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Lecture 2: Numerical Methods for Differentiations and Integrations 

 

As we have discussed in Lecture 1 that numerical simulation is a set of carefully planed 

numerical schemes to solve an initial value problem numerically.  Let us consider the 
following three types of differential equations. 

  
dy(t)

dt
= f (t)               (2.1) 

  
dy(t)

dt
= f ( y,t)              (2.2) 

  

∂ y(x,t)
∂ t

= f (t, y,∂ y
∂ x

,∂
2 y

∂ x2 ,..., ydx,...∫ )          (2.3) 

The numerical methods for time integration of these equations will be discussed in the 

Lecture 3.  Before we conduct the time integration, we need to determine the differentiations 

		
∂ y
∂ x

, ∂ 2 y
∂ x2

, ...  and the integrations 
  

ydx,...∫  on the right-hand side of the equation (2.3) at 

each grid point.   

In this section, we are going to discuss the following three types of numerical methods, 

which are commonly used in spatial differentiations and integrations. 

 

1. Finite Differences (based on Taylor series expansion) 

2. FFT (Fast Fourier Transform) 

3. Cubic Spline  

 

2.1. Finite Differences 

 

For convenience, we shall use the following notation in the rest of this lecture notes. 

  
fijk

n = f (x = iΔx, y = jΔy, z = kΔz, t = nΔt) = f (xi , y j , zk ,t n )  

For a given tabulate function 

  

i : 1 2 ... N
xi : x1 x2 ... xN

fi : f1 f2 ... fN

 

the finite-difference expression of the n-th order derivatives of the given function  f  can be 

obtained from the Taylor series expression of  f .  Table 2.1 lists examples of 
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finite-difference expression of 
  
[d f / dx]x=xi

, 
  
[d 2 f / dx2]x=xi

, and 
  
[d 3 f / dx3]x=xi

, where the 

central-difference expressions are of the first-order accuracy, while the forward-difference 

and backword-difference expressions are of the zeroth-order accuracy.  Complete 

derivations of the higher-order finite-difference schemes are given in the Appendix B.  

Table 2.2 lists examples of the finite-difference expressions of spatial integrations 

		
y(x)= f (x)dx

xi

xi+Δx∫ .  Complete derivations of the higher-order finite-difference scheme are 

given in the Appendix C.1.  

 

Table 2.1. The numerical differentiations based on finite difference method 

Derivatives 
Central Difference 

(First-order scheme) 

Forward Difference 

(Zeroth-order scheme) 

Backward Difference 

(Zeroth-order scheme) 

 

d f
dx x=xi

 
  
δ fi =

fi+1 − fi−1

2Δx
 

  
Δ fi =

fi+1 − fi

Δx
 

  
∇fi =

fi − fi−1

Δx
 

  

d 2 f
dx2

x=xi

 
  
δ 2 fi =

fi+1 − 2 fi + fi−1

(Δx)2  
  
Δ2 fi =

fi+2 − 2 fi+1 + fi

(Δx)2  
  
∇2 fi =

fi − 2 fi−1 + fi−2

(Δx)2  

  

d 3 f
dx3

x=xi

 

  

δ 3 fi =
fi+2 − 2 fi+1 + 2 fi−1 − fi−2

2(Δx)3

 

  

Δ 3 fi =
fi+3 − 3 fi+2 + 3 fi+1 − fi

(Δx)3

 

  

∇3 fi =
fi − 3 fi−1 + 3 fi−2 − fi−3

(Δx)3

 

 

Exercise 2.1.   

(a) Please prove that the central-difference expressions shown in Table 2.1 are of 

first-order accuracy.  

(b) Please prove that the forward-difference and backward-difference  expressions 

shown in Table 2.1 are of zeroth-order accuracy. 

Exercise 2.2.  

Determine   d f / dx , and   d
2 f / dx2  of a given analytical function   f (x)  numerically 

based on the first-order, the third-order, and the fifth-order finite-difference expressions 

listed in the Appendix B.  The differences between the numerical solutions and the 

analytical solutions are called the numerical errors.  Determine the numerical errors of 

a given grid size  Δx .  Show (or plot) that the numerical error is a function of position 

and also a function of  Δx . 
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Table 2.2. The spatial integrations based on finite difference method 

 

  

d y(x)
dx

= f (x) ,  h = Δx  

1st order integration 
  yi+1 = yi + h fi +O(h2 f (1) )  

2nd order integration 

Trapezoidal rule   
yi+1 = yi + h

fi+1 + fi

2
+O(h3 f (2) )  

4th order integration 

Simpson's rule   
yi+1 = yi + h(1

6
fi +

4
6

fi+(1/2) +
1
6

fi+1)+O(h5 f (4) )  

4th order integration 

Simpson's  3 / 8  rule 		
yi+1 = yi +

h
3(
3
8 fi +

9
8 fi+13

+ 98 fi+23
+ 38 fi+1)+O(h

5 f (4))  

 

 

Exercise 2.3. 

Use the first-order, the second-order, and the forth-order integration expressions listed in 

Table 2.2 to determine   y(x = π / 4)  with   dy(x) / dx = cos(x)  and boundary condition 

  y(x = 0) = 0 .  Determine the numerical errors in your results.  Compare the numerical 

errors obtained from different spatial integration expressions. 

 

2.2. FFT (Fast Fourier Transform) 

 

A function can be expanded by a complete set of sine and cosine functions.  In the Fast 

Fourier Transform, the sine and cosine tables are calculated in advance to save the CPU time 

of the simulation. 

For a periodic function  f , one can use FFT to determine its spatial differentiations and 

integrations, i.e.,  

  

d f
dx

= FFT −1{ik[FFT ( f )]} 

  
f dx∫ = FFT −1{ 1

ik
[FFT ( f )]}  for 

� 

k> 0. 

 

Exercise 2.4. 

Use an FFT subroutine to determine the first derivatives of a periodic analytical function 

 f .  Determine the numerical errors in your results.   
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Exercise 2.5. 

Use an FFT subroutine to determine the first derivatives of a non-periodic analytical 

function  f .  Determine the numerical errors in your results.   

 

2.3. Cubic Spline  

 

A tabulate function can be fitted by a set of piece-wise continuous functions, in which 

the first and the second derivatives of the fitting functions are continuous at each grid point.  

One need to solve a tri-diagonal matrix to determine the piece-wise continuous cubic spline 

functions.  The inversion of the tri-diagonal matrix depends only on the position of grid 

points.  Thus, for simulations with fixed grid points, one can evaluate the inversion of the 

tri-diagonal matrix in advance to save the CPU time of the simulation. 

For a non-periodic function  f , it is good to use the cubic spline method to determine its 

spatial differentiations and integrations at each grid point.  Results of the spatial 

differentiations obtained from the cubic spline show the same order of accuracy as the results 

obtained from the fifth order finite differences scheme. 

The piece-wise continuous function in the cubic spline can be written in the following 

form. 

  
f (xk ≤ x ≤ xk+1) =

f (xk )(x − xk+1)
(xk − xk+1)

+
f (xk+1)(x − xk )

(xk+1 − xk )
+ [ak

(x − xk )
(xk+1 − xk )

+ bk ]
(x − xk )(x − xk+1)

(xk+1 − xk )2  

The constants   {ak , bk , for k = 1→ n−1}  are chosen such that the matching conditions for 

cubic spline can be fulfilled, i.e., 

  

df (xk−1 ≤ x ≤ xk )
dx x = xk

=
df (xk ≤ x ≤ xk+1)

dx x = xk

 

and 

  

d 2 f (xk−1 ≤ x ≤ xk )
dx2

x = xk

=
d 2 f (xk ≤ x ≤ xk+1)

dx2

x = xk

 

One can obtain the following two types of recursion formula 

  
′f (xk−1)+ ′f (xk )[2+ 2(

hk−1

hk

)]+ ′f (xk+1)(
hk−1

hk

) = 3 ′f0(xk−1)+ 3 ′f0(xk )(
hk−1

hk

)  
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′′f (xk−1)+ ′′f (xk )[2+ 2(

hk

hk−1

)]+ ′′f (xk+1)(
hk

hk−1

) = 6
hk−1

[ ′f0(xk )− ′f0(xk−1)] 

where 
  
′f0(xk ) =

f (xk+1)− f (xk )
xk+1 − xk

 and   hk = xk+1 − xk .  

Detail derivations of the Cubic Spline with different boundary conditions are given in 

Appendix A. 

 

Exercise 2.6. 

Use a Cubic Spline subroutine to determine the first derivatives of an analytical function 

 f .  Determine the numerical errors in your results.   
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