
Numerical Simulation of Space Plasmas (I) [AP-4036] Lecture 3   by Ling-Hsiao Lyu  2008 October 

 3-1 

Lecture 3: Numerical Schemes for Time Integrations -- Solving Initial Value Problems 

 

All the numerical time integrations are constructed based on finite difference numerical 

schemes.  FFT and Cubic Spline become useless in the numerical time integration processes.  

The numerical time integration schemes can be classified into the following two categories: 

 

Explicit Scheme:  

• The future information are determined based on the present and the past information 

• Easy to program, easy to blowout! 

• To avoid blowout, one have to choose shorter time step.  

• A short time step means more CPU time 

 

Implicit Scheme: 

• The future information are determined based on the future, the present, and the past 

information 

• Difficult to program and/or require more memory 

• Stable in large time step.   

• As a result, implicit scheme can save CPU time 

 

3.1. Examples of Explicit Scheme 

 

Examples of explicit time integration schemes include Euler method, Runge-Kutta method, the 

Adams' open Formula, which is also called Adams-Bashforth Formula, and the Lax-Wendroff 

scheme.  Table 3.1. lists the numerical schemes of Euler method and Runge-Kutta method.  Table 

3.2 lists Adams' open formulae at different orders of accuracy, which will be discussed in the 

subsection 3.3.  The Lax-Wendroff scheme to be discussed in this subsection is commonly used in 

the fluid simulations. 
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Table 3.1. Explicit time integrations and their corresponding spatial integrations 

The spatial integrations based on finite 

differences scheme The explicit time integrations 

dy(x)
dx

= f (x) , h = Δx  dy(t)
dt

= f (t, y) , h = Δt  

1st order integration 

yi+1 = yi +h fi +O(h
2 f (1) )  

1st order explicit scheme: Euler method 

yn+1 = yn +h f (t n , yn )+O(h2 f (1) )  

2nd order integration 

Trapezoidal rule 

yi+1 = yi +h
fi+1 + fi
2

+O(h3 f (2) )  

2nd order Runge-Kutta method 

(an explicit scheme) 

(y*)
n+1
2 = yn + h

2
f (t n , yn )  

yn+1 = yn +h f (t
n+1
2 ,(y*)

n+1
2 )+O(h3 f (2) )  

4th order integration 

Simpson's rule 

yi+1 = yi

+h(1
6
fi +

4
6
fi+(1/2) +

1
6
fi+1)

+O(h5 f (4 ) )

 

 

4th order Runge-Kutta method  

(an explicit scheme) 

(y*)
n+1
2 = yn + h

2
f (t n , yn )  

(y**)
n+1
2 = yn + h

2
f (t

n+1
2 ,(y*)

n+1
2 )  

€ 

(y ***)n+1 = yn + h f (t
n+
1
2 ,(y **)

n+
1
2 )  

yn+1 = yn +h[1
6
f (t n , yn )

+
2
6
f (t

n+1
2 ,(y*)

n+1
2 )

+
2
6
f (t

n+1
2 ,(y**)

n+1
2 )

+
1
6
f (t n+1,(y***)n+1)]+O(h5 f (4 ) )

 

3rd order integration 

Simpson's 

€ 

3
8

 rule 

yi+1 = yi

+
h
3
(3
8
fi +
9
8
f
i+1
3

+
9
8
f
i+2
3

+
3
8
fi+1)

+O(h5 f (4 ) )

 

 

Exercise 3.1. 

Solve proton's trajectory in a uniform magnetic field 

€ 

B = ezB0  and electric field 

€ 

E = eyE0  by means of (i) Euler method, (ii) 2nd order Runge-Kutta method, and (iii) 4th 

order Runge-Kutta method, where 

€ 

ey  and 

€ 

ez  are the unit vectors along the 

€ 

y  and 

€ 

z  

directions, respectively.  To achieve the same degrees of accuracy, different size of time 

steps should be used in different numerical schemes.  Solve this problem for 100 gyro 
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periods with the following three different initial conditions: 

Case 1: 

€ 

x(t = 0) = 0  and v(t = 0)= 0  

Case 2: 

€ 

x(t = 0) = 0  and v(t = 0)= (2.5E0 / B0 )ex  

Case 3: 

€ 

x(t = 0) = 0  and v(t = 0)= (0.5E0 / B0 )ex  

Plot proton’s trajectory in both 

€ 

x -

€ 

y  space and in 

€ 

vx -

€ 

vy  space. 

Compare your numerical results with the theoretical solutions. 

 

The Lax-Wendroff scheme is an explicit scheme.  It is good for solving fluid equations with 

absence of diffusion or dissipation terms.  A set of one-dimensional fluid equations without 

dissipation or diffusion terms (example of such set of fluid equation is the 1-D ideal-MHD equation 

as shown in Table 3.2), can be written in the following conservative form  

∂U
∂ t

+
∂F(U)
∂ x

= 0  

which can be solved numerically by the second order Lax-Wendroff scheme. 

Step 1: 

U
i+1
2

n+1
2 =
Ui+1

n +Ui
n

2
−
Δt
2Δx
[F(Ui+1

n )−F(Ui
n )]  

Step 2: 

Ui
n+1 =Ui

n −
Δt
Δx
[F(U

i+1
2

n+1
2 )−F(U

i−1
2

n+1
2 )]  

Additional examples and advanced discussion on using Lax-Wendroff scheme to solve fluid 

equations can be found in the book by Richtmyer and Morton (1967).   

 

Exercise 3.2. 

Using the second order Lax-Wendroff scheme to solve Korteweg-deVries (KdV) equation  

∂V
∂ t

+ (C0 +V )
∂V
∂ x

+α
∂ 3V
∂ x3

= 0  

with uniform boundary condition and a given initial profile 

€ 

V(x, t = 0)  with a bump at center of 

the simulation domain.  Plot evolutions of spatial profile 

€ 

V(x, t) .  You can normalize your 

velocity field by 

€ 

C0 .  Study the following two cases: one for 

€ 

α > 0, and the other for 

€ 

α < 0 . 

 



Numerical Simulation of Space Plasmas (I) [AP-4036] Lecture 3   by Ling-Hsiao Lyu  2008 October 

 3-4 

Table 3.2. The magnetohydrodymic equations in the conservative form 

The mass continuity equation 

∂
∂ t
ρ +∇⋅ (ρV)= 0  

1-D MHD equations 

∂
∂ t
(ρ)+ ∂

∂ x
(ρVx )= 0  

∂
∂ t
(ρVx )+

∂
∂ x
(ρVx

2 + p+
By
2 + Bz

2

2µ0
)= 0  

€ 

∂
∂ t
(ρVy ) +

∂
∂x
(ρVxVy −

BxBy

µ0
) = 0  

∂
∂ t
(ρVz )+

∂
∂ x
(ρVxVz −

BxBz
µ0

)= 0  

∂
∂ t
(1
2
ρV 2 +

3
2
p+ B2

2µ0
)

+
∂
∂ x
[(1
2
ρV 2 +

5
2
p+ B

2

µ0
)Vx −

Bx (B ⋅V)
µ0

]= 0
 

∂
∂ t
(By )−

∂
∂ x
(Ez )= 0  

∂
∂ t
(Bz )+

∂
∂ x
(Ey )= 0  

 

The momentum equation 

∂
∂ t
(ρV)+∇⋅[ρVV+P+ 1B

2

2µ0
−
BB
µ0
]= 0  

The energy equation 

∂
∂ t
(1
2
ρV 2 +

3
2
p+ B2

2µ0
)

+∇⋅[(1
2
ρV 2 +

3
2
p)V+P ⋅V+q+ E×B

µ0
]= 0

 

The MHD Ohm’s law 

E+V×B = 0  
Maxwell’s equations 

∇⋅B = 0  

∂
∂ t
B = −∇×E  

∇×B = µ0J  

 

3.2. Examples of Implicit Scheme 

 

Consider a charge particle moving in a uniform strong magnetic field.  Momentum equation of this 

charge particle is 

dv(t)
dt

=
q
m
v(t)×B0              (3.1) 

The following numerical scheme is an implicit scheme of Eq. (3.1) 

vn+1 = vn +Δt q
m
vn +vn+1

2
×B0            (3.2) 

 

Exercise 3.3. 

Solve Eq. (3.2) to obtain 

€ 

vx
n+1 , 

€ 

vy
n+1  and 

€ 

vz
n+1 for a given set of 

€ 

vx
n , 

€ 

vy
n , 

€ 

vz
n , 

€ 

B0x , 

€ 

B0y , and 

€ 

B0z . 
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Exercise 3.4. 

Solve proton’s trajectory in Exercise 3.1 by means of the implicit scheme discussed this section. 

 

In addition to the gyro motion, the diffusion equation is another type of differential equation, 

which should be solved by an implicit scheme. 

 

The diffusion equation 

∂T
∂ t

=κ
∂ 2T
∂ x2

                               (3.3) 

can be solved numerically by one of the following implicit schemes. 

Ti
n+1 − Ti

n

Δt
=

κ
(Δx)2

1
2
[(Ti+1

n − 2Ti
n + Ti−1

n ) + (Ti+1
n+1 − 2Ti

n+1 + Ti−1
n+1)]             (3.4) 

or  

Ti
n+1 − Ti

n

Δt
=

κ
(Δx)2

(Ti+1
n+1 − 2Ti

n+1 + Ti−1
n+1)                     (3.5) 

or 

Ti
n+1 −Ti

n

Δt
=

κ
(Δx)2

[(1−λ)(Ti+1
n −2Ti

n +Ti−1
n )+λ(Ti+1

n+1 −2Ti
n+1 +Ti−1

n+1)]           (3.6) 

where 

€ 

0 < λ <1.  For 

€ 

λ =1/2 , Eq. (3.6) is reduced to Eq. (3.4).  For 

€ 

λ =1, Eq. (3.6) is 

reduced to Eq. (3.5).  Eq. (3.4) can be written as 

−αTi−1
n+1 + (1+2α)Ti

n+1 −αTi+1
n+1 =αTi−1

n + (1−2α)Ti
n +αTi+1

n                (3.7) 

where α = κΔt
2(Δx)2

 

For given boundary conditions 

€ 

T(x = 0) = T0 , and 

€ 

T(x = NxΔx) = TNx
, Eq. (3.7) can be rewritten 

in the following tri-diagonal matrix form: 

(1+2α) −α 0 ... 0
−α (1+2α) −α ... 0
| |
0 ... −α (1+2α) −α

0 ... 0 −α (1+2α)

#

$

%
%
%
%
%
%

&

'

(
(
(
(
(
(

T1
n+1

T2
n+1

|
TNx−2

n+1

TNx−1
n+1

#

$

%
%
%
%
%
%
%

&

'

(
(
(
(
(
(
(

=

2αT0 + (1−2α)T1
n +αT2

n

αT1
n + (1−2α)T2

n +αT3
n

|
αTNx−3

n + (1−2α)TNx−2
n +αTNx−1

n

αTNx−2
n + (1−2α)TNx−1

n +2αTNx

#

$

%
%
%
%
%
%
%

&

'

(
(
(
(
(
(
(
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Exercise 3.5. 

Write a subroutine, using Gauss elimination method to solve ( x1, x2 ,..., xn ) in the following 

tri-diagonal set of equations.  Limit number of arrays used in your program.  There should be 

no more than five 

€ 

n ×1 arrays used in your program. 

b1 c1 0 ... 0
a2 b2 c2 ... 0
| |
0 ... an−1 bn−1 cn−1
0 ... 0 an bn

"

#

$
$
$
$
$
$

%

&

'
'
'
'
'
'

x1
x2
|
xn−1
xn

"

#

$
$
$
$
$
$

%

&

'
'
'
'
'
'

=

r1
r2
|
rn−1
rn

"

#

$
$
$
$
$
$

%

&

'
'
'
'
'
'

 

Examples on how to solve tri-diagonal set of equations numerically can be found at Press et al. 

(1988). 

 

Exercise 3.6. 

Write a program to solve diffusion equation (3.3) for a given initial condition and boundary 

conditions.  Plot evolution of spatial profile 

€ 

T(x, t). 

 

Adams' close formula, which is also called Adams-Moulton formula, is also an implicit scheme.  

Table 3.4 lists Adams' close formulae at different orders of accuracy, which will be discussed in the 

next subsection 3.3. 
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3.3. Predictor-Corrector Method Based on Adams Formula  

 

Predictor-Corrector method is an easy-to-program implicit scheme, but require more memory 

than the corresponding explicit scheme.  We use the Adams' formula to construct the 

Predictor-Corrector simulation scheme (e.g., Shampine and Gordon, 1975; Press et al., 1988).  

Tables 3.3 and 3.4 list the Adams' open and close formulae, respectively, at different orders of 

accuracy.  Proof of these Adams' formulae can be found in advanced mathematics textbooks (e.g., 

Hildebrand, 1976).  A 4th order Predictor-Corrector method (e.g., Shampine and Gordon, 1975) is 

summarized in Table 3.5. 

 

Exercise 3.7. 

Using the forth order Predictor-Corrector method described in Table 3.4 to solve 

Korteweg-deVries (KdV) equation in Exercise 3.2 and proton's trajectory in Exercise 3.4. 

 

Table 3.3. Adams' Open Formulae (also called Adams-Bashforth Formula) 

Order of 

Accuracy 

Solving dy / dt = f  or ∂ y /∂ t = f  explicitly with h = Δt  

1st yn+1 = yn +h[ f n ]+O(h2 f (1) )  

2nd yn+1 = yn +h[ 3
2
f n − 1

2
f n−1]+O(h3 f (2) )  

3rd yn+1 = yn +h[23
12

f n −16
12

f n−1 + 5
12

f n−2 ]+O(h4 f (3) )  

4th yn+1 = yn +h[ 55
24

f n − 59
24

f n−1 + 37
24

f n−2 − 9
24

f n−3]+O(h5 f (4 ) )  

5th yn+1 = yn

+h[1901
720

f n − 2774
720

f n−1 + 2616
720

f n−2 −1274
720

f n−3 + 251
720

f n−4 ]+O(h6 f (5) )
 

6th yn+1 = yn

+h[ 4277
1440

f n − 7923
1440

f n−1 + 9982
1440

f n−2 − 7298
1440

f n−3 + 2877
1440

f n−4 − 475
1440

f n−5 ]

+O(h7 f (6) )
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Table 3.4. Adams' Close Formulae (also called Adams-Moulton Formula) 

Order of 

Accuracy 

Solving dy / dt = f  or ∂ y /∂ t = f  implicitly with 

€ 

h = Δ t  

1st yn+1 = yn +h[ f n+1]+O(h2 f (1) )  

2nd yn+1 = yn +h[1
2
f n+1 + 1

2
f n ]+O(h3 f (2) )  

3rd yn+1 = yn +h[ 5
12

f n+1 + 8
12

f n − 1
12

f n−1]+O(h4 f (3) )  

4th yn+1 = yn +h[ 9
24

f n+1 + 19
24

f n − 5
24

f n−1 + 1
24

f n−2 ]+O(h5 f (4 ) )  

5th yn+1 = yn

+h[ 251
720

f n+1 + 646
720

f n − 264
720

f n−1 + 106
720

f n−2 − 19
720

f n−3]+O(h6 f (5) )
 

6th yn+1 = yn

+h[ 475
1440

f n+1 +1427
1440

f n − 798
1440

f n−1 + 482
1440

f n−2 − 173
1440

f n−3 + 27
1440

f n−4 ]

+O(h7 f (6) )

 

 

Table 3.5. Procedure of the 4th order Predictor-Corrector Method 

Initial  

Steps 

Using 4th order Runge-Kutta method to obtain 

€ 

y1, 

€ 

y 2, and 

€ 

y 3 from 

€ 

y 0. 

Predicting 

Step 

Using 4th order Adams Open Formula to predict 

€ 

y 4  from 

€ 

y 0, 

€ 

y1, 

€ 

y 2, and 

€ 

y 3. 

Correcting 

Steps 

Using 4th order Adams Close Formula to correct 

€ 

y 4  from 

€ 

y1, 

€ 

y 2, 

€ 

y 3, and the 

predicted 

€ 

y 4  (or corrected 

€ 

y 4  of the last iteration). 

Repeat the correcting step for several times or until the iteration converges. 

[The condition of convergence in an iteration scheme will be discussed in the 

next section (Section 5).] 

. . . . Repeat the Predicting and Correcting Steps to advance y  from y4  to yn  
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