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Chapter 10.  Two-Stream Instability 

 

Topics or concepts to learn in Chapter 10:  

1. Determine the growth rate of the broadband two-stream instability. 

2. Use the concepts of Doppler shift and resonant condition to estimate the most unstable 

wave mode. 

 

Suggested Readings: 

(1)  Section 7.13 in Nicholson (1983)  

(2)  Section 9.3 in Krall and Trivelpiece (1973) 

(3)  Section 6.6 in F. F. Chen (1984) 

(4)  Stringer (1964) 

 

Two-stream instability occurs when there are counter-streaming plasma flow in the velocity 

space. Let us consider a field-free two-fluid plasma system, which consists of a cold ion fluid 

and a cold electron fluid.  The cold ion fluid is at rest (

� 

Vi0 = 0) with uniform number density 

� 

n0 .  The cold electron fluid moves at velocity 

� 

Ve0 = V0 ˆ x , with number density 

� 

n0 .  It will 

be shown in this chapter that such a plasma system is unstable to some electrostatic waves 

that propagated in x-direction.  It should be noted that such a two-stream plasma can lead to 

strong electric current in –x direction.  As a result, the background field should not be 

field-free.  To overcome this difficulty, we can consider a system with two 

counter-streaming electrons and one ion fluid at rest, or a system with two counter-streaming 

ions and one electron fluid at rest, or a system with two counter-streaming electrons and two 

counter-streaming ions.  Procedures to obtain electrostatic wave dispersion relation and 

instability growth rate in such systems are similar to the one discussed in this chapter.  Wave 

dispersion relation and instability analysis in these systems will leave as exercises for the 

students to explore.   
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For one ion fluid at rest and one electron fluid with velocity 

� 

Ve0 = V0 ˆ x , the field structure 

must be of two- or three-dimension.  However, for simplicity, we shall consider “local 

approximation” and assume 

� 

∇ = (∂ /∂x) ˆ x  in a finite extended column along x-axis.  For 

electrostatic waves, we have 

� 

E1 = −∇Φ1 = Ex1 ˆ x .  The linearized electrostatic two-fluid 

equations are 

 

Linearized continuity equations 

� 

∂ni1
∂ t

+ n0
∂Vi1x

∂x
= 0               (10.1) 

� 

∂ne1
∂ t

+V0
∂ne1
∂x

+ n0
∂Ve1x

∂x
= 0            (10.2) 

 

Linearized momentum equations 

� 

n0mi
∂Vi1x

∂ t
= en0E1x               (10.3) 

� 

n0me (
∂
∂ t

+V0
∂
∂x
)Ve1x = −en0E1           (10.4) 

Poisson equation 

� 

∂
∂x

E1 = e
ε0
(ni1 − ne1)             (10.5) 

 

We assume a plane-wave type of linear perturbation: 
 
A1(x,t) = Re{ A1(k,ω )exp[i(kx −ωt)]} .  

Fourier and Laplace transform of Eq. (10.1)-(10.5), yields 

� 

−iω ˜ n i1 + n0ik ˜ V i1x = 0              (10.1a) 

� 

−i(ω −V0k) ˜ n e1 + n0ik ˜ V e1x = 0             (10.2a) 

� 

n0mi(−iω) ˜ V i1x = en0
˜ E 1x              (10.3a) 

� 

n0me (−i)(ω −V0k) ˜ V e1x = −en0
˜ E 1           (10.4a) 

� 

ik ˜ E 1 = e
ε0

( ˜ n i1 − ˜ n e1)               (10.5a) 

 

There are two ways to determine dispersion relation of this system.  
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Method 1 

Substituting Eq. (10.5a) into Eqs. (10.3a) and (10.4a), then substituting the resulting equation 

into Eqs. (10.1a) and (10.2a) yields 

� 

1− ω 2

ω pi
2 −1

−1 1− (ω − kV0)2

ω pe
2

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

˜ n i1

˜ n e1

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ =

0

0

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟  

If 

� 

˜ n i1 and 

� 

˜ n e1 have non-trivial solutions then 

� 

det
1− ω 2

ω pi
2 −1

−1 1− (ω − kV0)
2

ω pe
2

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

= ( ω
ω pi

)2(ω − kV0
ω pe

)2 − ( ω
ω pi

)2 − (ω − kV0
ω pe

)2 = 0    (10.6) 

 

Method 2 

Substituting Eqs. (10.3a) and (10.4a) into Eqs. (10.1a) and (10.2a), respectively, then 

substituting resulting equations into Eq. (10.5) yields 

� 

ε(k,ω)ik ˜ E 1x = 0 

where 

� 

ε(k,ω) =1− (
ω pi

ω
)2 − (

ω pe

ω − kV0
)2 = 0           (10.7) 

It will be shown that Eq. (10.6) obtained in Method 1 is useful for finding numerical 

solutions of different wave modes and growth rate of different wave mode.  Whereas, Eq. 

(10.7) obtained in Method 2 is useful for determining solution space of unstable wave modes 

analytically.  

 

Let 

� 

x = ω /ω pe , 

� 

α = kV0 /ω pe , then Eq. (10.7) becomes 

� 

1− me

mi

1
x 2

− 1
(x −α)2

= 0             (10.8) 

To estimate solution of Eq. (10.8), let us consider the following function 

� 

f (x) = me

mi

1
x 2

+ 1
(x −α)2

            (10.9) 

 

Figure 10.1 sketches (a) 

� 

y =1/ x 2, (b) 

� 

y =1/(x −α)2, and (c) 

� 

y = f (x) = me

mi

1
x 2

+ 1
(x −α)2

.  
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Solutions of Eq. (10.8) are the intersections of 

� 

y =1 and 

� 

y = f (x) .  Instability occurs 

when Eq. (10.8) has complex roots.  It occurs when the local minimum of 

� 

y = f (x) for 

� 

0 < x < α  is greater than 1.  Let local minimum of 

� 

y = f (x) is located at 

� 

x = xA , then 

� 

′ f (xA ) = −2me

mi

1
xA
3 − 2

1
(xA −α)3

= 0  

or 

� 

xA = α
1+ mi /me

3
= α
1+ A

≈ 0.075α           (10.10) 

where 

� 

A = mi /me
3 ≈12.25  

 

Thus, instability condition becomes 

� 

f (xA ) = me

mi

1
xA
2 + 1

(xA −α)
2 = 1

A3
(1+ A)2

α 2 + (1+ A)2

α 2A2
= (1+ A)3

α 2A3
>1  

or 

� 

α 2 < (1+ A
A
)3 ≈ (13.25

12.25
)3 ≈1.265           (10.11) 

which yields  

� 

α <1.12486   or 

� 

kV0 <1.12486ω pe.          (10.12) 

 

 
Figure 10.1.  Sketches of (a) 

� 

y =1/ x 2, (b) 

� 

y =1/(x −α)2 , and  
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(c) 

� 

y = f (x) = me

mi

1
x 2

+ 1
(x −α)2

.  Two-stream instability occurs when 

� 

f (x = xA ) >1. 

 

Eq. (10.12) determines solution space of unstable wave modes, but does not tell us what is 

the most unstable wave mode.  The most unstable wave mode can only be obtained by 

directly solving Eq. (10.6).  Eq. (10.6) can be rewritten as  

� 

x 2(x −α)2 − x 2 − me

mi

(x −α)2 = 0  

or 

� 

x 4 − 2αx 3 + x 2(α 2 −1− me

mi

) + (2me

mi

α)x −α 2 me

mi

= 0       (10.13) 

Figure 10.2 shows all solutions of 

� 

ω  as a function of wave number 

� 

k , which include 

one real root 

� 

ω > α , one real root 

� 

ω < 0 .  The other two roots are two real roots 

� 

ω = ωr1 and ωr2 or two complex conjugates roots 

� 

ω = ωr ± iω i .  The most unstable wave 

mode occurs near 

� 

α ≈1 or 

� 

kV0 ≈ω pe  as can be seen in lower panel of Figure 10.2.  The 

curve of 

� 

ω i  in Figure 10.2b is similar to the curve 4 in Figure 9.3.2 in the textbook (Krall 

and Trivelpiece, 1973) and in the Stringer (1964).  To understand solutions shown in Figure 

10.2a, we can compare them with the solutions of Eq. (10.7) at

� 

mi →∞  or 

� 

ω pi → 0.  It can 

be shown that for 

� 

ω pi → 0, the four roots are  

� 

x = 0, 0,α +1, andα −1 

or 

� 

ω = 0, 0, kV0 + ω pe, and kV0 −ω pe . 

Similarly, for finite ion mass, we can expect the following four wave modes,  

� 

x = ω pi /ω pe, −ω pi /ω pe,α +1, andα −1          (10.14) 

or 

� 

ω = ω pi, −ω pi, kV0 + ω pe, and kV0 −ω pe          (10.14a) 

It can be seen from top panel of Figure 10.2 that the four real roots at short wavelength limit 

(

� 

kV0 /ω pe >>1 ) approach to the solutions listed in Eq. (10.14) or (10.14a).  In long 

wavelength limit 

� 

kV0 /ω pe <1, two real roots approach  

� 

x = α +1, andα −1 or 

� 

ω = kV0 + ω pe, and kV0 −ω pe. 

Wave-mode coupling occurs at the intersection of 

� 

x = −ω pi /ω pe, and x = α −1.   

Maximum growth rate occurs near intersection of 

� 

x = ω pi /ω pe and x = α −1. Namely, after 

Doppler shift, the wave mode that is close to ion’s plasma frequency becomes electrons’ 

plasma frequency in electrons’ moving frame. 
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Figure 10.2.  Solutions of Eq. (10.13) plotted with 

� 

x  as a function of 

� 

α , (or 

� 

ω  as a 

function of wave number 

� 

k ).  Solutions include one real root 

� 

ω > α , one real root 

� 

ω < 0.  

The other two roots are two real roots 

� 

ω = ωr1 and ωr2 or two complex conjugates roots 

� 

ω = ωr ± iω i .  The most unstable wave mode occurs near 

� 

α ≈1 or 

� 

kV0 ≈ω pe  (lower 

panel).  Four real roots at short wavelength limit (

� 

kV0 /ω pe >>1 ) approach to 

� 

x = ω pi /ω pe, −ω pi /ω pe,α +1, andα −1 .  Two real roots in long wavelength limit 

(

� 

kV0 /ω pe <1) approach 

� 

x = α +1, andα −1.  Wave-mode coupling occurs at the intersection 

of 

� 

x = −ω pi /ω pe, and x = α −1 .  Maximum growth rate occurs near intersection of 

� 

x = ω pi /ω pe and x = α −1. 
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Exercise 10.1. 

Consider a field-free plasma system, which consists of a 

cold ion fluid at rest with density 

� 

n0 , and two 

counter-streaming electron fluids.  One of the electron 

fluids is characterized by density 

� 

n0 /2, and velocity 

� 

(V0 /2) ˆ x .  The other one is characterized by density 

� 

n0 /2, and velocity 

� 

−(V0 /2) ˆ x . 

 

Exercise 10.2. 

Consider a field-free plasma system, which consists of a 

cold electron fluid at rest with density 

� 

n0 , and two 

counter-streaming ion fluids.  One of the ion fluids is 

characterized by density 

� 

n0 /2, and velocity 

� 

(V0 /2) ˆ x .  

The other one is characterized by density 

� 

n0 /2, and 

velocity 

� 

−(V0 /2) ˆ x . 

 

Exercise 10.3. 

Consider a field-free plasma system, which consists of two counter-streaming ion fluids and 

two counter-streaming electron fluids.  One of the electron fluids and one of the ion fluids 

are characterized by density 

� 

n0 /2, and velocity 

� 

(V0 /2) ˆ x .  The other electron fluid and ion 

fluid are characterized by density 

� 

n0 /2, and velocity 

� 

−(V0 /2) ˆ x . 
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