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Motivation 
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Higher-order Implicit Second-order explicit 

(Tsai et al., 2010 JGR) 
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Motivation 
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•! The S/N ratio is too low in 
the second-order explicit 
particle simulation (with first-
order distribution and 
interpolation). 

•! Will a higher-order implicit 
particle simulation recover 
the signal shown in the 
higher-order implicit Vlasov 
simulation ? 

•! By removing the run-off 
errors, we have successfully 
suppress the numerical 
instability in the higher-order 
finite difference scheme.  It is 
time to build a higher-order 
implicit particle code for the 
cross-scale simulations.  

Second-order explicit 

(Tsai et al., 2010 JGR) 
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Outlines 
•! Basic Concept of Particle Code Simulation 
•! Time Integrations 
•! Basic Equations of Particle Code Simulation 
•! Review of Classical Particle Simulation Models 

–! The UCLA simulation model 
–! The PIC (Particle-in-Cell) simulation model 

•! The New Implicit Higher-Order Particle 
Simulation Model 
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Basic Concepts 
 of Particle Code Simulation 

Purpose: 
To reduce the calculation steps from N2 to NM, 
where N is the number of particles, M is the number 
of grids, and N>>M.  

1.! Distributing (an inverse interpolating) the charge 
density and current density to the grids  

2.! Solving the Maxwell’s equation to advance the 
electric field and magnetic field on each grid 

3.! Interpolating the field from the grid points to the 
location of the particle 

4.! Advancing the velocity and position of a particle by 
solving the equations of motion 
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Time Integrations 
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Implicit Time Integration 
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Explicit Time Integrations 
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Basic Equations 
 of Particle Code Simulation 
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Derivation of the basic equations (PDF for download)  
http://www.ss.ncu.edu.tw/~lyu/2012_05_Particle/0_PDFsForDownload/a_BasicEquations_200.pdf 
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The Essential Elements  
to be Considered in a Particle Simulation Code 
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•! Schemes for Time Integration 
–! Explicit Scheme (e.g., Leap-Frog Scheme) 
–! Implicit Scheme (e.g., Predictor-Corrector Method) 

•! Scheme for Spatial Derivatives 
–! Fast Fourier Transform 
–! Finite Difference  
–! Fast Cubic Spline (e.g., Tsai et al., 2010) 

•! Scheme for “Distribution and Interpolation” 
–! Taylor Expansion of the Delta Function (uniform grids) 
–! Polynomial Interpolation (Distribution = inverse of Interpolation)    

•! Shape Function of the Finite-Size Particle 
–! To reduce the artificial collisions due to insufficient number of 
particles used in the simulations 

–! The force between two particles is greatly reduced when the 
spatial extents of the finite-size particles overlap each other #$%&$!%" '(")*+,-./*01")(2"



Review of Classical Particle 
Simulation Models 
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The UCLA Particle Simulation Model 
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•! Schemes for Time Integration 
–! Second-order Explicit Scheme : Leap-Frog Scheme 
–! Implicit Scheme : Solving particle’s momentum equation implicitly 

•! Scheme for Spatial Derivatives and Integrations 
–! Fast Fourier Transform:  

–! High precisions and fast in calculation  
–! Good for periodic boundary conditions 

•! Scheme for “Distribution and Interpolation” 
•! First-order Taylor expansion with respect to the nearest grid 
point (the so-called dipole approximation) 

•! Choice of higher-order Taylor expansions (so-called quadrupole 
and octupole approximations) 

•! Shape Function of the Finite-Size Particle  
•! Gaussian-shaped finite-size particle with a given particle size (i.e., 
the standard deviation of the Gaussian distribution) 
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The PIC (Particle-in-Cell) Simulation Model 
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•! Schemes for Time Integration 
–! Second-order Explicit Scheme : Leap-Frog Scheme 
–! Implicit Scheme : Solving particle’s momentum equation implicitly 

•! Schemes for Spatial Derivatives 
–! Second-order Finite Difference  

•! Scheme for “Distribution and Interpolation” 
–! First-order polynomial expansion of the delta function (or Taylor 
expansion with respect to the nearest half grid) 

•! Shape Function of the Finite-Size Particle 
–! A uniform distribution function with particle shape similar to the 
shape of the grid distribution 

–! The particle size is usually the same as the grid size. So the 
shape function is invisible in the PIC code. But indeed the particle 
size can be greater than the grid size if a uniform shape function 
with size greater than grid size is included in the simulation. 
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The New Simulation Model 
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•! Schemes for Time Integration 
–! The 4th order Implicit Predictor-Corrector Method 

•! Scheme for Spatial Derivatives 
–! Fast Fourier Transform (for periodic boundary condition) 
–! The 5th-order Finite Difference Scheme (for small-grid-size 
simulation, or for simulation to be parallelized with MPI) 

–! Fast Cubic Spline (for large grid size) 
•! Scheme for “Distribution and Interpolation” 

–! The 5th-order Taylor Expansion of the Delta Function with respect 
to the nearest half grid 

–! The 5th-order Polynomial Expansion  
•! Shape Function of the Finite-Size Particle 

–! A distribution function between the uniform distribution function 
and the Gauss-shaped distribution function.  
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Finite Difference Schemes for 
Spatial Derivatives  
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•! The 1st order finite difference scheme 

•! The 3rd order finite difference scheme 

•! The 5th order finite difference scheme 
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Derivation of these equations (PDF for download)  
http://www.ss.ncu.edu.tw/~lyu/2012_05_Particle/0_PDFsForDownload/2.SpatialDerivatives_a_200.pdf 

#$%&$!%" '(")*+,-./*01")(2"



!7"#$%&$!%" '(")*+,-./*01")(2"



%8"#$%&$!%" '(")*+,-./*01")(2"



%!"

of the numerical differential schemes 
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Numerical Schemes for 
“Distribution and Interpolation” 
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Derivation of these equations (PDF for download)  
http://www.ss.ncu.edu.tw/~lyu/2012_05_Particle/0_PDFsForDownload/3.Deposition_interpolation_200.pdf 
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Benchmarks !
Summary of the Simulation Results With 

Different Order of Distribution and 
Interpolation Schemes!
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Conclusion: 
The numerical errors have been greatly 
reduced in the simulations with higher 
order deposition-interpolation schemes. 
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Shape Function of the  
Finite-Size Particle 
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Q: How to construct a distribution function with 
characteristics between the uniform distribution 
function and the Gaussian-shaped distribution 
function? 

A: Let us consider the probability density functions for 
the sum of n Bernoulli trial (yes/no trail).  

•! For n = 1 the shape of the binomial distribution is a 
uniform distribution.   

•! For large n, the shape of the binomial distribution 
will resemble the Gaussian distribution. 
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These plots used to be a homework of my 
thermodynamics course.  Now, students can 
find answer from the Wikipedia.  
I don’t know if it is good or bad to them! 

As n increases, the shape of the 
binomial distribution begins to resemble 
the smooth Gaussian curve. 

de Moivre-Laplace Theorem  
-- A special case of the  
central-limit theorem 

Comparison of probability density functions, p(k) for the sum of n 
fair 6-sided dice to show their convergence to a normal distribution 
with increasing n, in accordance to the central limit theorem. 
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Movie download !
http://www.ss.ncu.edu.tw/~lyu/2012_05_Particle/0_PDFsForDownload/deML.gif 



Shape Function of the  
Finite-Size Particle 
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Q: Binomial distribution is a discrete probability distribution. How 
to construct a continuous shape function from the binomial 
distribution?  

A: Step 1: 
 Determine the cumulative distribution from the discrete 

binomial distribution.   
Step 2: 

Use two polynomials to fit the cumulative distribution. 
Step 3: 
 Find the continuous shape function from the derivative of 

these polynomials.   
Step 4:  

For a given particle size, adjust the polynomials, so that the  
standard deviation of the shape function is equal to the 
particle size. #$%&$!%" '(")*+,-./*01")(2"



Shape Function of the  
Finite-Size Particle 
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Derivation of the Shape Functions -- Draft (PDF for download)  
http://www.ss.ncu.edu.tw/~lyu/2012_05_Particle/0_PDFsForDownload/4.ShapeFunction_Draft_200.pdf 

#$%&$!%" '(")*+,-./*01")(2"



Final Remarks 
- important messages to the students  
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•! The format of the finite difference scheme of a given 
order is not unique.   

•! You have to know how to derive the given formula or 
equation before you use it.  
–! So, you know the limitations of the given formula or equation. 
–! If there is a typo, you will correct it before you put it into 
your program. 

•! If you want to invent a new formula or a new 
simulation scheme, you have to verify it before you 
use it. 

•! “To understand is to know how to calculate.”  --Dirac 
•! “To understand is to know how to derive.” 
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Thanks for Your Attention! 
Have Fun with the Particle Simulation! 
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