (a) and (b). These results indicate that Eq. 

(3.62) is a more general adiabatic condition than the CGL double adiabatic equation of states 

(Chew et al., 1956). 

 

In summary, Table 3.3 lists the governing equations of the MHD plasma with an isotropic 

pressure (

� 

P = 1 p) and zero heat flux (

� 

q = 0). There are 14 unknowns (

� 

n,

� 

V ,

� 

p ,

� 

J,

� 

E,

� 

B) and 

14 independent equations in this system. 
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Table 3.3. Governing equations of MHD plasma with isotropic pressure and zero heat flux 

SI Units Gaussian Units 

The mass continuity equation 

� 

( ∂
∂ t

+ V ⋅ ∇)ρ = −ρ∇ ⋅V  

The mass continuity equation 

� 

( ∂
∂ t

+ V ⋅ ∇)ρ = −ρ∇ ⋅V  

The MHD momentum equation 

� 

ρ( ∂
∂ t

+ V ⋅ ∇)V = −∇p + J ×B 

The MHD momentum equation 

� 

ρ( ∂
∂ t

+ V ⋅ ∇)V = −∇p + J ×B
c

 

The MHD energy equation 

� 

3
2
[( ∂
∂ t

+ V ⋅ ∇)ln(pρ−5 / 3)] = 0  

The MHD energy equation 

� 

3
2
[( ∂
∂ t

+ V ⋅ ∇)ln(pρ−5 / 3)] = 0  

The MHD charge continuity equation 

� 

∇ ⋅ J = 0  

The MHD charge continuity equation 

� 

∇ ⋅ J = 0  

The MHD Ohm’s law 

� 

E + V ×B = 0  

The MHD Ohm’s law 

� 

E + V ×B
c

= 0  

The Maxwell’s equations: 

∇ ⋅E→ 0  

� 

∇ ⋅B = 0  

� 

∇ ×E = −∂B
∂ t

 

� 

∇ ×B = µ0J 

The Maxwell’s equations: 

∇ ⋅E→ 0  

� 

∇ ⋅B = 0  

� 

∇ ×E = − 1
c
∂B
∂ t

 

� 

∇ ×B = (4π /c)J 
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