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Appendix C. Derivation of the Numerical Integration Formulae

C.1. Derivation of the Numerical Integration of dy(x)/dx= f(x)

For a given analytical or tabulated function f(x), the left column in Table 3.1 shows how to

determine y(x) numerically, where dy(x)/dx= f(x). In this section, we will show how to

obtain the integration rules listed in the left column of Table 3.1 for the given accuracy.

on Taylor’s series expansion, we have

h2 h3 (2) h4 3) hs 4) h6 (5)
Vi1 = yz+hf+§f+3!f; +Zfz +§fz +afz +...

C.1.1. The first-order numerical integration
Obviously, the first-order numerical integration should be
Vi =Y, +hf, +O(")
C.1.2. The second-order numerical integration (Trapezoidal rule)

Let the second-order numerical integration be
Yin = Y; +haf, +bf,) + o(h*)
Since
fi = f 1+ 00)

Substituting Eq. (C.4) into Eq. (C.3) to eliminate f,,, it yields

+1 2
Vi =Y+ h{af, + bLf + Bf+ O]} +O(h”)

or

Vi =¥, +h(a+b)f +bh’ f/+O(h’)

Comparing the coefficients in Egs. (C.1) and (C.5), ityields a+b=1 and b=1/2.

a=1/2. Asaresult, we obtain the well-known Trapezoidal rule,

fit f

Vi = ¥ T h(—"1)+ O(h”)

Based

Hence,

(C.1)

(C.2)

(C.3)

(C.4)

(C.5)

(C.6)
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C.1.3. The fourth-order numerical integration (Simpson’s rule)

Let a fourth-order numerical integration be

Y =Y, Hh(af,+b figp +cfi)+ O(h*) (C.7
Since
hi/2 ) h/2 3
fi+(1/2):fi+2f ( ) f() ( ) f() O(h) (C.8)
fin = f+hf+ f(z) 'f,.(3)+0(h4) (C.9

Substituting Egs. (C.8) and (C.9) into Eq. (C.7) to eliminate f,,,, and f,,, respectively, it yields

+1 2

(h/2) (h/2)

Vi =y, +hiaf +DbIf + f ——— [P+ —— P +0(h")]

+olf +hfl.'+§fi<2) +?ff3> + O} +0(h®)

or

ic)f.m +h4(Lb+%c)fi(3) +0(h’) (C.10)

Yin =i Gty 273)

Comparing the coefficients in Egs. (C.1) and (C.10), it yields

a+b+c=1 (C.11)
1 1

—htco=— C.12
Y €.12)
L, 1.1 (C.13)
221 21 T 3

where Eqgs. (C.12) and (C.13) can be rewritten as

12 | b 112'/2!
i = i (C.14)
12 c 2127 /3

Solving Eq. (C.14), ityields b=4/6, c¢=1/6. Substituting these results into Eq. (C.11), it

yields a=1/6. Itis interesting to note that the following equation is satisfied

C-2
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1 1 1

a0
273! 3! 41

Thus, the following Simpson rule is indeed a fourth-order-accuracy integration form
1 4 1 )
Vit :yi+h(gfi+gfi+(1/2)+gfi+1)+0(h ) (C-IS)
C.1.4. The Simpson’s 3/8 rule (a fourth-order numerical integration)

Let a fourth-order numerical integration be

Vi = Vit hafi+b fiom+ ¢ fuom td fin)+ o) (C.16)
Since
h/3 » (h/3 3 4
fi+(1/3):fi+ 3f ( ) f( )4 ) f() +0(h") (C.17)
2h/3 5 (2h/3 3 4
fram = f+ 5104 ) o+ L v o) (C.18)
fin = f+hf+ f(z) ‘fi(3)+0(h4) (C.19)

Substituting Egs. (C.17), (C.18), and (C.19) into Eq. (C.16), then comparing the coefficients in the

resulting equation with the coefficients in equation (C.1), it yields

at+b+c+d=1 (C.20)
1 2" 3 b 113'/2!
1 2% 3 c |=| 2132/3! (C.21)
1 2 3 d 313% /4!

Solving Eq. (C.21), ityields »=3/8, ¢=3/8, d=1/8. Substituting these results into Eq.

(C.20), it yields a=1/8. We have obtained the Simpson’s 3/8 law

3 1
< Juen +§fi+1)+0(h5) (C.22)

1 3
Y=Y+ h(gfz + gf;'+(1/3) + 3
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C.1.5. The sixth-order numerical integration

Let a sixth-order numerical integration be

Vi = Vit hafi+b fiyay+ ¢ foan +d fuaa + efi+1)+0(h7) (C.23)
Since
fi+<u4>:fi+;f (h/4) I3 eor (h/4) FO4 (h/4) Y4 (h/54) £+ 0 (C.24)
o h, (W27 o (W12) L (RI2) L (W12) s
ﬁ+(l/2)—ﬁ+5fi+7fi”+ 0 P+ 1 fi”+Tfi”+O(h6) (C.25)
3n14)Y ., Bhl4)Y ., Ghid) ., Ghl4)y
fram = fi+ S 17+ )f” ( )f” ( )f“ = L iovomt  (C26)

3 h4 hS
fia= f+hf+ f(” ,ﬁ“>+$ﬂ‘”+;ﬂ”+0<h6) (C27)

Substituting Egs. (C.24), (C.25), and (C.26) into Eq. (C.23), then comparing the coefficients in the

resulting equation with the coefficients in equation (C.1), it yields

a+b+c+d+e=1 (C.28)
1 2 3 4 b 114'/2!
1 2 3 47 C 214% /3!
s s s = X (C.29)
1 27 3 4 d 3147 /4!
1 2t 3 4 e 414* /5!

Solving Eq. (C.29), ityields »=32/90, ¢=12/90, d=32/90, e=7/90. Substituting these

results into Eq. (C.28), it yields a=7/90. Note that the following equation is also satisfied

(122 3 & ] ¢ [=[56]

QX QU o &

Thus, we have obtained the sixth-order integration formula
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7 32 12 32 7
Y=Y+ h(%fz + %ﬁ#(l/é&) + %fim/z) + %‘f;’+(3/4) + 9_Ofi+1 )+ O(h7) (C.30)

C.1.6. Summary of the higher-order numerical integration
In summary, we can obtain the higher-order numerical integration of dy(x)/dx = f(x) based
on the procedures discussed in this Section C.1.

C.2. Derivation of the Runge-Kutta Method (This section has been revised on 2016-03-20.)

For dy(t)/dt = f[t,y(¢)], the right column in Table 3.1 shows numerical method to obtain

¥(t), for a given initial value of y,=y(r=0). Based on the Taylor’s series expansion, we have

A d°
20 “dr’=" 31 df? " (f

5 p(4)
TR +O((Ar)’ ) (C.31)

1 n A
Y=y +—t(f),:,n ) )

1!

Since
d 0 0
— f=(—+4 f—
7 f=( 5 f ay)f
Eq. (C.31) can be rewritten as

(Ar)? oL, 9f (A1)’ 0 of
2

o Tyt e 5 Gt
of ., 0 9of  .of
) 5%y

9.0 df .of .9 df .df 5 o)
3Gt ) 3y G gy Wi +OCAN )

of

9f . 9 9f
dy

a_yaz

af
3

Y=y A+ )+ f +f

@0, 3.9 Af
" 24 {az[ar at+

+f

)] (C.32)

C.2.1. The Second-Order Runge-Kutta Method

Let us assume a second-order expression of y™*'
Y =y +Atla f,+b f,1+O((A1)’ fP) (C.33)
where
L=ra"y") (C.34)
LH=f"+Aty" +Atf) (C.35)
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Since the 2-dimensional Taylor’s series expansion of f(¢+Af,y+Ay) can be written as

£+ A1, y+ Ay = £ + (ALt Ay L) ()4~ (AL Ay f(2.y)
ot ay 21 ot ay

; (C.36)

+...+i(At—+
k! ot

Ay%)kf(t,y)+---

Let (f)_.=f (t",y"). Substituting the 2-dimensional Taylor’s series expansion of the function
S@"+Aey"+Ae(f) ) into Eq. (C.35), it yields

=)+l p 20y opany r?) (C37)
ot dy

t

Substituting Egs. (C.34) and (C.37) into Eq. (C.33), it yields

V= M), DI, i g_];) Iy +0l(an* ] (C.38)

Comparing the coefficients in Egs. (C.32) and (C.38), ityields a=b=1/2.

Thus, we have obtained the expression of the second-order Runge-Kutta method
n+ n 1 l n n B
Y=yt At[a(f),:,n + Ef(t +ALY" +AL(f) )1+ O(Ar) f2) (C.39)

The second-order Runge-Kutta method shown in Eq. (C.39) is similar to the Trapezoidal rule of the
second-order integration shown in the first column of Table 3.1, but is different from the
second-order Runge-Kutta method shown in the second column of Table 3.1. Apparently, the

expression of the second-order Runge-Kutta method is not unique.

Let us assume another second-order expression of y™'

Y™ =y + Atla f +b f,]1+O(A1) £P) (C.40)
where
L=ra"y") (C.41)
n g n g
fi=r0"+ Y 2ﬁ) (C.42)

Substituting the 2-dimensional Taylor’s series expansion of the function

F@"+(A/2),y" +(At/2)(f)_,) into Eq. (C.42), it yields

At AP, pOTy  Lopant £ (C.43)

= ”+ .
s (f)’=t 2 ot dy

Substituting Egs. (C.41) and (C.43) into Eq. (C.40), it yields
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f f

Y =y Aa(f)_ +bIf), + ) L0l 2] (C.44)

Comparing the coefficients in Egs. (C.32) and (C.44), ityields a=0 and b=1.
Thus, we have obtained another expression of the second-order Runge-Kutta method

Y=y A f (" +%,y +—(f) )+O(AN) ) (C.45)

The second-order Runge-Kutta method shown in Eq. (C.45) is the same as the one shown in the
second column of Table 3.1. The expression given in Eq. (C.45) is also similar to the

second-order Lax-Wendroff scheme discussed in Section 3.1.

C.2.2. The Fourth-Order Runge-Kutta Method

Let us assume a fourth-order expression of y"'

VU =y"+Atlaf +b f,+cf,+d f,]+O0(A) fP) (C.46)
where

L=ra"y") (C.47)
L=ra" +£,y” +ﬂf,) (C.48)

2 2
fi=f@ +£,y” +£f2) (C.49)

2 2
Li=fA"+ ALY +ALf;) (C.50)

Let (f)_.=f (t",y"). Substituting the 2-dimensional Taylor’s series expansion of the function

J@"+(At/2),y" +(At/2)(f),_.) into Eq. (C.48), it yields

=) AL pO 1(At)< f r2f f+fzaf>
2 ot 7 ay
lAt o f f , O f 38f
( )(az3+ far dy +3f 9t 9y’ v/ ay3” (€31
1 A, af 6f , o' f s O L0t f 5 (5)
24(2)( f P +6f atzay2+4f ooy’ +f —ay4)f=’”+0[(m)f ]

Substituting the 2-dimensional Taylor’s series expansion of the function

F("+(At12),y" +(At/2)f,) into Eq. (C.49), it yields
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f=() oL fo>,_l St f r2f2 f (fﬁafx,,,
REREACT +3,- "f A af +(f238f . (C.52)
6 2 or’
22(%)( s, raf f +6(1,) f 3” “af) 4Ol )

Substituting the 2-dimensional Taylor’s series expansion of the function f(¢" +Az,y" + Atf,) into

Eq. (C.50), it yields

fo= () + At(—fﬂ‘saf,: (Ar)(af+2ﬁat; 0‘32”)

f=t"

+1 (Ar) <"’f 3ﬂaf 3<f328f8f (ﬁ*‘;f,, (C.53)

f f f 3af 4af

4tt

(At) (

thhe +6(f,)°

+O[(Ar)’ ]

Substituting Egs. (C.47), (C.51)-(C.53) into Eq. (C.46), it yields
y"”=y”+At(a+b+c+d)(f)l=t,,]
af af
+AryI(2 ot ]
@an' b oc Of 5.0 f 28f conof, of of
F G DG 2 S D) G DG
L0 b+c+d)(%{ 3p 0L 3 O f;af
0

]

ot’ ay oy’ ay’ )i

3¢ 3 f. O f
(8 T4 Xaﬁ faray+f ay
L af af :

1=

6 8 8

20 f

Ly &

ay t=t"

(C.54)

“Z 34X 1), f ff) (af)

+<— 3d)(f f) (ﬂ> N

ay " otay
4 4
L iy ay T op Sl ap T T
16 ot at’ dy dt~dy atay ay”

+O((Ar) f(s))
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For easy comparison, we rewrite Eq. (C.32) into the following form

¥ =y AN, + (Az’)z %w‘%
+ “?3 [(‘Z{ 2f ;afy . f gyf )+<%+f%)(%>]t=ﬂ
+<A2r) af ST af fz(;:;_fyz+f3<337];)
bt
oL, af)(af)
30 f%)(%)
+3<ﬂ+f f)((wf)
+(1A2t()) aatf 4fa(: gy of° ag4£2+4f3aia§ +f ay{)’=f”+"']

+O((A0)° f)

August 2016

(C.55)

If Eq. (C.54) is equal to Eq. (C.55), the coefficients in Egs. (C.54) and (C.55) should be identical to

each other. Namely,

é+£+d:l
2 2 2
2+—+d=l
4 3
—+d:l
3
é+—+d=l
8 4
3, 3d_1
8 4 4
3 _1
2 4
zﬁﬁdzé
4 4
£+L+d=l
16 16 5

(C.56)

(C.57)

(C.58)

(C.59)

(C.60)

(C.61)

(C.62)

(C.63)

(C.64)
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Solving Egs. (C.56)-(C.59), we can find a set of solutions a=d=1/6 and b=c=1/3. These
solutions also satisfy Egs. (C.60)-(C.63), but do not satisty Eq. (C.64). Thus, we have obtained
the expression of the fourth-order Runge-Kutta method

yn+1 =yn +At f +— ‘fz f3+%f;1]+0((At)5f(4)) (C65)
where
fi=ra"y")
n g n ﬂ
]Cz_f(t+2’y+2f;)
At ) At
fi=rfa" oY 2f2)

fi=f@"+ Aty +Atf,)
C.2.3. Looking for the Third-Order and Higher-Order Expressions of "'

Let us assume a third-order expression of y™'

Y=y + Atlaf,+b f,+c £,1+O(AD* £ (C.66)
where
L=ra"y") (C.67)
L=r@" +£,y” +ﬂf,) (C.68)
k k
fi=f@" +£ ”+%f2) (C.69)

Let (f)_.=f (t",y"). Substituting the 2-dimensional Taylor’s series expansion of the function
J@"+(At/k),y" +(At/ k)(f),_.) into Eq. (C.68), it yields

epy JMOf L of LN O a0 .
Jom (D4 Gt o, + g GO G 2 e )+ 0UAN' V) (€70)

Substituting the 2-dimensional Taylor’s series expansion of the function

f@"+(At/1),y"+(At/1)f,) into Eq. (C.69) yields

f 1 A, f O f 2af
fz » 2(1)(a * 914y +(f,) 2

At af

fi=(H)_. Ol fP1  (C.71)

Substituting Egs. (C.67), (C.70) and (C.71) into Eq. (C.66), it yields
C-10
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Y=y Arl(a+b+e)(f), ]
A, 31

a1+ 2 )
ot ay
(At) LN SO L (C.72)
Cl s e P
+A r)[c 4 faf ). (af 1080 £

For easy comparison, we cast Eq. (C.32) into the following form

At of Lof
oy At n+( —+f=)
yo=y )., 5 (at oy

(A1)’ 0 f Ff L0 f . of of of
"6 [(az2+2fazay+f 8y2)+(6t+fay)(ay

(C.73)

), +0((AnN* £

If Eq. (C.72) is equal to Eq. (C.73), the coefficients in Egs. (C.72) and (C.73) should be identical to
each other. Namely,

a+b+c=1 (C.74)
%,% =% (C.75)
%Jrl% =% (C.76)

kil=é (C.77)

Solving Egs. (C.56)-(C.59), we can find a set of solutions a=1/4, b=0, ¢=3/4, k=3, and

[=3/2. Thus, we have obtained an expression of the third-order Runge-Kutta method
Yy AL f+ 140D £) (€78)
where
Si=fay")
fimf@+ 2y B

n 2 n 2
ﬁ =f(t +§At,y +§Atf‘2)
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Exercise C.1 Find a general expression of the second-order expression of y"*'

Let us assume a second-order expression of y"*'

Y =y"+ Atla f,+b £, 1+ O(At)’ ) (C.79)
where
Si=ra"y") (C.80)
. At At
L=fE"+—y"+—f) (C.81)
k k
Please find possible solutions of a,b,and £ .
Answer: Substituting Egs. (C.80) and (C.70) into Eq. (C.79), it yields
a+b=1 (C.82)
b 1
—=— C.83
P (C.83)

Possible solutions include:

Type 1 solutions:{a=b=1/2, k=1}, which resemble the Trapezoidal rule.

Type 2 solutions:{a =0, b=1, k=2}, which resemble the second-order Lax-Wendroff scheme.

General solutions:{b=k/2, a=1-(k/2), for all real number £ }.

Exercise C.2 Find a fifth-order expression of y"™
Let us assume a sixth-order expression of y"'

YU =y"+Atlaf,+b f+cf,+d f,+g f,1+O0(A)° )
where
h=f@"y")
f2=f(t”+A—.t,y”+A—.tﬁ)
J J

. At At
fi=r( +7,y +Ifz)

. At At
f4=f(t +T’y +Tf3)

. At At
fs=f(t +—.y +_f;1)
m m

Please find possible solutions of a.,b,c,d,g,and j,k,l,m.

C-12

(C.84)

(C.85)

(C.86)

(C.87)

(C.88)

(C.89)
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Exercise C.3 Find a sixth-order expression of y"'
Let us assume a sixth-order expression of y"'

Y =y +Ataf,+b f+c fi+d fo+ g f, 4 f,1+O(A) f©)
where
h=f@"y")
f2=f(t”+A—.t,y”+A—.tﬁ)
j j
n g n g
f3_f(t + k’y + kfz)
A A
f4=f(t”+7t,y”+7tf3)

. ANt At
fs=f(t +—,y +_f;1)
m m

. ANt At
f‘6=f(t +—,) +_f‘5)
p p

Please find possible solutions of a,b,c,d,g,h,and j,k,l,m,p.

(C.90)

(C.91)

(C.92)

(C.93)

(C.94)

(C.95)

(C.96)
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C.3. Derivation of the Adams' Formulae

Let dy/dt=f(y,t), y"=y(t=nAt), and [P =[d"f/dt"]

t=nAt *

n+l

of y"" is given by

3 4 m
=y enp gy ey g ogen o

n+l

For Adams' open formula, the m -th order expression of y"" can be written as

yrH—l :yn +h[a0 fn +Cl_1 fn—l ++Cl_2 fn—2 +Cl_3 fn—3 + ...+Cl_(m_])fn_(m_l)]+0(hm+1)
For Adams close formula, the m -th order expression of y™*' can be written as
Y=yt hlb, " by f b T b, T b_,) 21+ 0™

The Taylor series expansions of f"*', f*',.., f""" are given below:

h_S h4 hm—l

h2
ntl _ o Oy LB re@qn
= ™M +2![f ] +3! 41 (m-1)!

fr= = hL T Z—Z![f”’]” - g[f(”]" + Z—i[f‘“]” E h_)";;, FONT +OM" £
fr = 2T 42 f(” 3h3 LT % LF" +O" £)
f”3=f"—3h[f(“]”+32}2l—2![f(”]"—33%3![f(3)]”+.. %W "1+ 0" £)
Fr = = DALY =27 f“ 2)3%3![1‘(3)]”
F ok (m=2)" E h_)";)l, FOVT O f)

[f(S)]n +_[f(4)]n + .+ [f(mfl)]n +0(hmf(m))

The Taylor series expansion

(C.97)

(C.98)

(C.99)

(C.100)

(C.101)

(C.102)

(C.103)

(C.104)
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2 3
Jr = == DALY+ =1 Y == ST

o C ooy s o0 o)

(m—1)!

(C.105)
+.+(m-1)

Substituting Eqgs. (C.101)~(C.105) into Eq. (C.98), and then comparing the coefficients of [f*]"

with the Eq. (C.97) it yields

ayta+a,+a+..+a, =1 (C.106)
(1 2 3 m-0 [ o |7 _{0 ]
1 22 3 (m—1) a, +1/3
1 2 3 . (m-1) a., —1./ 4 (C.107)
. . m._l
1 2m71 3m71 (m _ l)mfl a—(m—l) i (_1) / m |

Substituting Eqgs. (C.100)~(C.104) into Eq. (C.99), and then comparing the coefficients of [f*]"

with the Eq. (C.97) it yields

b,+b,+b_+b,+.+b_, , =1 (C.108)
1 -1 -2 —(m—2) b, 1/n
1+l +2° +(m—2) b, 1/3
1 -1 -2’ —(m-2)’ b, |=| 1/4 (C.109)
LD 2" e em2y || b 1m

Solutions of Egs. (C.106) and (C.107) yield the Adams' open formulae as the ones shown in Table
C.2. Solutions of Egs. (C.108) and (C.109) yield the Adams' close formulae as the ones shown in
Table C.3.

Note that a different way to show the derivations of the Adams’ open and close

formulae can be found in the textbook by Hildebrand (1976).

C-15
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Table C.2. The nth order Adams' Open Formulae (also called Adams-Bashforth Formulae)

Order of | Solving dy/dt= f or dy/dt= f explicitly with h=Ar¢
Accuracy
Iy =y AL f" ]+ O )
2Hd n+ n 3 n 1 n—
Y=y +h[= == T+ O fP)
2 2
3rd n+l n 23 16 n—1 5 n-2 4 £(3)
=y"+h — +— +Oh" f~
y y [12f 12f 12f] (")
4t | 55 59 . 37 ... 9 .., S
n+ — n+h - n +_ n _ - n—23 +0 h ( )
y y [24f 24f 24f 24f 1+ 0 f)
Sth yn+l:yn
1901 ., 2774 .., 2616 ., 1274 5 251 .., )
+h - + - +O0(h°
[720f 720f 720f 720f 720f ] (R°7)
h n+ n
6" y=y
4277 7923 .., 9982 ., 7298 .., 2877 ... 475 .,.s
[1440f 1440f 1440f 1440f 1440f 1440f ]
+O(h" )

Table C.3. The nth order Adams' Close Formulae (also called Adams-Moulton Formulae)

Order of | Solving dy/dt= f or dy/dt= f implicitly with h=Ar
Accuracy
lst yn+l — yn + h[fn+l]+ 0(h2f(1))
nd
2 yn+l :yn +h[%fn+l+%fn]+0(h3f(2))
3rd n+ n 5 n+ 8 n 1 n—
yt=y +h[Ef ]+Ef _Ef T+O* )
4" 1 9 1, 19 5 a1 Lo 5 (4
n+: n+h_ n++_ n__ > n +_ n +Oh (4)
yr=y [24f 24f 24f 24f 1+ 0" f)
Sth yn+l — yn
251, 646 ., 264 . 106 ., 19 .5
= % ety 0 2 7 endyy oh
[720f 20f 720f 720f 720f ] (RS
h n+ n
6' Y=y
475 1427 798 482 173 27
+h n+1+ n_ n—1+ n=2 _ n—3+ n—4
[1440f 1440f 1440f 1440f 1440f 1440f J
+ O )
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C.4. Derivation of the Open Formulae at half time steps

For open formula, the m -th order expression of y"*' can be written as

n+0.5 n—0.5 n-1.5 n-2.5

Y=Yt hlays 7 tals [T A ral s [T v ass f

—(m=0.5) 1
ot a5 " 1+ O™
The Taylor series expansions of f"**%, %% £ are given below:

n+0.5 n h (l)n 1h2 (2)n 1h3 3)qn 1h4
= + —
frO = ST T S T

i 1 h’" 1 [f(m 1)qn O(hmf(m))
2m 1 ( _1)'

[f(4)

n-05 _ rn ﬁ M 4 1h2 (2)n 1h3 G)yn 1h4
f _f - [f ] 22 2' f ] 23 3' f ] 24 4‘

m—1
N 1 (h)
2m1(

f(4)

f(m 1)n +0(hmf(m))

1S _ e S0 3’ h? o 3’ /’13 o 34 h4 @y
P = P SO A S T = S T S
3m 1 ( h)m 1

3 it T HOWS )

n-25 _ rn é (l)n 52 hz (2)n 5 hz 3)yn 5 h4
f _f - h[f ] 22 2' f ] 23 3' f ] 24 4‘

m—1 m—1
+5m1( h)
2" (m

T

f(m 1)qn +0(hmf(m))

2 3
fn—(m—O.S) :fn _(m_os)h[f(l)]n +(m_05)2 %[f(Z)]n _(m_05)3 %[f@)]n

ml( h)ml

+..+(m—-0.5) (m—1)!

LF" T + 0" £)

(C.110)

(C.111)

(C.112)

(C.113)

(C.114)

(C.115)

Substituting Egs. (C.111)~(C.115) into Eq. (C.110), and then comparing the coefficients of [f*]"

C-17
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with the Eq. (C.97) it yields

1 1 1 I 1 T as |71, 7
1/2 -1/2 -3/2 5/2 - —(m—=05) 0. 2
1/2? 1/22 32/22 52/2° . (m—-05) as 1/3
/28 —1/2° =3/2° -5%/2° .. —(m-05) ay, | | 1/4
1/im-' (—1/2)"" (=3/2)"" (=5/2)"" [( —65 -t | 1/m

m . )] a_(m_o_s) L |
(C.116)

Solutions of Egs. (C.116) are shown in Table C.4.

Table C.4. The nth order Open Formulae at half time steps

Order of | Solving dy/dt= f or dy/dt= f explicitly with h=At¢
Accuracy

2nd yr1+1 — yn + h[ 1f~n+045 _Of-n—045]+ O(h3f-(2))

3" 25 2 ]
n+l — n + h b n+0.5 _ = n—0.5 +— n—-1.5 + O h4 (3)
yU=yt+n 4 f 4 f 4 SR O )
4% 26 5 4 1
n+l — + h =Y pent05 Y rn=05 +— n=15 _ =  prn=25 + 0 hS (4)
Y=y [24f 24f 24f 24f [+0(h 1)
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