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M Oti\/ation (Tsai et al., 2010 JGR)

Higher-order Implicit Second-order explicit
Vlasov simulation particle—code simulation




M Oti\/ation (Tsai et al., 2010 JGR)

The S/N ratio is too low in
the second-order explicit
particle simulation (with first-
order distribution and
interpolation).

Will a higher-order implicit
particle simulation recover
the signal shown in the
higher-order implicit Vlasov
simulation ?

By removing the run-off
errors, we have successfully
suppress the numerical
instability in the higher-order
finite difference scheme. It is
time to build a higher-order
implicit particle code for the
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Basic Concepts

of Particle Code Simulation

Purpose:
To reduce the calculation steps from N2 to NM,
where N is the number of particles, M is the number
of grids, and N>>\.

1. Distributing (an inverse interpolating) the charge
density and current density to the grids

2. Solving the Maxwell’s equation to advance the
electric field and magnetic field on each grid

3. Interpolating the field from the grid points to the
location of the particle

4. Advancing the velocity and position of a particle by
solving the equations of motion



Time Integrations

Explicit Scheme:
e The future information are determined based on the present and the past
information
e FEasy to program, easy to blowout!
e To avoid blowout, one have to choose shorter time step.
e A short time step means more CPU time
Implicit Scheme:
e The future information are determined based on the future, the present, and
the past information
e Difficult to program and/or require more memory
e Stable in large time step.

e Implicit scheme can save more CPU time and provide reliable results



Implicit Time Integration

Procedure of the 4" order Predictor-Corrector Method

Initial Solving dy/dt=f or dy/dt=f with h=At toobtain y', y’ and y’
from y° by the 4™ order Runge-Kutta method
Predicting | Predicting "' from y", y"', y"?,and y"° by the 4™ order Adams
Step Open Formula:
VY R = S e O )
Correcting | Correcting y""' from y" >, y*', y",and the last by the 4™ order
Steps Adams Close Formula:
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Repeat the Correcting step until the iteration converges.

n+l

Repeat the Predicting and Correcting Steps to advance y from y" to y




Explicit Time Integrations

The 4™ order Runge-Kutta method (an explicit scheme)
Solving dy/dt=f or dy/dt=f with h=At
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Basic Equations
of Particle Code Simulation

Derivation of the basic equations (PDF for download)
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Basic Equations of Particle Code Simulation With Relativistic Plasma
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where the external fields E‘(x,¢), B°(x,?); and the internal fields E'(x,?),

X B (x,1)[0[x —x,(1)]

B'(x,t) satisfy the following Maxwell's equations:



0B‘(x,1)

SR -V X E‘(x,1)

B _ o E'(x,t)
ot

IE‘(x,1) = ¢’V xB°(x,1)
ot

IE'(x,1) _ 2V x B/ (x.1)
ot

u

1 B
-2 [[J1] > 60x=x, )18 =, ()] S(x - x)dx \/7 d’u}
0 = 1+u—2
C

and the following initial conditions:



V-B(x,t=0)=0, V-B'(x,t=0)=0, V-E‘(x,t=0)=0, and

V.E(x,t=0)
N()

1 1 _ . — e " g3
_ggea{jjj[J;5[x x, (1 =0)8u—u, (r=0)] S(x - x")dx"|d"u}

where S(x) 1s a finite-size shape function which satisfies J-S (x)dx=1 and
S(x)=0 forall x.

The o[x—x,,(r)] is replaced by a Taylor expansion of the delta function with
respect to the nearest grid point of x, () 1n the UCLA simulation scheme, but
the nearest half grid point of x, (7) in the PIC simulation scheme and in the

higher-order interpolation scheme proposed in this study.



The Essential Elements

to be Considered in a Particle Simulation Code

Schemes for Time Integration

— Explicit Scheme (e.g., Leap-Frog Scheme)

— Implicit Scheme (e.g., Predictor-Corrector Method)
Scheme for Spatial Derivatives

— Fast Fourier Transform

— Finite Difference
— Fast Cubic Spline (e.g., Tsai et al., 2010)

Scheme for “Distribution and Interpolation”
— Taylor Expansion of the Delta Function (uniform grids)
— Polynomial Interpolation (Distribution = inverse of Interpolation)

Shape Function of the Finite-Size Particle

— To reduce the artificial collisions due to insufficient number of
particles used in the simulations

— The force between two particles is greatly reduced when the
s;2gpatial extents of the finite+size-particles overlap each other s
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Review of Classical Particle
Simulation Models
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The UCLA Particle Simulation Model

Schemes for Time Integration
— Second-order Explicit Scheme : Leap-Frog Scheme
— Implicit Scheme : Solving particle’s momentum equation implicitly

Scheme for Spatial Derivatives and Integrations
— Fast Fourier Transform:

— High precisions and fast in calculation

— Good for periodic boundary conditions

Scheme for “Distribution and Interpolation”

« First-order Taylor expansion with respect to the nearest grid
point (the so-called dipole approximation)

« Choice of higher-order Taylor expansions (so-called quadrupole
and octupole approximations)
Shape Function of the Finite-Size Particle

« Gaussian-shaped finite-size particle with a given particle size (i.e.,
the standard deviation of the Gaussian distribution)
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The PIC (Particle-in-Cell) Simulation Model

Schemes for Time Integration
— Second-order Explicit Scheme : Leap-Frog Scheme
— Implicit Scheme : Solving particle’s momentum equation implicitly

Schemes for Spatial Derivatives
— Second-order Finite Difference

Scheme for “Distribution and Interpolation”

— First-order polynomial expansion of the delta function (or Taylor
expansion with respect to the nearest half grid)

Shape Function of the Finite-Size Particle

— A uniform distribution function with particle shape similar to the
shape of the grid distribution

— The particle size is usually the same as the grid size. So the
shape function is invisible in the PIC code. But indeed the particle
size can be greater than the grid size if a uniform shape function
with size greater than grid size is included in the simulation.
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The New Simulation Model

Schemes for Time Integration
— The 4th order Implicit Predictor-Corrector Method

Scheme for Spatial Derivatives
— Fast Fourier Transform (for periodic boundary condition)

— The 5%-order Finite Difference Scheme (for small-grid-size
simulation, or for simulation to be parallelized with MPI)

— Fast Cubic Spline (for large grid size)

Scheme for “Distribution and Interpolation”

— The 5th-order Taylor Expansion of the Delta Function with respect
to the nearest half grid

— The 5%-order Polynomial Expansion

Shape Function of the Finite-Size Particle

— A distribution function between the uniform distribution function
and the Gauss-shaped distribution function.
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Finite Difference Schemes for
Spatial Derivatives

Derivation of these equations (PDF for download)

 The 1st order finite difference scheme
1
fil = E(fl - f)+O0M0 fy?)

« The 3rd order finite difference scheme

f(l) ( _f2+ f1__f1+_f_2)+0(h fS))

« The 5th order finite difference scheme

3

fo(l) h( 5]2__]2 _fl__fl AN —2__f )+0(h fom>
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Benchmarks

Given

a periodic sinusoidal wave y(x)=sin(2mwx/A)

or

a non-periodic step function y(x) = tanh(3x/w)
Find the errors in evaluating y' ,

where

' !
y FiniteDiff Y analytic

Error =

y '
analytic — ax



Table 1. Errors in Evaluating y' with y(x)=sin(2rwx/A)

Grid Size A 02 A 0.1 4 0.01 A 0.001 A
Sth-order FD 0.021 0.00041 | 4.4E-10 | 1.2E-12
3rd-order FD 0.069 0.0050 | 5.2E-07
Cubic Spline 0.017 8.7E-08
Ist-order FD 0.24 0.065 0.00066 | 6.6E-06

Table 2. Errors in Evaluating y' with y(x) = tanh(3x/w)

Grid Size A 02w 0.1w 0.01 w 0.001 w
5th-order FD 0.022 1.4E-09 | 6.1E-13
3rd-order FD 0.038 0.0036 | 4.3E-07
Cubic Spline 0.017 0.00086 | 7.2E-08

0.10 0.00030 | 3.0E-06

Ist-order FD

0.029




Summary

of the numerical differential schemes

For finite difference scheme Error(A = 0.1 1 )/Error(A=0.01 1)~ 10""
where m 1s the order of the finite difference scheme.

The Sth-order finite difference scheme with A=0.01A4 or A=0.01w is the
best choice.

The cubic spline provides better results at large grid size (A >0.1 1 ).



Numerical Schemes for
“Distribution and Interpolation”

Derivation of these equations (PDF for download)
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Summary of the Higher-Order Interpolations or Distributions

Cubic interpolations
For x_, <x,<x<x, <X,

f=2 afx)

f(x’y): ij(Eaif(xiayj))
fey2)
= 2 Ck[zbj(zaif(xi’yj’zk))]

where

(x—x)(x—x)(x—x,)

. (X = x0)(x_; —x)(x_; — x,)

(=)= x)(x—x,)

" (xg = x_)(xy = x)(xy — x;)
(e )(x = xp)(x —x5)
b (2, = x_)(x; — x)(x; — x;)
(e (= xp)(x—x))

- (xy = x_)(x; = X)X, — X))

so are the b; and ¢, .

Fifth-order interpolations
For x_, <x_ <Xx, <x<x <X, <X;

F =Y afx)

i=—2

FOe =2 b, afx.5)

3

ESTED NAPNIONFCRIEN)

k=-2

where

(x =20 = x)(x — x, )(x — X, )(x — x3)
O =), = X0, — 1), = X5)(0, = x,)
(=2, )(x = x )(x — x )(x — X, )(x — x3)
=) = %) = X0 = X5,)(, —X)
(=)= xo )= x)(x = x5, )(x— xy)
" (g = X5 (X — X (X — x,)(Xy — X,) (X — X5)
(=2, )(x—x_ )(x = xy )(x — x, )(x — x3)
(2, =2, = X (= X)X — x,)(x, — x5)
C (rmx ) — x ) x)(x =) (- x,)
* (20y = x5 )X, = X (o — X)X, — x,)(x, = X5)
(=) (0r— ) = x)(x = x)(x = x,)
T (205 = 25 )y = 2 )05 — X)) (x5 — X)) (X5 — x;,)

so are the b; and ¢, .
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Grids in the expansion of o[x—x, ()] with x,, located in the shaded region

PIC Code I st-order 3rd-order 5th-order
&
This Study
UCLA Ist- and 2nd-order | 3rd- and 4th-order 5th- and 6th-order

Finite-Size

Particle Code
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Benchmarks

Summary of the Simulation Results With
Different Order of Distribution and
Interpolation Schemes

Conclusion:

The numerical errors have been greatly
reduced in the simulations with higher
order deposition-interpolation schemes.
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Shape Function of the
Finite-Size Particle

Q: How to construct a distribution function with

characteristics between the uniform distribution

function and the Gaussian-shaped distribution
function?

A: Let us consider the probability density functions for

the sum of n Bernoulli trial (yes/no trail).

For n= 1 the shape of the binomial distribution is a
uniform distribution.

For large n, the shape of the binomial distribution
will resemble the Gaussian distribution.
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Comparison of probability density functions, p(k) for the sum of n

fair 6-sided dice to show their convergence to a normal distribution

with increasing n, in accordance to the central limit theorem.

These plots used to be a homework of my
thermodynamics course. Now, students can
find answer from the Wikipedia.

| don’t know if it is good or bad to them!

—

de Moivre-Laplace Theorem
-- A special case of the
central-limit theorem

n=4

As nincreases, the shape of the
binomial distribution begins to resemble
the smooth Gaussian curve.

Movie download
http:/www.ss.ncu.edutw/~lyu/2012 05 Particle/0_PDFsForDownload/deMI.gif
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Shape Function of the
Finite-Size Particle

Q: Binomial distribution is a discrete probability distribution. How
to construct a continuous shape function from the binomial

distribution?

A: Step 1:

Determine the cumulative distribution from the discrete
binomial distribution.

Step 2:
Use two polynomials to fit the cumulative distribution.

Step 3:
Find the continuous shape function from the derivative of
these polynomials.

Step 4.
For a given particle size, adjust the polynomials, so that the

standard deviation of the shape function is equal to the
particle size.
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Shape Function of the
Finite-Size Particle

Derivation of the Shape Functions -- Draft (PDF for download)

by Ling-Hsiao Lyu
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Final Remarks

- important messages to the students

The format of the finite difference scheme of a given
order is not unique.

You have to know how to derive the given formula or
equation before you use it.
— S0, you know the limitations of the given formula or equation.

— |If there is a typo, you will correct it before you put it into
your program.

If you want to invent a new formula or a new
simulation scheme, you have to verify it before you
use it.

“To understand is to know how to calculate.” --Dirac
“To understand is to know how to derive.”
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Thanks for Your Attention!

Have Fun with the Particle Simulation!
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