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Lecture 3: Numerical Schemes for Time Integrations -- Solving Initial Value Problems

All the numerical time integrations are constructed based on finite difference numerical
schemes. FFT and Cubic Spline become useless in the numerical time integration processes.

The numerical time integration schemes can be classified into the following two categories:

Explicit Scheme:
* The future information are determined based on the present and the past information
* Easy to program, easy to blowout!
* To avoid blowout, one have to choose shorter time step.

* A short time step means more CPU time

Implicit Scheme:
* The future information are determined based on the future, the present, and the past
information
* Difficult to program and/or require more memory
* Stable in large time step.

* Asaresult, implicit scheme can save CPU time

3.1. Examples of Explicit Scheme

Examples of explicit time integration schemes include Euler method, Runge-Kutta method, the
Adams' open Formula, which is also called Adams-Bashforth Formula, and the Lax-Wendroff
scheme. Table 3.1. lists the numerical schemes of Euler method and Runge-Kutta method. Table
3.2 lists Adams' open formulae at different orders of accuracy, which will be discussed in the
subsection 3.3. The Lax-Wendroff scheme to be discussed in this subsection is commonly used in

the fluid simulations.
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Table 3.1. Explicit time integrations and their corresponding spatial integrations

The spatial integrations based on finite

differences scheme The explicit time integrations

dy(x) dy(t)

—— = f(x), h=Ax =f@.y), h=~At

I f(x) 5 f@.y)
1 order integration 1 order explicit scheme: Euler method
Vi =Y+ hf+ O f) Y=y "y + O )
2" order integration 2" order Runge-Kutta method
Trapezoidal rule (an explicit scheme)
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4™ order integration 4™ order Runge-Kutta method
Simpson's rule (an explicit scheme)
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3 order integration
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Exercise 3.1.
Solve proton's trajectory in a uniform magnetic field B =e B, and electric field
E =e E, by means of (i) Euler method, (ii) 2" order Runge-Kutta method, and (iii) 4t
order Runge-Kutta method, where e, and e_ are the unit vectors along the y and z
directions, respectively. To achieve the same degrees of accuracy, different size of time

steps should be used in different numerical schemes. Solve this problem for 100 gyro
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periods with the following three different initial conditions:
Case l: x(r=0)=0 and v(r=0)=0

Case2: x(r=0)=0 and v(t=0)=(Q2.5E,/B,)e,

Case3: x(r=0)=0 and v(t=0)=(05E,/B,)e,

Plot proton’s trajectory in both x-y space andin v _-v  space.

Compare your numerical results with the theoretical solutions.

The Lax-Wendroff scheme is an explicit scheme. It is good for solving fluid equations with
absence of diffusion or dissipation terms. A set of one-dimensional fluid equations without
dissipation or diffusion terms (example of such set of fluid equation is the 1-D ideal-MHD equation
as shown in Table 3.2), can be written in the following conservative form

U TF(U) _
ot ox

0

which can be solved numerically by the second order Lax-Wendroff scheme.

Step 1:
1
wo UL +UY At
U 2 — i+l i F Un _F Un
4 A LFUL)-FUp)]
Step 2:

n+l n At n+% n+%
U =U;-—I[FU }/)-FU })]
Ax Y -

1

Additional examples and advanced discussion on using Lax-Wendroff scheme to solve fluid

equations can be found in the book by Richtmyer and Morton (1967).

Exercise 3.2.

Using the second order Lax-Wendroff scheme to solve Korteweg-deVries (KdV) equation

3
ﬂ+(CO+V)ﬂ+OtO7 Z=
ot Jx Jx

0

with uniform boundary condition and a given initial profile V(x,7=0) with a bump at center of
the simulation domain. Plot evolutions of spatial profile V(x,f). You can normalize your

velocity field by C,. Study the following two cases: one for o >0, and the other for o <0.
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Table 3.2. The magnetohydrodymic equations in the conservative form

The mass continuity equation 1-D MHD equations
d d d
—p+V-(pV)=0 —(p)+—((pV.)=0
UMY oy PPV
The momentum equation J J 2+ B
—(pV)+—(pV? + p+—L—5)=0
J 1B> BB at dx 2u,
—(EV)+V:[pVV+P+ -—1]1=0
at 2uy My d J BB
— (V) +—(pV,V,-——)=0
The energy equation Jt ox Uy
2 d d B B.
i(lpvz+§p+ B ) _(p‘/;)+_(pvx‘/z_ - L)=0
at 2 27 2u, Jt dx Mo
+V-[(lpV2+§p)V+P-V+q+EXB]=O Jd 1 V2 3 B’
2 2 u —(ZpV +-p+—)
0 at 2 27 2u,

The MHD Ohm’s law
E+VxB=0

2 .
+i[(lpvz+§p+3_)‘/x _m
dx 2 2 Uy My

1=0

Maxwell’s equations 0 J
1 —(B,)-——(E.)=0
ot ox

V:-B=0

d d d
—B=-VxE —(B.))+—(E,)=0
p X (%( ) ax( V)
VxB=u,J

3.2. Examples of Implicit Scheme

Consider a charge particle moving in a uniform strong magnetic field. Momentum equation of this

charge particle is

VO _ 9y )xB, 3.1)

dt m

The following numerical scheme is an implicit scheme of Eq. (3.1)

n n+l
vi+v
v v+ Ar L

m 2

xB, (3.2)

Exercise 3.3.

n+l

. and

Solve Eq. (3.2) to obtain v/*', v"*' and v'*' foragivensetof v/, v', v', B,, B

y o 7 0x ° 0y >

B,..
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Exercise 3.4.

by Ling-Hsiao Lyu

2008 October

Solve proton’s trajectory in Exercise 3.1 by means of the implicit scheme discussed this section.

In addition to the gyro motion, the diffusion equation is another type of differential equation,

which should be solved by an implicit scheme.

The diffusion equation

Z

ot

9°T

dx?

can be solved numerically by one of the following implicit schemes.

’1-:-”” _Ywin K l

At (Ax)P2
or
Tn+1 _ Tn
: . S (T -
At (Ax)
or
T.n+l—TAn K
i i 1= AXT" -
At (Ax)’ A=

where 0 <A <1.

reduced to Eq. (3.5).

—aT! +(1+2a)T" - T/

i+l

KAt
2(Ax)?

where a =

2T +T" )+ A(

Eq. (3.4) can be written as

(T - 2T +T.) +(

For A=1/2,Eq.(3.6) is reduced to Eq. (3.4).

=al +(1-2a)T" +aT/

Tn+l _ 27—;n+1 + 7—;?-;—1)]

2]—;n+1 + 7—;?-;—1)

Tn+l _ 27win+] + r]v’il;-l )]

i+l

For A=1,Eq.(3.6)is

i+l

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

For given boundary conditions 7(x =0)=7;,and T(x =N Ax)=T, ,Eq. (3.7) can be rewritten

in the following tri-diagonal matrix form:

(1+2a) - 0 0
-a (1+2a) -a 0
I I
0 -aa (1+2a) -
0 0 - (1+2a)
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Exercise 3.5.
Write a subroutine, using Gauss elimination method to solve ( x,,x,,...,x, ) in the following
tri-diagonal set of equations. Limit number of arrays used in your program. There should be

no more than five nx1 arrays used in your program.

b ¢¢ 0 .. 0 X, r
a, b, ¢, .. 0 X, r,
I I Lol |
O an—l bn—l Cn—l 'xn—l rn—l
0 0 a, b, X, r,

Examples on how to solve tri-diagonal set of equations numerically can be found at Press et al.

(1988).

Exercise 3.6.
Write a program to solve diffusion equation (3.3) for a given initial condition and boundary

conditions. Plot evolution of spatial profile 7(x,t).

Adams' close formula, which is also called Adams-Moulton formula, is also an implicit scheme.
Table 3.4 lists Adams' close formulae at different orders of accuracy, which will be discussed in the

next subsection 3.3.
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3.3. Predictor-Corrector Method Based on Adams Formula

Predictor-Corrector method is an easy-to-program implicit scheme, but require more memory
than the corresponding explicit scheme. We use the Adams' formula to construct the
Predictor-Corrector simulation scheme (e.g., Shampine and Gordon, 1975; Press et al., 1988).
Tables 3.3 and 3.4 list the Adams' open and close formulae, respectively, at different orders of
accuracy. Proof of these Adams' formulae can be found in advanced mathematics textbooks (e.g.,
Hildebrand, 1976). A 4™ order Predictor-Corrector method (e.g., Shampine and Gordon, 1975) is

summarized in Table 3.5.

Exercise 3.7.
Using the forth order Predictor-Corrector method described in Table 3.4 to solve

Korteweg-deVries (KdV) equation in Exercise 3.2 and proton's trajectory in Exercise 3.4.

Table 3.3. Adams' Open Formulae (also called Adams-Bashforth Formula)

Order of | Solving dy/dt=f or dy/dt=f explicitly with h= At
Accuracy
ISt yn+l =yn +h[fn]+0(h2f(l))
2 I
Y=y B[ = == T+ O )
2 2
31 . 23 16 .o 5 i .
f’l+= I‘I+h_ Vl__ n +_ n +0h (3)
yr=y [12f 12f 12f] (K" )
4™ | 55 0 059 i 37 e 9 s 5
n+l n+h_ n_~7 rn- + 20 n=2 7 prn-: +Oh 4)
yr=y [24f 24f 24f 24f [+O(° )
th n+ n
5 y*=y
1901 ., 2774 .., 2616 .., 1274 .., 251 .., 6 ~(5)
+h - + - +— +0(h
[720f 720f 720f 720f 720f 1+0° ™)
h n+ n
6" Y=y
4277 ., 7923 ..., 9982 .., 7298 .., 2877 ... 475 ..
+h - + - +— -
[1440f 1440f 1440f 1440f 1440f 1440f ]
+O(h £©)
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Table 3.4. Adams' Close Formulae (also called Adams-Moulton Formula)

Order of | Solving dy/dt=f or dy/dt=f implicitly with h=At
Accuracy
ISt yn+l — yn +h[fn+1]+0(h2f(l))
2Hd n+l _ on 1 n+l 1 n 3 p(2)
YU =y b= T+ 1O
2 2
3rd 1 5 1 8 1 -1 4 (3
n+=n+h_ n++_ n__~ rn +Oh 3)
yT=y [12f 12f 12f] (R f)
4t | 9 .. 19 S5 a1 2 5
n+l n+h_ n++_ n_ > n—+_ n- +0h 4)
yT=y [24f 24f 24f 24f 1+0(h° )
Sth yn+1 = yn
251 n+l 646 n 264 n-1 106 n-2 19 n-3 6 £(5)
+th—f" +—f"——f" +— -—— +O0(h
[720f 720f 720f 720f 720f 1+t 1)
6th yn+l =yn
475 .. 1427 .. 798 ., 482 ..., 173 .5 27 ..
+h[—— + - + - +——
[1440 / 1440 / 1440 / 1440 / 1440 / 1440 S
+O(h f©)
Table 3.5. Procedure of the 4™ order Predictor-Corrector Method
Initial Using 4™ order Runge-Kutta method to obtain y', y*, and y’ from y°.
Steps
Predicting | Using 4™ order Adams Open Formula to predict y* from y°, y', y°, and
Step v
Correcting | Using 4™ order Adams Close Formula to correct y* from y', y’, y°, and the
Steps predicted y* (or corrected y* of the last iteration).

Repeat the correcting step for several times or until the iteration converges.
[The condition of convergence in an iteration scheme will be discussed in the

next section (Section 5).]

n

Repeat the Predicting and Correcting Steps to advance y from y* to y
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