Errata

Lyu, Ling-Hsiao (2014), *Elementary Space Plasma Physics Second Edition*, Airiti Press, Taiwan, R.O.C.

page(s)	Chaper	original text	correction(s)
66, 68,	5	Figures 5.1, 5.2, and 5.4	Correct the typos in Figures
79			5.1, 5.2, and 5.4.
87, 90,	6	Eq. (6.14) and the discussions	Correct the typos in Eq. (6.14)
91, 94		associated with Eq. (6.14)	and the discussions associated
			with Eq. (6.14).

2016-08-10

page(s)	Chaper	original text	correction(s)
15	1	The example and Exercise 1.4	Modify the example and
		in Section 1.8 on page 15	Exercise 1.4 given in Section
			1.8 on page 15
49-95	5,6	-	Reformat all the equations
			based on a new version of
			Mathtype

2015-10-05

page(s)	Chaper	original text	correction(s)		
15-16	1	Section 1.8 and Exercise 1.4	Section 1.8 and Exercise 1.4		

2015-04-01

page(s)	Chaper	original text	correction(s)
77	5	Typos in the equations of the	Correct the typos by removing
		cut-off frequencies ω_L and	the ω_L and ω_R on the right-
		ω_R .	hand-side of the equations.

2015-03-24

page(s)	Chaper	original text	correction(s)
132	9	Original distribution function	Replace the distribution
		shown in Figure 9.3 is	function in Figure 9.3 by a
		inconsistent with the	bump-on-tail distribution.
		integration path shown in	
		Figure 9.4.	

136	9	Blank	Add	the	answer	to	Exercise
			9.1.				

2015-03-16

page(s)	Chaper	original text	correction(s)
120	9	"The paragraph after Equation	Rewrite "The paragraph after
		(9.23)."	Equation (9.23)."
127	9	$\omega_i \ll \omega_r$	$ \omega_i \ll \omega_r$

2014-12-24

page(s)	Chaper	original text	correction(s)
85	6	share Alfvén mode	shear-Alfvén mode
89	6	share-Alfvén wave	shear-Alfvén wave
200	Index	share Alfvén mode	shear-Alfvén mode

Lyu, Ling-Hsiao (2010), Elementary Space Plasma Physics, National Central University Press & Airiti Press, Chung-li, Taiwan, R.O.C.

2014-09-22

page(s)	Chaper	original text	correction(s)
7	1	$1 \text{Tasla} = 10^4 \text{Gauss}$	1 Tesla = 10^4 Gauss
		$1 \text{Gauss} = 10^5 \gamma$	1 Gauss = $10^5 \gamma$
		$1 \text{Tasla} = 10^9 \gamma$	$1 \text{Tesla} = 10^9 \gamma$
		$1 \text{Tasla} = 10^9 \text{nT}$	$1 \text{Tesla} = 10^9 \text{nT}$
		$1\gamma = 1$ nT	$1\gamma = 1 nT$

2014-09-15

201102	10		
page(s)	Chaper	original text	correction(s)
3	1	Additional information on	Additional information on
		these units can be found in the	these units can be found in the
		Dimensions and Units section	Dimensions and Units section
		of NRL Plasma Formulary (on	of NRL Plasma Formulary.
		page 10). URL address of the	(URL:
		NRL Plasma Formulary web	http://www.nrl.navy.mil/ppd/c
		site is	ontent/nrl-plasma-formulary,
		http://wwwppd.nrl.navy.mil/nrl	cited on 2014-09-15)
		formulary	

2013-05-28

page(s)	Chaper	original text	correction(s)
93	6	In the original text, the signs in	Rewrite the equations on Page
		equation (6.30) on page 93 are	93 to make sure that there is no
		somehow mixed with	mixed information on the plus
		information on fast-/slow-	and minus signs.
		modes and the propagation	
		angle of phase velocity at $0^+/0^-$	
		or $90^+/90^-$ degrees w.r.t. the	
		ambient magnetic field. The	
		equation (6.30) and following	
		equations need to be rewritten.	

2013-03-04

page(s)	Chaper	original text	correction(s)
45	3	In Table 3.3	In Table 3.3
		$\nabla \cdot \mathbf{E} = 0$	$\nabla \cdot \mathbf{E} \rightarrow 0$
78	5	Equation between (5.50b) and	Equation between (5.50b) and
		(5.50c):	(5.50c):
		$C_{so}^2 \equiv \frac{\gamma_i T_{i0} + \gamma_e T_{e0}}{\gamma_i T_{i0} + \gamma_e T_{e0}}$	$C_{so}^2 \equiv \frac{\gamma_i k_B T_{i0} + \gamma_e k_B T_{e0}}{\gamma_i k_B T_{i0} + \gamma_e k_B T_{e0}}$
		m_i	m_i
86	6	In the left column of Table 6.1	In the left column of Table 6.1
		$\nabla \cdot \mathbf{E} = 0$	$\nabla \cdot \mathbf{E} \rightarrow 0$
86	6	Equation (6.6) in Table 6.1	Equation (6.6) in Table 6.1

		$i\mathbf{k} \cdot \mathbf{E} = 0$	$i\mathbf{k} \cdot \mathbf{E} \rightarrow 0$
90-95	6	No numbered subsections in	Add numbered subsections in
		Section 6.2.2 and Section 6.2.3.	Section 6.2.2 and Section 6.2.3.
		An expression and a brief	
		derivation with typos were	Rewrite the text in section
		given in Section 6.2.3.	6.2.3.2. The group velocity
			discussed in the revised text is
			more than an expression. A
			derivation is given and two
			special cases are discussed in
			great detail.

2012-10-19

page(s)	Chaper	original text	correction(s)
37	3	in Answer to Exercise 3.3.	in Answer to Exercise 3.3.
		The last line:	The last line:
		$\nabla \cdot () - \frac{1}{c^2} \frac{\partial}{\partial t} (\frac{\mathbf{E} \times \mathbf{B}}{\mu_0})$	$= \nabla \cdot () - \frac{1}{c^2} \frac{\partial}{\partial t} (\frac{\mathbf{E} \times \mathbf{B}}{\mu_0})$

2012-07-07

page(s)	Chaper	original text	correction(s)
41	3	in q convective-time- derivative	in a convective-time-derivative

2012-05-02

page(s)	Chaper	original text	correction(s)
9	1	(1.0b) and (1.0c)	(1.0a) and (1.0b)
93-94	6		Rewrite the Answer of Exercise
			6.3(3)
95	6		Correct the reference list by
			adding the paper Lai & Lyu
			(2006) and removing the paper Lai
			and Lyu (2010).
97	7	$J = \int p dq$	$J = \oint p dq$
107	7	_{x=0}	$\Big _{x=x_0}$
108	7	x=0	$\Big _{x=x_0}$
149-164	11		(1) Correct the errors in the
			equation of D_{xx} on page 149.
			(2) Reformat the text on pages
			149-150.
			(3) Rewrite the equation (11.66) to
			make it easy to read.

2011-04-18

page(s)	Chaper	original text	correction(s)
2	1	The SI nits are	The SI units are

53	5	in compare with he equilibrium sate.	in comparison with the equilibrium state.
94	6	Exercise 6.3	Exercise 6.4
143	10	Exercise 3.1	Exercise 10.1
		Exercise 3.2	Exercise 10.2
		Exercise 3.3	Exercise 10.3