
Chapter 2.  Deriving the Vlasov Equation From the Klimontovich Equation 
 

 

19 

Chapter 2.  Deriving the Vlasov Equation From the Klimontovich Equation 

 

Topics or concepts to learn in Chapter 2:  

1. The microscopic plasma distribution: the Klimontovich equation 

2. The statistic plasma distribution: the Boltzmann equation and the Vlasov equation 

 

Suggested Reading: 

(1)  Chapter 3 in Nicholson (1983) 

 

 

2.1. Klimontovich Equation 

 

Let us define a microscopic distribution function of the 

� 

α th species in the six-dimensional 

phase space 

Nα (x,v,t) = δ[x − xk (t)]δ[v − v k (t)]
k=1

N0

∑           (2.1) 

where 

� 

x k(t)  and 

� 

vk( t)  satisfy the following equations of motion 

� 

dx k (t)
dt

= vk (t)               (2.2) 

dv k (t)
dt

=
eα
mα

{Em[xk (t),t]+ v k (t) × B
m[xk (t),t]}         (2.3) 

in which 

� 

Em(x, t)  and 

� 

Bm(x, t)  are the microscopic electric field and magnetic field, 

respectively.  The Klimontovich equation can be obtained by evaluating the time derivative 

of 

� 

Nα (x,v,t) .  

 

Taking time derivative of Eq. (2.1) and making use of Eqs. (2.2)~(2.3) and 

aδ (a − b) = bδ (a − b) , it yields 
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∂Nα (x,v,t)
∂ t

=
∂
∂ t

δ[x − xk (t)]δ[v − v k (t)]
k=1

N0

∑

= { ∂
∂ t

δ[x − xk (t)]
k=1

N0

∑ }δ[v − v k (t)]+ δ[x − xk (t)]{
∂
∂ t

δ[v − v k (t)]
k=1

N0

∑ }

= {∂δ[x − xk (t)]
∂x

⋅[− dxk (t)
dt

]}
k=1

N0

∑ δ[v − v k (t)]+ δ[x − xk (t)]{
∂δ[v − v k (t)]

∂v
⋅[− dv k (t)

dt
]}

k=1

N0

∑

= δ[v − v k (t)][−v k (t)] ⋅
∂
∂x

δ[x − xk (t)]
k=1

N0

∑

+ δ[x − xk (t)][−
eα
mα

{Em[xk (t),t]+ v k (t) × B
m[xk (t),t]}] ⋅

∂
∂v

δ[v − v k (t)]
k=1

N0

∑

= δ[v − v k (t)][−v] ⋅
∂
∂x

δ[x − xk (t)]
k=1

N0

∑

+ δ[x − xk (t)](−
eα
mα

)[Em (x,t) + v × Bm (x,t)] ⋅ ∂
∂v

δ[v − v k (t)]
k=1

N0

∑

= [−v] ⋅ ∂
∂x

{δ[x − xk (t)]δ[v − v k (t)]}
k=1

N0

∑

+ (− eα
mα

)[Em (x,t) + v × Bm (x,t)] ⋅ ∂
∂v

{δ[x − xk (t)]δ[v − v k (t)]}
k=1

N0

∑

= −v ⋅ ∂Nα (x,v,t)
∂x

−
eα
mα

[Em (x,t) + v × Bm (x,t)] ⋅ ∂Nα (x,v,t)
∂v

 

or 

∂Nα (x,v,t)
∂ t

+ v ⋅ ∂Nα (x,v,t)
∂x

+
eα
mα

[Em (x,t) + v × Bm (x,t)] ⋅ ∂Nα (x,v,t)
∂v

= 0   (2.4) 

Eq. (2.4) is the Klimontovich equation of the microscopic distribution function 

� 

Nα (x,v,t) . 

 

Exercise 2.1 

Show that 

∂
∂ t

δ[x − xk (t)] =
∂δ[x − xk (t)]

∂x
⋅[− dxk (t)

dt
]  
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Answer to Exercise 2.1 

∂
∂ t

δ[x − xk (t)] =
∂
∂ t
{δ[x − xk (t)]δ[y − yk (t)]δ[z − zk (t)]}

=
∂
∂ t
{δ[x − xk (t)]}δ[y − yk (t)]δ[z − zk (t)]

+δ[x − xk (t)]
∂
∂ t
{δ[y − yk (t)]}δ[z − zk (t)]

+δ[x − xk (t)]δ[y − yk (t)]
∂
∂ t
{δ[z − zk (t)]}

= {dδ[x − xk (t)]
d[x − xk (t)]

∂[x − xk (t)]
∂ t

}δ[y − yk (t)]δ[z − zk (t)]

+δ[x − xk (t)]{
dδ[y − yk (t)]
d[y − yk (t)]

∂[y − yk (t)]
∂ t

}δ[z − zk (t)]

+δ[x − xk (t)]δ[y − yk (t)]{
dδ[z − zk (t)]
d[z − zk (t)]

∂[z − zk (t)]
∂ t

}

= {∂δ[x − xk (t)]
∂ x

(− dxk (t)
dt

)}δ[y − yk (t)]δ[z − zk (t)]

+δ[x − xk (t)]{
∂δ[y − yk (t)]

∂ y
(− dyk (t)

dt
)}δ[z − zk (t)]

+δ[x − xk (t)]δ[y − yk (t)]{
∂δ[z − zk (t)]

∂ z
(− dzk (t)

dt
)}

=
∂δ[x − xk (t)]

∂x
⋅ (− dxk (t)

dt
) = {∇xδ[x − xk (t)]} ⋅ (−

dxk (t)
dt

)

 

where 

∂δ[x − xk (t)]
∂x

= {(x̂ ∂
∂ x

+ ŷ
∂
∂ y

+ ẑ
∂
∂ z
)(δ[x − xk (t)]δ[y − yk (t)]δ[z − zk (t)])}  

and  

dxk (t)
dt

= x̂
d xk (t)
dt

+ ŷ
d yk (t)
dt

+ ẑ
dzk (t)
dt

 

 

Exercise 2.2 

Show that ∂δ[x − xk (t)]
∂ t

=
∂δ[x − xk (t)]

∂ x
[− dxk (t)

dt
]  
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Answer to Exercise 2.2 

Let 

� 

f  be a functional of a function 

� 

W (x,t) , i.e, 

� 

f = f [W (x,t)] .  Then 

∂ f
∂ t

=
d f
dW

∂W
∂ t

 

If 

� 

∂W /∂ x =1, then  

∂ f
∂ x

=
d f
dW

∂W
∂ x

=
d f
dW

 

Thus, for ∂W / ∂ x = 1 , we have 

∂ f
∂ t

=
d f
dW

∂W
∂ t

=
∂ f
∂ x

∂W
∂ t

 

This is the reason why 

∂δ[x − xk (t)]
∂ t

=
∂δ[x − xk (t)]

∂ x
∂ [x − xk (t)]

∂ t
=
∂δ[x − xk (t)]

∂ x
[− dxk (t)

dt
]  

 

Exercise 2.3 

Show that  

δ[x − xk (t)] v k (t) × B
m[xk (t),t]( ) ⋅ ∂

∂v
δ[v − v k (t)]

k=1

N0

∑

= δ[x − xk (t)][v × B
m (x,t)] ⋅ ∂

∂v
δ[v − v k (t)]

k=1

N0

∑
 

 

2.2. Vlasov Equation 

 

Let fα (x,v,t) , 

� 

E(x,t) , and 

� 

B(x,t)  be the ensemble average of 

� 

Nα (x,v,t) , 

� 

Em(x, t), and 

� 

Bm(x, t), respectively.  Let 

Nα (x,v,t) = fα (x,v,t) + δNα (x,v,t)  

Em (x,t) = E(x,t) + δEm (x,t)  

Bm (x,t) = B(x,t) + δBm (x,t)  

If we use A  to denote the ensemble average of 

� 

A , then we have 

Nα (x,v,t) = fα (x,v,t)  

Em (x,t) = E(x,t)  
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Bm (x,t) = B(x,t)  

and 

δNα (x,v,t) = 0  

δEm (x,t) = 0  

δBm (x,t) = 0  

Taking the ensemble average of Eq. (2.4), it yields 

∂Nα (x,v,t)
∂ t

+ v ⋅ ∂Nα (x,v,t)
∂x

+
eα
mα

[Em (x,t) + v × Bm (x,t)] ⋅ ∂Nα (x,v,t)
∂v

= 0  

or 

∂ fα (x,v,t)
∂ t

+ v ⋅ ∂ fα (x,v,t)
∂x

+
eα
mα

[E(x,t) + v × B(x,t)] ⋅ ∂ fα (x,v,t)
∂v

+
eα
mα

[δEm (x,t) + v × δBm (x,t)] ⋅ ∂δNα (x,v,t)
∂v

= 0
    (2.5) 

Let Dfα (x,v,t) / Dt  denote the time derivative of the distribution function 

� 

fα (x,v,t)  along 

its characteristic curve in the 

� 

(x,v)  phase space, then Eq. (2.5) can be rewritten as  

Dfα (x,v,t)
Dt

=
∂ fα (x,v,t)

∂ t
+ v ⋅ ∂ fα (x,v,t)

∂x
+
eα
mα

[E(x,t) + v × B(x,t)] ⋅ ∂ fα (x,v,t)
∂v

= −
eα
mα

[δEm (x,t) + v × δBm (x,t)] ⋅ ∂δNα (x,v,t)
∂v

=
δ fα (x,v,t)

δ t
collision

 (2.6) 

For  

−
eα
mα

[δEm (x,t) + v × δBm (x,t)] ⋅ ∂δNα (x,v,t)
∂v

=
δ fα (x,v,t)

δ t
collision

= 0 , 

the Boltzmann equation, Eq. (2.6), is reduced to the Vlasov equation (Vlasov, 1945): 

∂ fα (x,v,t)
∂ t

+ v ⋅ ∂ fα (x,v,t)
∂x

+
eα
mα

[E(x,t) + v × B(x,t)] ⋅ ∂ fα (x,v,t)
∂v

= 0    (2.7) 
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