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Chapter 1.  Introduction  

 

Topics or concepts to learn in Chapter 1: 

1. What is plasma? 

2. The two systems of units that are commonly used in the literatures of plasma physics: The 

Gaussian units and the SI units (Also: The basic equations, the dimension analysis, and the 

scale analysis) 

3. What is the difference between 106 ˚K electrons and 86 eV thermal electrons? Understand 

the temperature, thermal pressure, and the kinetic thermal energy of a plasma. Understand 

how special the 0.5 MeV electron is. 

4. What is Boltzmann relation? 

5. What is Debye shielding? How to determine the Debye length of a plasma? 

6. What is plasma parameter? 

7. What is the plasma oscillation frequency in a un-magnetized plasma? 

8. What are the gyro frequency and the gyro radius (or Larmor radius) of a magnetized 

charge particle? 

9. What is the definition of “collision” in the plasma physics? 

 

Suggested Readings: 

(1)  Chapters 1 and 9 in Nicholson (1983)  

(2)  Sections 1.1~1.5, 1.8 and Appendix III in Krall and Trivelpiece (1973) 

(3)  Chapter 1 in F. F. Chen (1984) 
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1.1. Definition of Plasma 

 

 Plasma is the fourth state of matter.  Heating can transfer matter from solid state to 

liquate state, then to gas state, and then to plasma state.  Plasma is a fully ionized gas or a 

partially ionized gas.  Gas with only 1% ionization can be considered as plasma.  Therefore, 

99% of the matter in the universe is in the plasma state. 

 Plasma is usually a high-temperature and low-density ionized gas.  High temperature 

and low density are the favorite conditions for ionization but not for recombination.  

Without recombination, ionized particles can remain ionized so that the ions (with positive 

charge) and the electrons will not be recombined into neutral gas. 

 Plasma can be considered as a fluid even though sometimes it does not reach to thermal 

dynamic equilibrium state.  It is the collective behavior that makes the plasma behave more 

like a fluid than independent particles.  Like a fluid, there must be a large number of ionized 

gas particles (N>>1) in a plasma system, so that the number density and the thermal pressure 

of plasma can be statistically meaningful.  Due to low-density nature, the basic scale length 

of plasma must be large enough in order to contain enough numbers of ionized particles.  

We shall show that this characteristic scale length in the plasma is roughly the Debye length.   

 Before we introduce the concept of Debye length, Debye shielding, and plasma 

parameter, we shall first briefly review the differences between the SI (MKS) units and the 

Gaussian units.  Both of them are commonly used in the plasma research community.  We 

shall also introduce two different units of temperature.  Both of them are commonly used in 

the space plasma observations. 

 

 

1.2. The SI Units and The Gaussian Units 
 

 The SI units are the standard units today for all scientific communities around the world.  

But the expressions in Gaussian units have also been used for more than 50 years.  Many 

textbooks and theoretical papers written before 1980s are based on the Gaussian units.  

Since magnetic field and electric field have the same dimension in the Gaussian units, it is 

easy for theorists to check the correctness of their theoretical derivations.  But all 

instruments are designed based on the SI units, as a result, it is hard to apply the theoretical 

results (in the Gaussian units) to the space observations (in the SI units).   Thus, scientists 



Chapter 1.  Introduction 
 

 

3 

in space community have tried very hard to change this old habit and try to use SI units in all 

new textbooks and scientific papers of space plasma physics.  Change of the units can make 

the readers of the new generation hard to follow the contents in the old textbooks and the 

classical papers written in the Gaussian units.  We shall use the SI units in most of the 

derivations presented in this book.  To help the students to read early literatures in plasma 

physics, we will present the basic equations in both units in Chapters 1 and 3.   

 Table 1.1 and Table 1.2 list some of the commonly used equations and physical terms in 

both units, where 

� 

c  is the speed of light, 

� 

ρc and 

� 

J  are the charge density and the electric 

current density, respectively.  Note that the charge density and the current density appeared 

in these equations include both free and bounded components.  They are in contrast to the 

Maxwell’s equations (in SI units) listed below, in which 

� 

ρcf  and 

� 

J f  are the free charge 

density and the free current density, respectively.  

� 

∇ ⋅D = ρcf  

� 

∇ ⋅B = 0 

� 

∇ ×E = −∂B
∂ t

 

� 

∇ ×H = J f + ∂D
∂ t

 

Here, the “free” means the distributions of the charge density and the current density will not 

be affected by the applied electric field and the magnetic field.  In most space plasmas, we 

have 

� 

ρcf = 0  and 

� 

J f = 0 .  Namely, the charge density and the electric current density in 

the space plasma will change according to the electric field and the magnetic field. 

 Additional information on these units can be found in the Dimensions and Units section 

of NRL Plasma Formulary.  

(URL: http://www.nrl.navy.mil/ppd/content/nrl-plasma-formulary, cited on 2014-09-15) 
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Table 1.1 Maxwell’s Equations in the SI Units and in the Gaussian Units 

SI Units Gaussian Units 

� 

∇ ⋅E = ρc

ε0
 

� 

∇ ⋅E = 4πρc  

� 

∇ ⋅B = 0  

� 

∇ ⋅B = 0 

� 

∇ ×E = −∂B
∂ t

 

� 

∇ ×E = − 1
c
∂B
∂ t

 

∇ × B = µ0J + µ0ε0
∂E
∂ t
(= µ0J +

1
c2

∂E
∂ t
)  

� 

∇ ×B = 4π
c
J + 1

c
∂E
∂ t

 

 

 

 

Table 1.2  Force, energy, and frequency in the SI Units and in the Gaussian Units 

 SI Units Gaussian Units 

Magnetic force of a 
charged particle 

� 

qv ×B 

� 

q v ×B
c

 

Magnetic force in fluid 
plasma per unit volume 

� 

J ×B 

� 

J ×B
c

 

Magnetic energy density 
(or magnetic pressure) 

� 

B2

2µ0

 

� 

B2

8π
 

Electric energy density 
(or electric pressure) 

� 

ε0E
2

2
 

� 

E 2

8π
 

Alfvén speed 

� 

B
µ0ρ

 

� 

B
4πρ

 

Plasma frequency of the 

� 

α th species 

� 

ne2

ε0mα

 

� 

4πne2

mα

 

gyro frequency of the 

� 

α th species 

� 

eB
mα

 

� 

eB
mαc
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Show that 

� 

1 Tesla  in the SI Units is equivalent to 

� 

104Gauss in the Gaussian Units: 

Some of the content shown in the conversion table of the SI/Gaussian units in Page 10 of the 

NRL Plasma Formulary are derived below. 

 

Let us consider the dimension of 

� 

ε0  in the SI units: 

� 

∇ ⋅E = ρc

ε0
⇒ E

L
= Q /L3

ε0
⇒ E = 1

ε0
Q
L2

 

� 

QE = M L
T 2

⇒ E = M
Q

L
T 2

= 1
ε0
Q
L2

⇒ε0 = Q2T 2

ML3
 

� 

ε0 = 1
µ0c

2 = 1
(4π ×10−7) × (3×108)2

C2s2

kg ⋅m3 = 1
4π × 9 ×109

C2s2

kg ⋅m3 = 0.88 ×1013 C
2s2

kg ⋅m3  

Converting 

� 

ε0  to the cgs units without introducing statcoulomb (SC), it yields 

� 

ε0 = 1
4π × 9 ×109

C2s2

kg ⋅m3 = 1
4π × 9 ×109

C2s2

103g ⋅106cm3 = 1
4π × (3×109)2

C2s2

g ⋅ cm3  

The 

� 

ε0  in the Gsuaaian units is a dimensionless constant, which is equal to 1 or (

� 

1/4π ).  

The dimension of the 

� 

ε0 in the SI units goes to the charge Q in the Gaussian units.  That is, 

in the Gaussian units, we have 

� 

∇ ⋅E = 4πρc

(ε0
* =1)

⇒ E
L

= 4πQ
L3

⇒ E = 4π
(ε0
* =1)

Q
L2

 

QE = M L
T 2 ⇒ E =

M
Q

L
T 2 =

4π
(ε0

* = 1)
Q
L2

⇒Q2 =
(ε0

* = 1)
4π

ML3

T 2  

Thus, in Gaussian units the charge 

� 

Q has a dimension 

� 

M1/ 2L3 / 2

T
, which will be called 

statcoulomb (SC).  Namely, 

� 

1SC = 4π g1/2 ⋅ cm3/2

s
 

Let one coulomb (C) in the SI units is equivalent to 

� 

x  statcoulomb (SC) in the Gaussian 

units.  For 

� 

ε0 = 1
4π × (3×109)2

C2s2

g ⋅ cm3  

it yields 
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� 

ε0
* =1= 1

4π × (3×109)2
(x ⋅SC)2s2

g ⋅ cm3

= x 2

4π × (3×109)2
( 4π g1/2 ⋅ cm3/2

s
)2 s2

g ⋅ cm3 = x 2

(3×109)2

 

Thus, we can obtain 

� 

x = 3×109.  Namely,  

1C in the SI units is equivalent to 

� 

3×109SC in the Gaussian units.   

 

The electric field in the Gaussian units has a dimension 

� 

statvolt
cm

= 1
4π

SC
cm2 .   

The conversion of the electric field between the SI units and the Gaussian units can be 

obtained by considering adding an electric force of 1 dyne on a particle with charge 1SC.  

To achieve the 1 dyne force, the electric field in the Gaussian units should be 

� 

E = Force
Q

=
g ⋅ (cm

s2
)

SC
=

g ⋅ (cm
s2
)

4π ⋅ g ⋅ (cm
3

s2
)

=
4π ⋅ g ⋅ (cm

3

s2
)

4π ⋅ cm2 = 1
4π

SC
cm2 = statvolt

cm
 

To achieve the 1 dyne force, the electric field in the SI units should be 

� 

E = Force
Q

=
g ⋅ (cm

s2
)

SC
=
10−5 × kg ⋅ (m

s2
)

C
3×109

= 3×104 kg ⋅m
C ⋅ s2

= 3×104 Volt
m

 

Thus, we have 

� 

1(statvolt/cm)  in the Gaussian units is equivalent to 

� 

3×104 (Volt /m)  in the SI units. 

Note that  

� 

1dyne=1SC ⋅ statvolt
cm

=10−5Nt =10−5C ⋅ Volt
m

 

 

The Lorentz force in the Gaussian units can be written as 

� 

F = Q(E + V
c
×B)  

Thus, the magnetic field in the Gaussian units has the same dimension as the electric field.  

Namely, the magnetic field in the Gaussian units has a dimension  

� 

1Gauss = 1
4π

SC
cm2 = statvolt

cm
.   
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The conversion of the magnetic field between the SI units and the Gaussian units can be 

obtained by considering adding a magnetic force of 1 dyne on a particle with charge 1SC, and 

perpendicular velocity 1 cm/s.  To achieve the 1 dyne force, the magnetic field in the 

Gaussian units should be 

� 

B = ForceV
c
Q

=
g ⋅ (cm

s2
)

1
3×1010

4π ⋅ g ⋅ (cm
3

s2
)

= 3×1010
4π ⋅ g ⋅ (cm

3

s2
)

4π ⋅ cm2

= 3×10
10

4π
SC
cm2 = 3×1010 statvolt

cm
= 3×1010Gauss

 

To achieve the 1 dyne force, the magnetic field in the SI units should be 

� 

B = Force
VQ

=
g ⋅ (cm

s2
)

cm
s

C
3×109

= 3×109 g
s ⋅C

= 3×109 10
−3kg
s ⋅C

= 3×106Tesla  

Thus, we have “

� 

1 Tesla  in the SI units is equivalent to 

� 

104Gauss in the Gaussian units.” 

Although, the dimension of “Tesla” and the dimension of “Gauss” are indeed different from 

each other, the following “equations” have been commonly used in the space plasma 

observations 

1Tesla = 104Gauss
1Gauss = 105 γ
1Tesla = 109γ
1Tesla = 109nT
1γ = 1nT
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1.3. Temperature in Units of ºK and eV 

 

 In gas dynamics, thermal pressure 

� 

p  can be written as

� 

p = nkBT , where 

� 

kB  is the 

Boltzmann constant, 

� 

n is the number density of the gas, and 

� 

T  is the temperature of the 

gas in units of 

� 

°K .  Since dimension of 

� 

kBT  is equal to the dimension of energy, one can 

use either electron Volts (

� 

eV ) or Joules to denote the plasma temperature without 

introducing the Boltzmann constant.   

 

Exercise 1.1.  

Make a table with columns of (1) 

� 

Tα  in 

� 

°K , (2) 

� 

Tα  in 

� 

eV , (3) 

� 

vthα  with 

� 

mα = me , and 

(4) 

� 

vthα  with 

� 

mα = mi , where 

� 

Tα  and 

� 

vthα  are temperature and thermal speed of the 

� 

α th species, respectively.  

 

Exercise 1.2.  

Boltzmann constant 

� 

kB =1.38 ×10−23 Joule/°K ,  

The charge of a unit charge 

� 

e =1.6 ×10−19C  

Electron mass 

� 

me = 0.9 ×10−30kg 

Proton/electron mass ratio 

� 

mp /me =1836 

Speed of the light 

� 

c = 3×108m/s  

(1) Space scientists use both ºK and eV to describe the plasma temperature.  For instance, 

the temperature of the plasma in the Earth’s magnetosphere is around 106 ºK. What is 

the kinetic energy (in unit of eV) of the thermal particle with temperature 106 ºK (i.e., 

with speed equal to the thermal speed and with average velocity equal to zero)?  

(2) What is the temperature (in unit of ºK) of an 100 keV plasma ? 

(3) The kinetic energy of the energetic electrons in the discrete aurora is about 1~100 keV.  

What is the velocity of an 100 keV electron? 

(4) What is the velocity of a 4 MeV electron (the electrons in the radiation belt)?  

(5) What is the velocity of a 400 MeV proton?  

(6) What is the velocity of a 10 GeV proton (cosmic ray)?  
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 It will be shown in Chapter 4 that, for non-relativistic plasma, the scalar thermal 

pressure 

� 

pα  of the 

� 

α th species is defined by  

� 

pα = nαkBTα ≡ 1
3
trace[ mα (v −Vα )(v −Vα ) fαd

3v∫∫∫ ]

= 1
3

mα (v −Vα ) ⋅ (v −Vα ) fαd
3v∫∫∫

 

The thermal energy density   

� 

Eα  of the 

� 

α th species in a non-relativistic plasma is defined by 

  

� 

Eα = 1
2
mα (v −Vα ) ⋅ (v −Vα ) fαd

3v∫∫∫  

Thus, for non-relativistic plasma, we have  Eα = (3 / 2)nαkBTα .  For non-relativistic plasma, 

the thermal speed 

� 

vthα  of the 

� 

α th species can be defined by  Eα = (1 / 2)nαmαvthα
2 .  Thus, 

we have  

vthα = 3kBTα / mα  

We can also define a characteristic speed based on the standard deviation of the distribution 

function in each velocity direction, i.e.,  

(σ x )α = kBTxxα / mα  

For isotropic pressure, we again obtain  

vthα = (σ x )α
2 + (σ y )α

2 + (σ z )α
2 = 3σα

2 = 3σα = 3kBTα / mα  

Thermal velocity of a relativistic plasma:  

If we define kBTα = (γ α −1)mαc
2 , γ α = (1− vα

2 / c2 )−1/2 , and uα = γ αvα , we can show that 

γ α  can be rewritten as  

γ α = (1+ uα
2 / c2 )+1/2              (1.0a) 

Likewise, kBTα  can be rewritten as  

kBTα = mαuα
2 / (γ α +1)             (1.0b) 

Solving the above equations (1.0a) and (1.0b), one can obtain the corresponding thermal 

momentum per unit mass uα  and the thermal speed vα  for a given σα = kBTα / mα . 

Exercise 1.3. 

Determine the thermal speeds of the electrons with temperature 100keV. 
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1.4. Boltzmann Relation 
 

 Boltzmann relation is commonly used in the theoretical study of low frequency or steady 

state phenomena.  It can be obtained from fluid equation.  When the electric force is the 

dominant external force in the system, the fluid momentum equation of the 

� 

α th species 

becomes 

� 

nαmα (
∂
∂ t

+ Vα ⋅ ∇)Vα = eαnα[−∇Φ(x)]−∇pα  

For steady state (

� 

∂ /∂ t ≈ 0) solution with uniform background mean flow, we can choose a 

moving frame such that the average velocity is equal to (Vα = 0 ).   The above momentum 

equation becomes 

� 

eαnα[−∇Φ(x)]−∇pα = 0  

Let each species satisfy the ideal gas law  

pα = nαkBTα  

where kB  is the Boltzmann constant and the temperature Tα  is measured in Kelvin.  If we 

assume that the spatial variation of temperature is much smaller than the spatial variation of 

number density (∇Tα /Tα << ∇nα / nα ), then  

� 

∇pα ≈ kBTα∇nα  

Thus we have  

� 

eαnα[−∇Φ(x)]− kBTα∇nα = 0  

It can be shown that solution of the above equation is the Boltzmann relation 

nα (x) = n0 exp[−
eαΦ(x)
kBTα

]  

where we have chosen Φ = 0  at nα = n0 .  Namely, the Boltzmann relation of the electrons 

is 

� 

ne (x) = n0 exp[+
eΦ(x)
kBTe

] 

If there is a fixed external source of electric charges in the system, the ions might also 

satisfy the following Boltzmann relation 

� 

ni(x) = n0 exp[−
eΦ(x)
kBTi

]  

Note that, based on our resent studies (e.g., Tsai et al., 2009), the steady-state solution 

obtained from the fluid equations may not be a steady-state solution of the Vlasov equation, 
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which will be derived in Chapter 2.  Based on the steady state solution discussed later in 

Chapter 8, the electron temperature should be higher in the high potential region.  Thus, the 

application of the Boltzmann relation is only good when the kinetic effect is ignored in the 

analysis.   

 

 

1.5. Debye Shielding and Debye Length 
 

 Let us add a test charge particle with charge 

� 

qT  and infinite mass into a plasma 

medium, the Poisson equation becomes 

� 

−∇2Φ(x) = qTδ(x)
ε0

+ e[ni(x) − ne (x)]
ε0

          (1.1) 

The electric potential due to presence of the test particle is (see Appendix A) 

� 

ΦT (r) = qT
4πε0r

              (1.2) 

 

1.5.1. Debye Shielding in the Electron Time Scale 

 When the time scale is much greater than the electron time scale, but is less than the ion 

time scale, we can assume that 

� 

ne  satisfies the Boltzmann relation and 

� 

ni  is still uniform, 

i.e.,  

� 

ne (x) = n0 exp[+
eΦ(x)
kBTe

] and 

� 

ni = n0  

For 

� 

eΦ(x) << kBTe , i.e., when the average kinetic energy is much greater than the electric 

potential energy, the Boltzmann relation can be approximated by 

� 

ne (x) ≈ n0(1+ eΦ(x)
kBTe

)             (1.3) 

Substituting (1.3) into (1.1), the electric potential due to presence of plasma becomes 

� 

1
r2

d
dr
r2 d
dr

Φ(r) = e2n0
ε0kBTe

Φ(r)            (1.4) 

Let  

� 

Φ(r) =ϕ( r)/ r                (1.5) 

Substituting (1.5) into (1.4), yields 

� 

d2

dr2
ϕ(r) = e2n0

ε0kBTe
ϕ(r) = 1

λDe
2 ϕ(r)           (1.6) 
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where 

� 

λDe  is the Debye length of the plasma, which satisfies 

� 

λDe
2 = ε0kBTe

n0e
2  

Solution of Eq. (1.6) is 

� 

ϕ(r) = ϕ0 exp[−r /λDe ]             (1.7) 

From (1.2), (1.5) and (1.7), the solution of Eq. (1.1) is approximately equal to  

� 

Φ(r) ≈ qT
4πε0r

exp[−r /λDe ]             (1.8) 

As we can see, for 

� 

eΦ << kBTe , the electric potential drop exponentially when 

� 

r > λDe , 

where 

� 

r  is the distance measured from the test charge particle.  Namely, the electric field 

outside the Debye sphere, which centered at the test particle, is approach to zero.  This is 

called Debye shielding effect of the plasma.  

 

1.5.2. Debye Shielding in the Ion Time Scale 

 When the time scale is much greater than the ion time scale, we can assume that both 

� 

ne  and 

� 

ni  satisfy the Boltzmann relations, 

� 

ne (x) = n0 exp[+
eΦ(x)
kBTe

] and 

� 

ni(x) = n0 exp[−
eΦ(x)
kBTi

] 

For 

� 

eΦ(x) << kBTα , i.e., when the average kinetic energy is much greater than the electric 

potential energy, the Boltzmann relations can be approximated by 

� 

ni(x) ≈ n0(1−
eΦ(x)
kBTi

) and 

� 

ne (x) ≈ n0(1+ eΦ(x)
kBTe

)        (1.3a) 

Substituting (1.3a) into (1.1), the electric potential due to presence of plasma becomes 

� 

1
r2

d
dr
r2 d
dr

Φ(r) = e2n0
ε0kB

( 1
Ti

+ 1
Te
)Φ(r)          (1.4a) 

Let  

� 

Φ(r) = ϕ(r) /r                (1.5a) 

Substituting (1.5a) into (1.4a), yields 

� 

d2

dr2
ϕ(r) = e2n0

ε0kB
( 1
Ti

+ 1
Te
)ϕ(r) = 1

λD
2 ϕ(r)           (1.6a) 

where 

� 

λD  is the Debye length of the plasma, which satisfies 

� 

λD
−2 = λDi

−2 + λDe
−2 = n0e

2

ε0kBTi
+ n0e

2

ε0kBTe
 

Solution of Eq. (1.6a) is 
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� 

ϕ(r) = ϕ0 exp[−r /λD ]              (1.7a) 

From (1.2), (1.5a) and (1.7a), the solution of Eq. (1.1) is approximately equal to  

� 

Φ(r) ≈ qT
4πε0r

exp[−r /λD ]            (1.8a) 

For 

� 

Te = Ti , the Debye length becomes 

� 

λD = ε0kBTe
2n0e

2    in the SI units          (1.9) 

or 

� 

λD = kBTe
8πn0e

2   in the Gaussian units        (1.10) 

 

 Again, for 

� 

eΦ << kBTe , the electric potential drop exponentially when 

� 

r > λD , where 

� 

r  

is the distance measured from the test charge particle.  Namely, the electric field outside the 

Debye sphere, which centered at the test particle, is approach to zero.  This is called Debye 

shielding effect of the plasma.  

 

 

1.6. Plasma Parameter 
 

 To minimize the chance of recombination, the electric potential between two charged 

particle must satisfies 

� 

eΦ ≈ e2

4πε0 r1 − r2
≈ e

2n1/ 3

4πε0
<< kBT   

or 

� 

n−2 / 3 << 4πε0kBT
ne2

 

or 

� 

(4πε0kBT
ne2

)3 / 2n >>1 

Ignoring the leading constant, we have the plasma parameter 

� 

Λ ≡ nλD
3 >>1               (1.11) 

Thus, we can talk about all the statistic variables, including number density, temperature, 

bulk velocity (or average velocity), … etc., if we consider charge particles with a spatial 

dimension equal to or greater than the Debye length. 
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1.7. Plasma Frequency 

 

 Let us consider a uniform plasma medium, which consists of proton ions and electrons.  

Since 

� 

mi >> me , the plasma oscillation frequency can be obtained by assuming a virtual 

displacement of a sheet of electrons without perturbing ions.  Let use consider a sheet of 

electrons with sheet size 

� 

Ly × Lz  and thickness 

� 

Wx , where 

� 

0 <Wx ≤ λD .  Let the sheet of 

electrons make a virtual displacement 

� 

δe0ex , where 

� 

ex  is the unit vector along the x 

direction and 

� 

δe0 <<Wx .   The displacement of the electron sheet 

� 

δe (t)ex can result in a 

positive charge layer with surface charge density 

� 

eneδe (t) and a negative charge layer with 

surface charge density 

� 

−eneδe (t)  on two sides of the electron sheet.  The electric field 

between the two charged layers is 

� 

E = exEx ≈ ex (eneδe /ε0)              (1.12) 

The equation of motion of the electron sheet becomes 

� 

Ma = [(WxLyLz)neme ]˙ ̇ δ eex = QE = [−(WxLyLz )ene ][ex (eneδe /ε0)] 

or 

� 

˙ ̇ δ e = −(e2ne /meε0)δe              (1.13) 

Let 

� 

ω pe
2 = e2ne /meε0 .  Solution of (1.13) can be written in the following form 

� 

δe = Acos(ω pet + φ)  

For 

� 

δe( t = 0) = δe0 , we have 

� 

δe =δe0 cos(ω pe t)  

where  

� 

ω pe = (e2ne /meε0 )
1/ 2              (1.14) 

is called the plasma frequency of electrons. 

 Let us consider a plasma oscillation, which is initiated by a virtual displacement of a 

sheet of electrons and a virtual displacement of a sheet of ions. Both of them are 

characterized by a sheet size 

� 

Ly × Lz  and a thickness 

� 

Wx . Let the sheet of electrons make a 

virtual displacement 

� 

δe0ex , and the sheet of ions make a virtual displacement 

� 

−δi0ex  and the 

displacements satisfy 

� 

0 < δe0 <<Wx  and 

� 

0 < δi0 <<Wx.  The displacement of the electron 

sheet 

� 

δe (t)ex and the displacement of the ion sheet 

� 

−δi(t)ex  can result in a positive charge 

layer with surface charge density 

� 

en0(δe + δi)  and a negative charge layer with surface 

charge density 

� 

−en0(δe + δi), where we have assumed that 

� 

ne ≈ ni ≈ n0  in the background 

equilibrium state.  The electric field between the two charged layers is 
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� 

E = exEx ≈ ex[en0(δe + δi) /ε0]           (1.15) 

It can be shown that the equation of motion of the electron sheet is 

� 

˙ ̇ δ eex = −(e2n0 /meε0)(δe + δi)ex            (1.16) 

The equation of motion of the ion sheet is  

� 

−˙ ̇ δ iex = (e2n0 /meε0)(δe + δi)ex             (1.17) 

Solving (1.16) and (1.17), yields 

� 

d2

dt 2
(δe + δi) = −( e

2n0
meε0

+ e2n0
miε0

)(δe + δi) = −(ω pe
2 + ω pi

2 )(δe + δi) = −ω p
2 (δe + δi)    (1.18) 

Let 

� 

ω p
2 = ω pe

2 +ω pi
2 .  Solution of (1.18) can be written in the following form 

� 

δ = δe + δi = Acos(ω pt + φ) = (δe0 + δi0)cos(ω pt)  

In summary, the plasma frequency of the 

� 

α th species is defined as 

� 

ω pα = ne2

ε0mα

               (1.19) 

Total plasma frequency of a two-component plasma can be defined as 

� 

ω p = (ω pe
2 + ω pi

2 )1/ 2 ≈ ω pe             (1.20) 

 

 

1.8. Gyro Frequency and Gyro Radius (or Larmor Radius) 

 

Equations of motion of a single charged ion with absence of electric filed and gravitational 

field are 

� 

dx
dt

= v              (1.21) 

  

dv
dt

= e
mi

v ×B             (1.22) 

 

Exercise  1.4. 

Solve equations (1.21) and (1.22) for uniform magnetic field 

� 

B = ˆ z B  initial velocity 

   v(t = 0) = x̂v0 sinφ0 + ŷ v0 cosφ0  and initial location at 

� 

x(t = 0) = 0 .  Express your 

solution in terms of gyro frequency   
Ωc i = eB / mi  and gyro radius (or Larmor radius) 

  
rLi = v0 / Ωc i . 
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Note that Nicholson (1983) defines 

� 

Ωcα = eαB /cmα  in the Gaussian units, so that there is a 

sign in his definition of gyro frequency.  Namely,   Ωce = −eB / cme  in Nicholson’s textbook 

(Nicholson, 1983).  The negative sign denotes the gyro motion is right-handed with respect 

to the background magnetic field.  A positive sign denotes the gyro motion is left-handed 

with respect to the background magnetic field.  However, gyro frequency discussed in this 

book will always be positive.  Namely, we shall not include the sign in our definition of 

gyro frequency. 

 

 

1.9. Collisions 

 

 Two types of collisions have been discussed in section 1.6 of [Nicholson (1983)].  The 

collision frequency due to one large-angle collision is 

� 

ν L = n0e
4

4πε0
2me

2v0
3 = n0

2e4

4πε0
2me

2v0
3
1
n0

≈
ω pe

4πn0λDe
3 ≈

ω pe

4πΛe

<<ω pe       (1.23) 

The collision frequency due to many small-angle collisions is 

� 

ν c = 2n0e
4 lnΛ

4πε0
2me

2v0
3 ≈

2lnΛω pe

4πn0λDe
3 ≈

2lnΛω pe

4πΛe

= 2lnΛν L > ν L       (1.24) 

and 

� 

ν c = lnΛ
2πΛe

ω pe <<ω pe              (1.25) 

where the collision frequency is defined by the inverse of a time interval in which more than 

half of the particles will change their moving directions by more than 45 degrees.  From 

equations (1.23) and (1.25), we can conclude that many small-angle collisions are more 

efficient than one large-angle collision.  Equations (1.23) ~ (1.25) yield 

� 

ν L < ν c <<ω pe .  

Thus, we can ignore particle-particle collisions in compare with wave-particle interactions, if 

the wave has a frequency near the plasma frequency 

� 

ω pe.   

 Let 

� 

ναβ  denotes collision frequency that the 

� 

α th species is scattered by the 

� 

β th 

species.  Scientists have shown that  

� 

νee ≈ν ei  

� 

ν ii ≈ me /miν ee < ν ee  

� 

ν ie ≈ (me /mi)ν ee << ν ee  

These results indicate that (1) it takes longer time to thermalize two ion beams than to 
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thermalize two electron beams; (2) a cold ion beam can hardly be heated by warm electrons; 

(3) fast electron heating can occur when there are two electron beams or when there is at least 

one ion beam that moves at different speed with respect to the beam electrons. 

 

 

References 

 

Chen, F. F. (1984), Introduction to Plasma Physics and Controlled Fusion, Volume 1: 

Plasma Physics, 2nd edition, Plenum Press, New York. 

Krall, N. A., and A. W. Trivelpiece (1973), Principles of Plasma Physics, McGraw-Hill 

Book Company, New York. 

Nicholson, D. R. (1983), Introduction to Plasma Theory, John Wiley & Sons, New York. 

Tsai, T. C., L. H. Lyu, J. K. Chao, M. Q. Chen, and W. H. Tsai (2009), A theoretical and 

simulation study of the contact discontinuities based on a Vlasov simulation code, J. 

Geophys. Res., 114, A12103, doi:10.1029/2009JA014121. 



Chapter 1.  Introduction 
 

 

18 

 

 


