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Lecture 1: Introduction to Round-off Error�� 

 

Round-off error plays an important role on the stability and accuracy of a computer 

simulation.  The goal of this lecture is to show where the round-off errors come from and 

how to minimize the impact of the round-off errors in the numerical simulation.   

In order to understand the source of the round-off errors, we need to know the computer 

architecture as well as the computer representations of the integer numbers and the real 

numbers. 

 

1.1. Review of Word, Byte, and Bit in the Computer Architecture  

 

In the modern computer processor, a byte consists of 8 bits.  A word consists of 4 bytes 

for 32 bits computer or 8 bytes for 64 bits computer.  Thus, the size of word is 32 bits for 

32-bit computer, but 64 bits for 64-bit computer. 

 

Exercise 1.1. 

To learn more about the historical development of the computer architecture, please read 

the information on “word in computer architecture” in Wikipedia, 

http://en.wikipedia.org/wiki/Word_(computer_architecture) 

 

From Exercise 1.1, it can be seen that the most popular sizes of word found in different 

processors are 64, 32, 16, 8, and 4 bits.  But one can also found size of word to be 60, 50, 48, 

40, 39, 36, 34, 27, 26, 25, 22, 18, 15, 12, or 9 bits.  The size of byte is equal to the size of 

character.  For most processor, the size of byte is 8 bits.  But there were also processor with 

size of byte equal to 5, 6, or 9 bits. 

 
Figure 1. The structure of word, bytes, and bits in a 32-bit computer 
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1.2. Computer Representations of Integer Numbers 

 

Figure 1 shows the relationship among a single precision word, byte, bit in a 32-bit 

computer.  For the modern 32-bit computer, a single precision word consists of 4 bytes.  A 

byte consists of 8 bits.  Thus, a single precision word consists of 32 bits.  From Figure 1, 

we can also conclude that, for the 32-bit computer, the maximum integer register is 

232=4294967296 ~ 4G.  But the range of integer depends on how the processor treats the 

negative integer.  For the modern computer processor, the computer representation of 

integer is given in the following way: 

• When the first bit is 0, the integer is positive. The absolute value of the positive integer is 

determined by the binary representation of the rest 31 bits.  

• When the first bit is 1, the integer is negative. The absolute value of the negative integer 

is determined by the binary representation of the complement of the rest 31 bits plus 1.  

 

Q: What is (10011000)2? 

The first bit is 1. It means it is a negative integer.  Changing the rest bits from 0011000 to 

1100111, it yields (1100111)2= 64 + 32 + 0 + 0 + 4 + 2 + 1 = 103. 

The absolute value of the negative integer is 103 + 1 = 104.  Thus, (10011000)2= – 104  

(When the author was a graduate student in NCU, the university has purchased a 60-bits 

CDC-Cyber computer.  In order to speed up the calculation, this computer taking the 

complement of the rest 59 bits without adding 1 when it evaluates the negative integers.  As 

a result, both (000…000)2 and (111…111)2 equal to 0 in the 60-bits CDC-Cyber computer.)   

 

Exercise 1.2. 

Read the information on “signed number representations” in Wikipedia, 

http://en.wikipedia.org/wiki/Signed_number_representations 

 

Exercise 1.3. 

Read the information on “integer in computer science” in Wikipedia, 

http://en.wikipedia.org/wiki/Integer_(computer_science) 
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1.3. Computer Representations of Integers and Characters 

 

The integers and characters are connected through a given code table.  Examples of 

such code include the ASCII code for English and the Big-5 code for Traditional Chinese.  

One may find intrinsic functions to make converting between the integers and ASCII code.  

Or, one can use “A format” in FORTRAN language to convert integers and “characteristics” 

(or sometimes called “strings”).  However, it is even more important to know that we can 

output our integer or floating-point data in “A format” as binary data to save a lot of disk 

space.   

Note that after year 2000, the formatted binary data has become a machine-independent 

data structure.  Thus, most of the computer graphic software, such as IDL or MATLAB, has 

the ability to read the binary data structure.  But the unformatted binary data structure is 

remained to be machine-dependent data structure.  Thus, one has to plot the data in the same 

machine if the output data file is an unformatted binary data. 

 

Exercise 1.4 

Write a test program to find out the binary structures of the ASCII code, the integers, 

and the floating numbers used in your computer.  (e.g., Write 31~127 in A1 format to a 

file and find out what you can see in that file.) 

 

The following are two FORTRAN programs for ASCII code and Chinese Big-5 code 
C==GETASCII.f=========== 

C  This program shows the binary structures of the ASCII code  

      Program GETASCII 

      DO I=31, 127 

      WRITE(3,20) I, I 

      ENDDO 

   20 FORMAT(1X,I3,1X,A1) 

      STOP 

      END 

 
C==GETBIG5.f============  

C  This program outputs the Chinese characters in Big-5 code.   

C  To view the Chinese chsaracters, you can open the output file by a web browser 

C     and choose viewing text by Big-5 encoding.  Then, you can make  

C     a copy of the Chinese characteristics and past them to a regular word document. 

C 
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      PROGRAM GETBIG5 

C HIGH: A1-F9 (161-249) 

C LOW:  40-7E (64-126), A1-FE (161-254)  

      INTEGER*1 IA(20000),IB(20000) 

      JJ=0 

      DO I=161,249 

        DO II=64,126 

        JJ=JJ+1 

        IB(JJ)=II 

        IA(JJ)=I 

        ENDDO 

        DO II=161,254 

        JJ=JJ+1 

        IB(JJ)=II 

        IA(JJ)=I 

        ENDDO 

      ENDDO 

      JJ0=JJ 

      WRITE(11,1) (IA(K),IB(K),K=1,JJ0) 

    1 FORMAT(100A1) 

      STOP 

      END 

 

Additional example of FORTRAN program to determine the ASCII code of a given 

character and vice versa. 

C==ASCII_TEST.f======================= 
C This program determines the ASCII code of a given character and vice versa 
      program ascii_test 
      character*1 a 
      byte i 
      id=1 !id can be any integer between 1 and 99 except 5 and 6 
           !id=5 is reserved for the system_input, such as the terminal 
           !id=6 is reserved for the system_output, such as the terminal 
   10 continue 
      print *,'enter one character' 
      read(5,*) a 
      write(id,1)a 
    1 format(A1) 
      rewind id 
      read(id,1)I 
      print *,'I=',I 
      rewind id 
      write(id,2)a 
    2 format(A2) 
      rewind id 
      read(id,2)I 
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      print *,'I=',I 
C 
      print *,'enter an integer, or enter 0 to stop' 
      read(5,*) I 
      if(i.eq.0) go to 99 
      rewind id 
      write(id,1)I 
      rewind id 
      read(id,1)a 
      print *,'a=',a 
      rewind id 
      write(id,2)I 
      rewind id 
      read(id,2)a 
      print *,'a=',a 
      go to 10 
   99 continue 
      stop 
      end 

 

 

1.4. Computer Representations of Integers and Real Numbers 

 

Table 1.1 shows the lower and upper limits of the integers and byte(s) at different length.   

 

Table 1.1. The lower and upper limits of the integers and byte(s) at different length 

Fortran Data Type lower limit of the data upper limit of the data 

Byte 0 + 255 ( = 28 – 1) 

Integer*1 – 128 ( = – 27 ) + 127 ( = 27 – 1) 

Bytes 0 + 65535 ( = 216 – 1) 

Integer*2 –32768 ( = – 215 ) + 32767 ( = 215 – 1) 

Integer*4 – 2147483648 ( = – 231 ) ~ 2147483647 ( = 231 – 1) 

 

Exercise 1.5. 

To learn more about the historical development of the floating point in the computer 

architecture, please read the information on “floating point” on Wikipedia, 

http://en.wikipedia.org/wiki/Floating_point 

 

Exercise 1.6 

Write a program to verify the results shown in Table 1.1. 
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Table 1.2 shows the computer representation of floating point at different length, which 

is modified from the webpage discussed in Exercise 1.5.  The significant digits listed in 

Table 1.2 will give raise to round-off error. This is the reason why we must use double 

precision in our numerical simulation.  

Note that there is no round-off error in the integer expression and calculation.  But the 

maximum and minimum in the integer expression is much less than the extrema of the 

floating-point number at the same length.  Both real number and complex number are 

floating point numbers with finite significant digits.  Since a complex number consists of 

two real numbers, which represent the real part and the imaginary part of the complex 

number, the length of a complex number is twice of that of a real number.  

 

Table 1.2. The computer representation of the floating points at different length 

Type Sign Exponent Significand 
Total 

bits 

Exponent upper 

limit 

significant 

digits 

Half  

(IEEE 754-2008) 
1 5(=1+4) 10 16 15(=24–1) ~3.3 

Single 1 8(=1+7) 23 32 127(=27–1) ~7.2 

Double 1 11(=1+10) 52 64 1023(=210–1) ~15.9 

Double extended 

(80-bit) 
1 15(=1+14) 64 80 16383(=214–1) ~19.2 

Quad 1 15(=1+14) 112 128 16383(=214–1) ~34.0 

 

Exercise 1.7 

(a) Write a program to verify the last column shown in Table 1.2. 

(b) Write a program to check the value in the first three columns shown in Table 1.2 in 

your computer. 

 

List below is an example of Fortran program, which determines the extrema of the real 

number and the integer number that can be resolved by the current computing system.  

C==MAXIMUM_TEST.f=================================================== 
      PROGRAM MAXIMUM_TEST 
      REAL*8 AA 
    1 CONTINUE 
      PRINT *,'ENTER AA, A, I' 
      READ(5,*) AA, A, I 
      B=EXP(A) 
      IF(I.EQ.0) GO TO 99 
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      PRINT *, 'AA, A, EXP(A), I =' 
      PRINT *, AA, A, B, I 
      GO TO 1 
   99 CONTINUE 
      STOP 
      END 
 

 

1.5. How to Determine the Relative Error of a Floating Number 

 

If  is the relative error of 1, then an iteration scheme is convergent when 

.  

where  is the th iteration result of .   

The relative error  can be obtained from the program GETU.f as given below. (e.g., 

Shampine and Gordon, 1975).  The relative error of a number A is U*|A|.  The relative 

error is a machine-dependent error before year 2000.  The reason that different 

floating-point processor has different relative error can be understand by the historical review 

given in Exercise 1.5. 

 
C== GETU.f ========== 

C  This subroutine determines machine-dependent relative error  

C   relative to 1. 

      Subroutine GETU(U) 

      Implicit double precision (a-h,o-z) 

      A1=1.d0    !for double precision 

      AH=0.5d0    !for double precision 

C      A1=1.     !for single precision program 

C      AH=0.5     !for single precision program 

      U=A1 

      UU=U 

    1 CONTINUE 

      UU=UU*AH 

      UT=U+UU 

      IF(UT.GT.U) GO TO 1 

      U=UU*2 

      RETURN 

      END 

 

U
k+1yn+1 − k yn+1 <U kyn+1

k yn+1 k yn+1

U
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1.6. How to Minimized the Numerical Errors due to Round-off Error 

 

We can minimize the numerical errors due to round-off errors by the following way. 

If  (the relative error of A and B), set  (Tsai et al., 2009) 

Examples of the function programs and main program that can demonstrate the 

round-off errors in the derivatives of  are given below. 

C==DIFAB.f=============  

C This function determines A-B with minimized round-off error 

      FUNCTION DIFAB(A,B) 

      Implicit double precision (a-h,o-z) 

      common RELERR 

      TEMP=A-B 

      IF(DABS(TEMP).LT.MAX(DABS(A),DABS(B))*RELERR) TEMP=0 

      DIFAB=TEMP 

      RETURN 

      END 

 
C==ADDAB.f======== 

C This function determines A+B with minimized round-off error 

      FUNCTION ADDAB(A,B) 

      Implicit double precision (a-h,o-z) 

      common RELERR 

      TEMP=A+B 

      IF(DABS(TEMP).LT.MAX(DABS(A),DABS(B))*RELERR) TEMP=0 

      ADDAB=TEMP 

      RETURN 

      END 

 
C==test_DIFAB.f========  

C This program determines the derivatives of the tanh(x) 

      program test_DIFAB 

      Implicit double precision (a-h,o-z) 

      common RELERR 

      call DGETU(RELERR) 

      RELERR=RELERR*10 

      A01=0.1d0 

      A0H=A01/2.d0 

      FL=1  ! exp(0)=1 

      DO I=1,180 

      X=I*A01 

      temp=dexp(x) 

A− B < A− B = 0

tanh(x)
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      temp1=1.d0/temp 

      FR=(temp-temp1)/(temp+temp1) 

      PF1=(FR-FL)/A01 

      FR=DIFAB(temp,temp1)/ADDAB(temp,temp1) 

      PF2=DIFAB(FR,FL)/A01 

      IF(I.GT.160) THEN 

      WRITE(2,*), 'X1, PF1, PF2=' 

      WRITE(2,*), X1, PF1, PF2 

      ENDIF 

      FL=FR 

      ENDDO 

      STOP 

      END 

C===================================== 

      INCLUDE 'DIFAB.f' 

      INCLUDE 'ADDAB.f' 

      INCLUDE 'GETU.f' 

 

 

1.7. Summary 

 

Computer simulation is a special type of numerical method, which means to solve a 

system of ordinary differential equations (ODEs) or partial differential equations (PDEs) with 

a time-derivative term presentted in each of the ODEs or PDEs.  Simulation results can 

provide information on how the given system will evolve with time and why it evolves in 

such a way.  The simulation results will depend on the governing equations, the simulation 

scheme, the grid size, the size of the simulation domain, the time steps, the initial conditions, 

and the boundary conditions.   Since most of the numerical simulations are time-consuming 

and memory-consuming, we need to do our best to save the real time, and find a balance 

between saving the CPU time and saving the memory.  For better diagnostics of the 

simulation results, we need a lot of storage space to save the simulation results.  Thus, we 

need to do our best to save the disk space. 

 

How to Save CPU Time: 

• Do not repeat complicate calculations, such as , , , , 

, and .  Set up a table (array) to keep the results of the repeat calculation. 

• Use  instead of , when  is indeed an integer.   

sin x cos x tan x ATAN2(x, y)

exp x log x

xiy xy y = iy
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How to Save the Real Execution Time:  

 Reducing the frequency of I/O can greatly reduce the real execution time. 

• Reduce the number of times in I/O by increasing the record length of the block size. 

• Using internal loop instead of external loop can greatly reduce the frequency of I/O. 

 

How to Save the Disk Space: 

• Saving the simulation results in a binary format (A format or unformatted form) instead of 

ASCII format can greatly reduce the file size and save the disk space.  

 

The following examples are FORTRAN programs in which the first one will take much 

longer time to complete the execution in comparing with the second program.  
C==TEST_IO_SLOW.f=============  

C THIS PROGRAM SHOWS A BAD EXAMPLE OF I/O 

      PROGRAM TEST_IO_SLOW 

      PARAMETER(NCX=1000000) 

      DO I=1,NCX 

      ARRAY=I*0.1D0 

      WRITE(8,8) I, ARRAY 

    8 FORMAT(1X, I6, 1X, F15.7) 

      ENDDO 

      STOP 

      END 

 
C==TEST_IO_FAST.f=============  

C THIS PROGRAM SHOWS A GOOD EXAMPLE OF I/O 

      PROGRAM TEST_IO_SLOW 

      PARAMETER(NCX=1000000) 

      DIMENSION ARRAY(NCX) 

      DO I=1,NCX 

      ARRAY(I)=I*0.1 

      ENDDO 

      WRITE(9,8) (I, ARRAY(I), I=1,NCX) 

    8 FORMAT(200A4) 

      STOP 

      END 

Note that one can use the following command to find the real execution time in a Linux 

operating system (OS). 
time ./a.out 

where a.out is the execution file.  An example of execution results is given below. 
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C==Real_CPU_Time.txt=============  

Real Execution time and CPU time 

 

$ gfortran TEST_IO_FAST.f 

$ time ./a.out 

 

real 0m0.197s 

user 0m0.119s 

sys 0m0.017s 

 

$ gfortran TEST_IO_SLOW.f 

$ time ./a.out 

 

real 0m1.335s 

user 0m1.257s 

sys 0m0.037s 

 

$ ls -l fort.* 

-rw-r--r--  1 lyuling-hsiao  staff  24000000 Mar 25 19:52 fort.8 

-rw-r--r--  1 lyuling-hsiao  staff   8010000 Mar 25 19:52 fort.9 
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