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Lecture 5: Introduction to Plasma Simulation Codes 

 

5.1. How to Choose a Suitable Simulation Code for Your Problem 

 

Plasma consists of positive charged ions and negative charged electrons.  Since 

� 

mi >> me , there are many intrinsic time scales in a plasma system even in a uniform 

background environment.  For time scale less than the intrinsic time scales, it is hard for the 

plasma to reach a thermal dynamic equilibrium state.  As a result, the kinetic effect might 

become important for time scale less than the intrinsic time scales of the plasma. 

Present plasma simulation codes can be classified based on their phase space resolutions 

as listed in Table 5.1.  Note that the so-called particle-code simulation is indeed a 

multiple-fluid simulation.  A simulation particle in the particle-code simulation is indeed a 

fluid element in the phase space (

� 

x,v ). 

 

Table 5.1. Classification of Plasma Simulation Codes 

 

Simulation Code  
Phenomena scale 

length 

� 

λ  

Assuming thermal 

dynamic 

equilibrium? 

e-e i-i e-i 

Fluid 

Simulations 

MHD code 

� 

λ ≥103λi  yes yes yes 

Two-Fuild code 

� 

103λi ≥ λ ≥10λi  yes yes no 

Kinetic 

Simulations 

Hybrid code 

fluid electrons & kinetic ions 

� 

10λi ≥ λ ≥ λi  yes no no 

Full particle code 

� 

λi ≥ λ ≥ λe  no no no 

Test particle code Strong magnetic field n/a n/a n/a 

Vlasov Code 

� 

λi ≥ λ ≥ λe  no no no 

 

The kinetic effect becomes important when the non-uniformity scale length of the 

system is comparable to the characteristic scale length of a species (ions and/or electrons), or 

when the wave speed observed in the center of mass frame of a species is approximately 

equal or less than the thermal speed of that species.  When the kinetic effect is important, 

we have to use a kinetic simulation code to study the nonlinear evolutions of wave-particle 

interactions in the phase space.  On the other hand, a fluid simulation code can provide 
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reasonable and quick simulation results when the kinetic effects are unimportant.   The 

governing equations of simulations at different time scales are given in Tables 5.2-5.8. 

 

 

Table 5.2. Governing equations of the MHD-time-scale simulation 

� 

∂ρ
∂ t

= −∇ ⋅ (ρV) 

� 

∂
∂ t
(ρV) = −∇ ⋅ [ρVV + (p + B2

2µ0

)1− BB
µ0

]+ ηVρ∇
2V  

� 

∂
∂ t
(1
2
ρV 2 + 3

2
p + B2

2µ0

) = −∇ ⋅ [(1
2
ρV 2 + 5

2
p + B2

µ0

)V − BB
µ0

⋅V]+ ηTρ∇
2( p
ρ
)  

� 

∂B
∂ t

= ∇ × (V ×B) + ηB∇
2B 

� 

E = −V× B  

� 

J = ∇ ×B
µ0

 

Initial condition:  

� 

∇ ⋅B = 0  
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Table 5.3. Governing equations of the electron-time-scale two-fluid simulation. 

   

∂ ni

∂ t
= −∇⋅(niVi )  

   

∂ ne

∂ t
= −∇⋅(neVe )  

   

∂
∂ t

(Vi ) = −Vi ⋅∇Vi +
e
mi

(E+ Vi ×B)−
∇pi

mini

+ηVi
∇2Vi  

   

∂
∂ t

(Ve ) = −Ve ⋅∇Ve −
e

me

(E+ Ve ×B)−
∇pe

mene

+ηVe
∇2Ve  

   

∂
∂ t

( pi ) ≈ −∇⋅( piVi )−
2
3

pi(∇⋅Vi )+ηTi
ni∇

2(
pi

ni

)  

   

∂
∂ t

( pe ) ≈ −∇⋅( peVe )− 2
3

pe(∇⋅Ve )+ηTe
ne∇

2(
pe

ne

)  

   

∂B
∂ t

= −∇×E+ηB∇
2B  

   

∂E
∂ t

= c2∇×B − e
ε0

(niVi − neVe )  

Initial conditions 

  ∇⋅B = 0  

   
∇⋅E = e

ε0

(ni − ne )  
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Table 5.4. Governing equations of ion-time-scale two-fluid simulation. 

� 

∂B
∂ t

= −∇ ×E + ηB∇
2B  

� 

∂ni
∂ t

= −∇ ⋅ (niVi) 

� 

∂Vi

∂ t
= + e

mi

Vi ×B + e
mi

E − ∇pi
mini

−Vi ⋅ ∇Vi + ηVi
∇2Vi  

� 

∂ pi
∂ t

= −∇ ⋅ (piVi) −
2
3
pi(∇ ⋅Vi) + ηTi

ni∇
2( pi
ni
)  

� 

∂ pe
∂ t

= −∇ ⋅ (peVe ) −
2
3
pe (∇ ⋅Ve ) + ηTe

ne∇
2( pe
ne
)  

   

∂B
∂ t

= −∇×E+ηB∇
2B  

 ne ≈ ni  

  
J = ∇×B

µ0

 

  
Ve = Vi −

J
eni

 

   
E = −Ve ×B −

∇pe

eni

−
me

e
Ve ⋅∇Ve +

c2

ω pe
2 ∇2E  

Initial condition:  

  ∇⋅B = 0  
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Table 5.5. Governing equations of non-relativistic electrostatic full-particle code simulation  

   

d x k (t)
dt

= v k (t)  

   

d v k (t)
dt

=
ek

mk

[E(x,t)+v k (t)×B(x,t)]∫ S[x − x k (t)]dx  

   
∇⋅E(x,t) =

ek

ε0k
∑ δ [ ′x − x k (t)]∫ S(x − ′x )d ′x  

where  S  denotes the shape function of the finite-size simulation particle (fluid element) 

 

 

Table 5.6a. Governing equations of relativistic electromagnetic full-particle code simulation 

   

d x k (t)
dt

= v k (t)  

   

duk (t)
dt

=
ek

mk

[E(x,t)+v k (t)×B(x,t)]∫ δ [ ′x − x k (t)]S(x − ′x )dx  

   

∂B(x,t)
∂ t

= −∇×E(x,t)  

� 

∂E(x,t)
∂ t

= c 2∇ ×B(x,t) − 1
ε0

ekvk (t)
k
∑ δ[ ′ x − x k (t)]∫ S(x − ′ x )d ′ x  

   
v k (t) =

uk (t)

1+ [uk (t) / c]2
 

Initial condition:  

  ∇⋅B = 0  

   
∇⋅E(x,t) =

ek

ε0k
∑ δ ( ′x − x k (t))∫ S(x − ′x )d ′x  

where  S  denotes the shape function of the finite-size simulation particle (fluid element) 
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Table 5.6b. Governing equations of 1-D relativistic electromagnetic full-particle simulation 

  

d xk (t)
dt

= vxk (t)  

   

duk (t)
dt

=
ek

mk

[E(x,t)+v k (t)×B(x,t)]∫ δ [ ′x − xk (t)]S(x − ′x )dx  

  

∂ Ex (x,t)
∂ x

=
ek

ε0k
∑ δ ( ′x − xk (t))∫ S(x − ′x )d ′x  

  

∂ By (x,t)
∂ t

= +
∂ Ez (x,t)

∂ x
 

  

∂ Bz (x,t)
∂ t

= −
∂ Ey (x,t)

∂ x
 

  

∂ Ey (x,t)
∂ t

= −c2 ∂ Bz (x,t)
∂ x

− 1
ε0

ekvyk
k
∑ δ [ ′x − xk (t)]∫ S(x − ′x )d ′x  

  

∂ Ez (x,t)
∂ t

= +c2 ∂ By (x,t)
∂ x

− 1
ε0

ekvzk (t)
k
∑ δ [ ′x − xk (t)]∫ S(x − ′x )d ′x  

   
v k (t) =

uk (t)

1+ [uk (t) / c]2
 

  Bx = constant  

where  S  denotes the shape function of the finite-size simulation particle (fluid element) 
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Table 5.7a. Governing equations of a non-relativistic test particle simulation 

   

d xα (t)
dt

= vα (t)  

 
   

d vα (t)
dt

=
eα
mα

[E(x,t)+vα (t)×B(x,t)]δ [x − xα (t)]   

where test particle is characterized by mass  mα  charge  eα , and moving in the background 

electric field    E(x,t)  and magnetic field    B(x,t)  

 

Table 5.7b. Governing equations of a non-relativistic test particle simulation 

   

d xα (t)
dt

=
uα (t)

1+ [uα (t) / c]2
 

   

duα (t)
dt

=
eα
mα

[E(x,t)+
uα (t)

1+ [uα (t) / c]2
×B(x,t)]δ [x − xα (t)]  

where test particle is characterized by mass  mα  charge  eα , and moving in the background 

electric field    E(x,t)  and magnetic field    B(x,t)  

 

Table 5.8. Governing equations of electromagnetic relativistic Vlasov simulation 

� 

∂ fe
∂ t

= − u
1+ (u /c)2

⋅ ∂ fe
∂x

+ e
me

(E + u
1+ (u /c)2

×B) ⋅ ∂ fe
∂u

 

� 

∂ fi
∂ t

= − u
1+ (u /c)2

⋅ ∂ f i
∂x

− e
mi

(E + u
1+ (u /c)2

×B) ⋅ ∂ f i
∂u

 

� 

∂B
∂ t

= −∇ ×E  

� 

∂E
∂ t

= c 2∇ ×B − e
ε0
[ u

1+ (u /c)2
fid

3u∫∫∫ − u
1+ (u /c)2

fed
3u∫∫∫ ] 

Initial conditions 

� 

∇ ⋅B = 0 

� 

∇ ⋅E = e
ε0
[ fid

3u∫∫∫ − fed
3u∫∫∫ ] 
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5.2. Diagnostics of Simulation Results 

 

We need to make a good diagnostics to understand detail nonlinear evolution processes 

and to determine the complicated cause-and-result relationships from the simulation results.  

Making good diagnostics is as important as choosing a good simulation scheme. 

 

Guideline for making a correct simulation and good diagnostics: 

Check your simulation results: 

Check and make sure the total energy is conserved. 

Check and make sure that your simulation results satisfy the Courant condition.  That is, 

the maximum speed 

� 

v  (which is equal to the largest possible wave speed plus the 

maximum flow speed or particle speed) multiplying one time step 

� 

Δ t is less than one 

grid size 

� 

Δ x .  Indeed, we recommend that 

� 

vΔ t < 0.1Δx .  

Check and make sure that your simulation results are almost unchanged when the 

simulation system length is doubled, or when the simulation time step is reduced in half, 

or when the simulation grid size is reduced in half, or when the number of simulation 

particles is doubled, or when the real ion-electron mass ratio is used. 

Always use double precision in your simulation. 

Display your simulation results: 

Use Excel, Matlab, or IDL to display your simulation results.  

Analysis your simulation results: 

Carefully trace the time evolution of all fluid variables in the simulation. 

Carefully trace the phase-space trajectory of a group of simulation particles. 

Finally, it is generally believed that a test particle simulation might help you to 

understand your simulation results.  
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5.3. Summary and Discussion 

 

If you want to use numerical simulation to study nonlinear plasma phenomena, you should 

(a) choose a right simulation code for your problem, 

(b) do your best to save CPU time (simulation scheme) and real time (I/O), 

(c) always keep a macroscopic vision and a microscopic alert in your mind, 

(d) make a good diagnostics for your simulation results. 

 

Prospective of Numerical Simulations  

To form a good simulation research group, we need good hardwares, good softwares, and 

scientists with good experiences in doing different types of plasma simulations. 

 

Beethoven can compose a symphony after he lost his hearing ability. 

A simulation expert can predict simulation results even without a computer. 
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