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Chapter 12: Electrostatic Drift Wave in Two-Fluid Plasma 

 
Two-fluid equations and Poisson equation are 

� 

∂ni
∂ t

+ ∇ ⋅ (niVi) = ∂ni
∂ t

+ ni∇ ⋅Vi + Vi ⋅ ∇ni = 0        (12.1) 

� 

∂ne
∂ t

+ ∇ ⋅ (neVe ) = ∂ne
∂ t

+ ne∇ ⋅Ve + Ve ⋅ ∇ne = 0        (12.2) 

� 

nimi(
∂
∂ t

+ Vi ⋅ ∇)Vi = eni(E + Vi ×B) −∇pi          (12.3) 

� 

neme (
∂
∂ t

+ Ve ⋅ ∇)Ve = −ene (E + Ve ×B) −∇pe         (12.4) 

� 

∇pi = γ i pi
ni

∇ni = γ ikBTi∇ni             (12.5) 

� 

∇pe = γ e||pe
ne

∇ ||ne + γ e⊥ pe
ne

∇⊥ne = γ e||kBTe∇ ||ne + γ e⊥kBTe∇⊥ne      (12.6) 

� 

∇ ⋅E = e
ε0
(ni − ne )               (12.7) 

 

We assume  

� 

B0 = B0 ˆ z  

� 

ni0 = ne0 = n0 = n0(x)  

� 

Ti0 = 0  

� 

1>> β > me /mi  

 

It can be shown that 

� 

β <<1 yields 

� 

∇B /B << ∇n /n .  Therefore, we can ignore gradient-B 

drift and assume a uniform background magnetic field. 

 

For low frequency wave and 

� 

β > me /mi, we can ignore electron inertial term in Eq. (12.4). 

 

For 

� 

Ti0 = 0 , yields

� 

Vi0 = 0. 

 

For uniform 

� 

Te0 ≠ 0, the equilibrium state of Eq. (12.4) becomes 

� 

0 = −en0(Ve0 ×B0) − kBTe0∇n0  

which yields 
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Ve0 =

−kBTe0∇n0 ×B0

−en0B0
2 =

kBTe0

en0B0

dn0

dx
( x̂ × ẑ) = (−

kBTe0

eB0

1
n0

dn0

dx
) ŷ      (12.8) 

For   Ve0 =Ve0 ŷ , Eq. (12.8) yields 

  
Veo = −

kBTe0

eB0

1
n0

dn0

dx
             (12.8a) 

If
  

dn0

dx
< 0 , we have  Veo > 0 . 

For electrostatic wave, we have   B1 = 0 and   E1 = −∇Φ1  

We consider a “local approximation” in the density gradient region and perturbations in this 

region can be written in the following wave form
   
A1 = Re( !A1 exp{i[(ky y + kz z)−ω t]}) .  As a 

result, the Fourier and Laplace transform of Eqs. (12.1)-(12.7) yields, 

   
−iω !ni1 + n0(iky

!Vi1y + ikz
!Vi1z )+ !Vi1x

dn0

dx
= 0          (12.1a) 

   
−i(ω −Ve0ky ) !ne1 + n0(iky

!Ve1y + ikz
!Ve1z )+ !Ve1x

dn0

dx
= 0        (12.2a) 

   
n0mi(−iω ) !Vi1x = en0(0+ !Vi1y B0 )            (12.3a) 

   
n0mi(−iω ) !Vi1y = en0(−iky

!Φ1 − !Vi1x B0 )           (12.3b) 

   n0mi(−iω ) !Vi1z = en0(−ikz
!Φ1)             (12.3c) 

   
0 = −en0(0+ !Ve1y B0 )− e !ne1Ve0B0 − 0           (12.4a) 

   
0 = −en0(−iky

!Φ1 − !Ve1x B0 )−γ e⊥kBTe0(iky
!ne1)          (12.4b) 

   
0 = −en0(−ikz

!Φ1 + 0)−γ e||kBTe0(ikz !ne1)           (12.4c) 

   
k 2 !Φ1 =

e
ε0

( !ni1 − !ne1)              (12.7a) 

 

Eq. (12.4c) yields  

   
!ne1 = n0

e !Φ1

γ e||kBTe0

              (12.4c') 

Eqs. (12.4a) and (12.4c') yield 

   
!Ve1y = −

!ne1

n0

Ve0                (12.4a') 
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Eqs. (12.4b) and (12.4c') yield 

   
!Ve1x = −iky (

!Φ1

B0

−
γ e⊥kBTe0 !ne1

en0B0

) = −iky
!ne1

kBTe0

en0B0

(γ e|| −γ e⊥ )       (12.4b') 

Substituting (12.4a') and (12.4b') into (12.2a), yields  

   
−i(ω −Ve0ky ) !ne1 + n0(−iky

!ne1

n0

Ve0 + ikz
!Ve1z )− iky

!ne1

kBTe0

en0B0

(γ e|| −γ e⊥ )
dn0

dx
= 0  

or  

   
!Ve1z =

!ne1

n0kz

[ω + ky (γ e|| −γ e⊥ )
kBTe0

en0B0

dn0

dx
]=
!ne1

n0

ω − (γ e|| −γ e⊥ )Ve0ky

kz

    (12.2a') 

where Eq. (12.8a) has been used to obtain Eq. (12.2a'). 

Namely, for a given   
!Φ1 , we can determine    !ne1  from Eq. (12.4c'), and then substituting    !ne1  

into Eqs. (12.4b'), (12.4a'), and (12.2a') to determine
    
!Ve1 = ( !Ve1x , !Ve1y , !Ve1z ) .   

The Poisson equation (12.7a) can be rewritten as 

   
k 2 !Φ1 =

n0e
ε0

(
!ni1

n0

−
!ne1

n0

) =
n0e
ε0

(
!ni1

n0

−
e !Φ1

γ e||kBTe0

)  

For    [ε(k,ω )]k 2 !Φ1 = 0 , we have 

   
ε(k,ω ) = 1−

n0e
2

k 2miε0

(
ni1

n0

mi

eΦ1

−
mi

γ e||kBTe0

) = 1−
ω pi

2

k 2 (
ni1

n0

mi

eΦ1

− 1
CS

2 )      (12.9) 

where 
  
CS = γ e||kBTe0 / mi  is the wave speed of ion acoustic wave. 

Eq. (12.3a) yields  

   
!Vi1x = i

eB0

miω
!Vi1y = i

Ωci

ω
!Vi1y             (12.3a') 

Eq. (12.3b) yields  

   
!Vi1y =

eky

miω
(1−

Ωci
2

ω 2 )−1 !Φ1              (12.3b') 

Substituting Eq. (12.3b') into Eq. (12.3a') yields  

   
!Vi1x = i

Ωci

ω
eky

miω
(1−

Ωci
2

ω 2 )−1 !Φ1             (12.3a") 

Eq. (12.3c) yields  

   
!Vi1z =

ekz

miω
!Φ1                (12.3c') 
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Substituting Eqs. (12.3a"), (12.3b'), (12.3c') into Eq. (12.1a) yields 

� 

˜ n i1
n0

= [
ky

2

ω 2 (1− Ωci
2

ω 2 )−1 + kz
2

ω 2 + Ωci

ω
ky

ω 2 (1− Ωci
2

ω 2 )−1 1
n0

dn0

dx
] e ˜ Φ 1

mi

 

or 

   

!ni1

n0

= [
−

ky
2

ω 2

ω 2

Ωci
2 −

Ωci

ω
ky

ω 2

ω 2

Ωci
2

1
n0

dn0

dx

(1− ω 2

Ωci
2 )

+
kz

2

ω 2 ]
e !Φ1

mi

        (12.1a') 

Substituting Eq. (12.1a') into Eq. (12.9) yields 

   

ε(k,ω ) = 1−
ω pi

2

k 2 ([
−

ky
2

ω 2

ω 2

Ωci
2 −

Ωci

ω
ky

ω 2

ω 2

Ωci
2

1
n0

dn0

dx

(1− ω 2

Ωci
2 )

+
kz

2

ω 2 ]− 1
CS

2 )

= 1+
ω pi

2

CS
2k 2 [

+
ky

2

ω 2

ω 2

Ωci
2 +

Ωci

ω
ky

Ωci
2

1
n0

dn0

dx

(1− ω 2

Ωci
2 )

CS
2 −

kz
2CS

2

ω 2 +1]

= 1+
ω pi

2

CS
2k 2 [

+ ω 2

Ωci
2 ky

2CS
2(1− ω 2

Ωci
2 )−1 + ω

Ωci

ky

1
n0

dn0

dx
CS

2(1− ω 2

Ωci
2 )−1 − kz

2CS
2 +ω 2

ω 2 ]

= 1+
ω pi

2

CS
2k 2 [

+ ω 2

Ωci
2 ky

2CS
2(1− ω 2

Ωci
2 )−1 −ω kyVe0(1− ω 2

Ωci
2 )−1 − kz

2CS
2 +ω 2

ω 2 ]

 

or 

   
ε(k,ω ) =

ω pi
2

ω 2

1
CS

2k 2 {ω
2

ω pi
2 CS

2k 2 + ω 2

Ωci
2 ky

2CS
2(1− ω 2

Ωci
2 )−1 −ω kyVe0(1− ω 2

Ωci
2 )−1 − kz

2CS
2 +ω 2} (12.9a) 

For 
  
ω 2 <<ω pi

2  and   ω
2 <<Ωci

2 , dispersion relation   ε(k,ω ) = 0  yields 

  
ω 2 −ω kyVe0 − kz

2CS
2 = 0              (12.10) 

The roots of Eq. (12.10) are 

  
ω = 1

2
{kyVe0 ± (kyVe0 )2 + 4kz

2CS
2 }           (12.10a) 

or 

  
ω
k
= 1

2
{Ve0 sinθ ± Ve0

2 sin2θ + 4CS
2 cos2θ }         (12.10b) 
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where θ  is the angle between background magnetic field and wave propagation direction.  

Figure 12.1 shows plots of drift wave speed in polar coordinate   (r,θ ) = (ω / kV0 ,θ )  with 

  Ti0 = 0 .  Panel (a) is for   CS = 2Ve0 .  Panel (b) is for   CS =Ve0 . Panel (c) is for   CS = 0.5Ve0 . 

Panel (d) is for   CS = 0.25Ve0 .  

 

 

 
Figure 12.1.  Plots of drift wave speed in polar coordinate 

� 

(r,θ) = (ω /kVe0,θ)  with 

� 

Ti0 = 0 .  

Panel (a) is for 

� 

CS = 2Ve0. Panel (b) is for 

� 

CS =Ve0. Panel (c) is for 

� 

CS = 0.5Ve0. Panel (d) is 

for 

� 

CS = 0.25Ve0.  
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In summary, we have 

� 

˜ V i1x = −i
eky

Ωcimi

(1− ω 2

Ωci
2 )−1 ˜ Φ 1            (12.3a") 

� 

˜ V i1y = − ω
2

Ωci
2

eky

miω
(1− ω 2

Ωci
2 )−1 ˜ Φ 1            (12.3b') 

or 

� 

˙ ˜ V i1y = −iω ˜ V i1y = i ω
2

Ωci
2

eky

mi

(1− ω 2

Ωci
2 )−1 ˜ Φ 1 → 0        (12.3b") 

� 

˜ V i1z = ekz

miω
˜ Φ 1               (12.3c') 

or 

� 

˙ ˜ V i1z = −iω ˜ V i1z = −i ekz

mi

˜ Φ 1            (12.3c") 

� 

˜ n i1
n0

= [−ky
2 ω 2

Ωci
2 (1− ω 2

Ωci
2 )−1 + kyωVe0(1− ω 2

Ωci
2 )−1 + kz

2] e ˜ Φ 1
ω 2mi

      (12.1a") 

� 

˜ n e1 = n0
e ˜ Φ 1

γ e||kBTe0

              (12.4c') 

� 

˜ V e1x = −iky ˜ n e1
kBTe 0

en0B0

(γ e|| − γ e⊥ ) = −iky (γ e|| − γ e⊥ )
˜ Φ 1
B0

        (12.4b') 

� 

˜ V e1y = −
˜ n e1

n0

Ve 0 = − e ˜ Φ 1
γ e||kBTe 0

Ve0            (12.4a') 

� 

˜ V e1z =
˜ n e1

n0

ω − (γ e|| − γ e⊥ )Ve 0ky

kz

=
ω − (γ e|| − γ e⊥ )Ve0ky

kz

e ˜ Φ 1
miCS

2       (12.2a') 

and 

� 

˜ E 1y = −iky
˜ Φ 1                (12.11) 

� 

˜ E 1z = −ikz
˜ Φ 1               (12.12) 

Particularly, from (12.3a") and (12.4b') yield 

� 

δ ˜ x i =
˜ V i1x

−iω
=

eky

Ωcimiω
(1− ω 2

Ωci
2 )−1 ˜ Φ 1           (12.13) 

� 

δ ˜ x e =
˜ V e1x

−iω
=

ky (γ e|| − γ e⊥ )
ω

˜ Φ 1
B0

            (12.14) 

 

We can understand the asymmetric wave speed distribution in +y and -y directions shown in 

Figure 12.1 by studying phase changes of different variables list above.   

 

Figure 12.2 sketches phase changes of (a) 

� 

ni1, 

� 

ne1, 

� 

Φ1, (b) 

� 

E1y , 

� 

E1z , 

� 

Vi1x , 

� 

Ve1x , 

� 

˙ V i1z , and 
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(c) three-dimensional sketches of  δ xi  and  δ xe  for   
ky > 0  and   

γ e|| −γ e⊥ > 0 .  As we can 

see for 

� 

ky > 0 , the background density gradient can enhance density variations in the ion 

acoustic wave.  Thus, wave speed increases if waves propagate in the same direction along 

electron gradient drift direction.  Note that for 

� 

γ = ( f + 2) / f , where 

� 

f  is the degree of 

freedom, the strong uniform background magnetic filed yields 

� 

γ e|| = 3 (

� 

f|| =1) and 

� 

γ e⊥ = 2  

(

� 

f⊥ = 2).  Thus, the assumption 

� 

γ e|| − γ e⊥ > 0  is a reasonable assumption. 

 

Figure 12.3 sketches phase changes of (a) 

� 

ni1, 

� 

ne1, 

� 

Φ1, (b) 

� 

E1y , 

� 

E1z , 

� 

Vi1x , 

� 

Ve1x , 

� 

˙ V i1z , and 

(c) three-dimensional sketches of 

� 

δxi  and 

� 

δxe  for 

� 

ky < 0  and 

� 

γ e|| − γ e⊥ > 0 .  As we can 

see for 

� 

ky < 0 , the background density gradient can reduce density variations in the ion 

acoustic wave.  Thus, wave speed decrease if waves propagate direction is opposite to 

electron gradient drift direction.   

 

Since 

� 

Vi1 = (Vi1x,Vi1y,Vi1z)  and 

� 

Ve1 = (Ve1x,Ve0 +Ve1y,Ve1z ) , localized two-stream instabilities 

can take place along both y and z directions due to electrons’ gradient drift in y-direction and 

due to fast field-aligned motion of electrons (

� 

Ve1z ) in nearly perpendicular propagation wave 

(

� 

kz << ky ).  Electrons’ field-aligned motion is a result of electrons trying to neutralize ions’ 

density perturbations in the ion acoustic wave.  These two-stream instabilities can modify 

specific heats of electrons in both parallel (

� 

γ e||) and perpendicular (

� 

γ e⊥ ) direction. 
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Figure 12.2.  Sketches of phase changes of (a) 

� 

ni1, 

� 

ne1, 

� 

Φ1, (b) 

� 

E1y , 

� 

E1z , 

� 

Vi1x , 

� 

Ve1x , 

� 

˙ V i1z , 

and (c) three-dimensional sketches of 

� 

δxi and 

� 

δxe  for 

� 

ky > 0 .  
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Figure 12.3.  Sketches of phase changes of (a) 

� 

ni1, 

� 

ne1, 

� 

Φ1, (b) 

� 

E1y , 

� 

E1z , 

� 

Vi1x , 

� 

Ve1x , 

� 

˙ V i1z , 

and (c) three-dimensional sketches of 

� 

δxi and 

� 

δxe  for 

� 

ky < 0 .  



Space Plasma Physics (II) [SS-6044] Chapter 12  by Ling-Hsiao Lyu  2016 May 

 

p.12-10 

Let the ambient magnetic field along the z direction (

� 

B0 = B0 ˆ z ).  Let ambient density 

gradient  dn0 / dx < 0 .  Let 

� 

Ti0 = 0  but 

� 

Te0 ≠ 0.  The electron gradient drift will be along 

the y direction with drift speed equal to 

  
Veo = −

kBTe0

eB0

1
n0

dn0

dx
 

Let  CS  be the ion sound speed.  The dispersion relation of the low frequency electrostatic 

wave is 

  
ω 2 −ω kyVe0 − kz

2CS
2 = 0          (12.10) 

Let    k = k( ẑcosθ + ŷsinθ ) .  The dispersion relation can be rewritten as 

  ω
2 −ω k sinθVe0 − k 2 cos2θCS

2 = 0         (12.11) 

It yields 

  

1
CS

2

ω 2

k 2 − 1
CS

ω
k

sinθ
Ve0

CS

− cos2θ = 0         (12.12) 

Define dimensionless variables   Ve0
* =Ve0 / CS  and 

  
Vph

* = (ω / k) / CS .  Equation (12.12) can 

be written as 

  
(Vph

* )2 −Vph
* Ve0

* sinθ − cos2θ = 0         (12.13) 

Thus, we have 

  
Vph

* = 1
2

Ve0
* sinθ + Ve0

*2sin2θ + 4cos2θ{ }        (12.14) 

For −π <θ < π , we can define 

  k̂ = ẑcosθ + ŷsinθ           (12.15) 

  θ̂ = ẑ(−sinθ )+ ŷcosθ           (12.16) 

The normalized phase velocity 
   
Vph

* = Vph / CS  is equal to  

   
Vph

* = k̂Vph
* = ( ẑcosθ + ŷsinθ )Vph

*         (12.17) 
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The normalized group velocity 
   
Vg

* = Vg / CS  is equal to  

   
Vg

* = k̂ 1
CS

∂ω
∂k

+ θ̂ 1
CS

1
k
∂ω
∂θ

         (12.18) 

To determine the  k  component in Eq. (12.18), we take derivatives   ∂(12.11) / ∂k .  It yields 

  
2ω ∂ω

∂k
− ∂ω
∂k

k sinθVe0 −ω sinθVe0 − 2k cos2θCS
2 = 0       (12.19) 

Eq. (12.19) yields 

  

1
CS

∂ω
∂k

=
Vph

* Veo
* sinθ + 2cos2θ

2Vph
* −Ve0

* sinθ
        (12.20) 

To determine the θ component in Eq. (12.18), we take derivatives  ∂(12.13) / ∂θ .  It yields 

  
2Vph

* 1
CS

1
k
∂ω
∂θ

− 1
CS

1
k
∂ω
∂θ

Ve0
* sinθ −Vph

* Ve0
* cosθ + 2cosθsinθ = 0     (12.21) 

Eq. (12.21) yields 

  

1
CS

1
k
∂ω
∂θ

=
Vph

* Ve0
* cosθ − 2cosθsinθ
2Vph

* −Ve0
* sinθ

        (12.22) 

Substituting Equations (12.15), (12.16), (12.20), (12.22) into Equation (12.18), it yields 

   
Vg

* =
ẑ 2cosθ + ŷVph

* Ve0
*

2Vph
* −Ve0

* sinθ
         (12.23) 

Let us consider the special case with   Ve0
* = 0 . Equations (12.17) becomes 

   
Vph

* = k̂ cosθ  and 

Equation (12.23) becomes 
   
Vg

* = ± ẑ .  Thus, we have 
   
Vph = k̂ CS cosθ  and    

Vg = ± ẑCS  if 

  Ve0 = 0 .   
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Figure 12.4 shows the phase velocity distribution and the group velocity distribution of the 

electrostatic drift waves in the ion-electron two fluid plasma.  As we can see, the group 

velocity distribution changes from two points at    
Vg = ± ẑCS  when   Ve0 = 0  to an ellipse 

with the axis along the z direction equal to   2CS  and the axis along the y direction equal to 

  Ve0  when   Ve0 > 0 .  The red curves from top are for   Ve0
* =  2, 1, 0.5, and 0.1, and for 

phase velocity parallel to the electron drift direction. The blue curves from top are for   Ve0
* =  

2, 1, 0.5, and 0.1 and for phase velocity anti-parallel to the electron drift direction.  

 

 

  

Figure 12.4. Phase velocity distribution and group velocity distribution of the low-frequency 

drift wave in the ion-electron two-fluid plasma.  The red curves from top are for   Ve0
* =  2, 1, 

0.5, and 0.1, and for phase velocity parallel to the electron drift direction.  The blue curves 

from top are for   Ve0
* =  2, 1, 0.5, and 0.1 and for phase velocity anti-parallel to the electron 

drift direction.   
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Figure 12.5 shows the phase velocity distribution and the group velocity distribution of the 

electrostatic drift waves in the ion-electron two fluid plasma similar to the one shown in 

Figure 12.4 but for   Ve0
* =  8, 2, 1, 0.5, and 0.1.  The distribution of the wave group 

velocities indicates that the wave energy should be stronger along the major axis of the 

ellipse. 

 

 

  
Figure 12.5. Phase velocity distribution and the group velocity distribution of the 

electrostatic drift waves in the ion-electron two fluid plasma similar to the one shown in 

Figure 12.4 but for   Ve0
* =  8, 2, 1, 0.5, and 0.1.  The distribution of the wave group 

velocities indicates that the wave energy should be stronger along the major axis of the 

ellipse.  


