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1 #REEEFRE?
Definition of Numerical Simulation

Numerical simulations use a set of numerical methods to solve a set of ordinary
differential equations and/or partial differential equations, in which at least one
time-derivative term is present in these equations. Thus, numerical simulation is a set of

carefully planed numerical schemes to solve initial value problems numerically.

{Numerical Simulations < Numerical Methods}

Comprehensive knowledge on numerical methods can help us to make a good diagnostics of

the simulation results.

Objectives of Making Numerical Simulation Studies

The goal of using numerical simulations to study nonlinear phenomena includes:

® To test theoretical model to see if one can reproduce the observed phenomena
based on the given theoretical model.

® To understand detail nonlinear evolution processes and to determine the
complicated cause-and-result relationships.

® To make a prediction or forecasting of the observed phenomena (applications of

numerical simulations).
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2. deir E 8 TR EEHHRA

How to Choose a Suitable Simulation Code for Your Problem

Plasma consists of positive charged ions and negative charged electrons. Since

m;, >>m,, there are many intrinsic time scales in a plasma system even in a uniform

background environment. For time scale less than the intrinsic time scales, it is hard for the
plasma to reach a thermal dynamic equilibrium state. As a result, the kinetic effect might
become important for time scale less than the intrinsic time scales of the plasma.

Present plasma simulation codes can be classified based on their phase space resolutions
as listed in Table 2.1. Note that the so-called particle-code simulation is indeed a
multiple-fluid simulation. A simulation particle in the particle-code simulation is indeed a
fluid element in the phase space (X, V).

Basic equations of a relativistic test particle simulation code, a relativistic full-particle
code, and a relativistic Vlasov simulation code are given in Tables, 2.2, 2.3, and 2.4,

respectively.

Table 2.1. Classification of Plasma Simulation Codes

Assuming thermal
) ) Phenomena scale dynamic
Simulation Code o
length A equilibrium?
e-e i-i e-i
Fluid MHD code A>10°4, yes | yes | yes
Simulations Two-Fuild code 103)bi > 1>104, yes | yes no
Hybrid code
104, 212 4, yes | no no
fluid electrons & Kkinetic ions
Kinetic Full particle code AzAzA, no | no | no
Simulations : _
Test particle code Strong magnetic field | n/a | n/a | n/a
Vlasov Code AzAzA, no | no | no
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Table 2.2. Equations of motion of a relativistic test particle ¢, with mass m, and
charge e_, moving in a background electric field E(x) and magnetic field B(x)

dx,(t) _ u, (t)
dt 1+[u, (t)/c]’

M - e_“[E(x) + u, (1 x B(X)],_ ®
dt  m, 1+[u, (t)/c]? ’

Table 2.3. Governing equations of relativistic electromagnetic particle code simulation
(the simulation particle is a finite-size particle with shape function S)
Equation of motion of simulation particles:

dx, () u,(

dt  1+[u,(t)/c]?

du (t) e u,(t)
adl — 2 [TE(X,t) + a xB(x,t)IS[x —x,, (t)]d
m aJ.[ (x,1) VS o)/ T (X, DIS[x—x, (t)]dx

Maxwell’s equations:

V-E(t) = | Zi—“a(x'—xa)S(x—x')dx'

V-B=0
FBUY _ vrEx )
ot ’
» _ u, (t) . Conaer . 1 FE(XY)
% B(x,t)—yoj;ea 1+[ua(t)/(:]25[x X, (1)]S (x — x")dx o

Table 2.4. Governing equations of electromagnetic Vlasov simulation code
with relativistic electrons and non-relativistic ions

af, u o”fe+i(E+ u <B) of,
ot 1+(u/c)? ox m, J1+(u/c)? ou
ﬂ_ﬁ:_v.ﬂ_ﬁ_i(E-{-VXB).é’_fi

ot ox m, ov

@z—VxE

ot

oE u

2 e 3 3
A =C VxB—g[“J'vfid v—njm f.d"u]

Initial conditions
V-B=0

V-Ezgio[mfidw—ijedm]
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A fluid simulation code can provide reasonable and quick simulation results when the
kinetic effects are unimportant. The magnetohydrodynamic (MHD) simulation code is good
to simulate large-scale nonlinear plasma phenomena. The Hall MHD simulation code and
the two-fluid simulation code are good to simulate medium-scale nonlinear plasma
phenomena, in which dispersion effect due to finite ion inertial length effect is important.

The kinetic effect becomes important when the non-uniformity scale length of the
system is comparable to the characteristic scale length of a species (ions and/or electrons), or
when the wave speed observed in the center of mass frame of a species is approximately
equal or less than the thermal speed of that species. When the kinetic effect is important,
we have to use a kinetic simulation code to study the nonlinear evolutions of wave-particle

interactions in the phase space.
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3. JBHA B fFA R B 2
Numerical Methods for Differentiations and Integrations

As we have discussed in Section 1 that numerical simulation is a set of carefully planed
numerical schemes to solve initial value problems numerically. Let us consider the

following three types of differential equations,

dy(t) _
b f(t) (3.1)
dy(t) _
Tl f(y,t) (3.2)
ay(x,t) ay @

é)t - f(t! 10,’ 5 2) I dx ) (33)

The numerical methods for time integration of these equations will be discussed in the
next section (Section 4). Before we conduct the time integration, we need to determine the

2
differentiations ﬂ,ﬂ y
X Ox

> and integrations jydx,... on the left hand side of the equation

(3.3) at each grid point.

In this section, we are going to discuss the following four types of numerical methods,
which are commonly used in spatial differentiations and integrations.
® Finite Differences (based on Taylor’s expansion)
® FFT (Fast Fourier Transform)
® Cubic Spline
()

Cubic Spline with Corrections
3.1. Finite Differences

For convenience, we shall use the following notation in the rest of this lecture notes.
fx = F(Xx=1AX,y = jAy,z = kAZ,t = nAt) = f(x;,Y;,2,,t")

Using finite difference method, we can obtain derivatives of a tabulated function f .

i1 2 - N
X, X, X, o Xy
foo f, f, - f,

Table 3.1 lists examples of the first order finite difference expressions of [d f /dx],_, ,

[d®f/dx*],, ,and [d®f/dx’],_ . Table3.2 lists examples of the finite difference

X=X; !

7
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expressions of y = [ fdx.
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Table 3.1. The first order numerical differentiations based on finite difference method

Derivatives | Central Difference Forward Difference Backward Difference
df o f R —f
R 51:' — f|+1 fl—l Af| — f|+1 fl Vfl — fl fl—l
dx X=X; 2AX AX AX
dzf 52]:_ _ fi+l_2fi + fi—l A2 f = fi+2_2fi+l+ fi sz_ _ fi _2fi—l+ fi—2
x* |, ' (Ax)® ' (Ax)° ' (AXx)?
dsf 53fi: Agfi: Vafi:
dX3 fi+2 -2 fi+1 +2 fi—1 B fi—2 fi+3 -3 fi+2 + 3fi+l B fi fi _3fi—1 +3fi—2 B fi—3
= 2(Ax)* (Ax)* (Ax)*
Exercise 3.1. Determine the second order and the forth order central differences
expressions of [d f /dx],_, ,and [d 2 f /dxz]X:Xi , based on the Taylor expansions of the
function f.
Exercise 3.2. Use the first order, the second order, and the forth order central differences

expressions to determine the d f /dx,and d?f /dx?, an analytical function f witha

fixed Ax. Determine the numerical errors in your results. Compare the numerical

errors obtained from different finite differences expressions.

Table 3.2. The spatial integrations based on finite difference method

DY) _ (), h=ax
dx

Vi =Y+ hf +0(h*f)

1% order integration

2"% order integration . .
g Yoo =y, +h o
Trapezoidal rule 2

th - -
4 order integration Yia =Yi t+ h(1 f; +£ fi+(1/2) +1 fi1) +0O(h° f (4))
Simpson’s rule 6 6 6

rd : :
3" order integration Yia =Y, +D(§ f, 42 fy 42 f, 3 fi)+Oh* ")
Simpson’s 3/8 rule 38 8 i 8 iy 8
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GRS AR
Show that, for y'(x) = f(x),
y|+1 y|+hf +O(h f)

Yo =¥ +h L O )

1 4 1
Yin=Yit h(g fi+— 5 fio2 + fi)+O(h°f @)
Proof:
Since

(A)? oo (A%,
T y'(x) + 2 =y "(X) +--

Substituting y'(x) = f(x) into above equation yields

y(x+AX) = y(X) +%y'(x> MCON

y|+1 y|+hf +O(h f)

or

my s OO0 0 o
i+ 2 i+ 3 21 |+E 3l i I+E

AT . T S AR S 2
HE 2 HE | HE | |+§ | HE

Keeping the 2" order term and subtracting Eq. (3.2) from Eqg. (3.1) yields
Via— Y, =0+hf [ +0+0(h*f")

2

or

i+ f

Yia =¥ +h=0— +0(h*f")

Keeping the 4™ order term and subtracting Eq. (3.2) from Eq. (3.1) yields

Vii— Y, =0+hf  +0+ (h/2)° f7, +0+0(h*f®)
|+§ 3 |+E
or
0 fo =200 + T,
L, — :hf + — I+ * I+O hsf(4)
y|+1 y| i+% 24 (h/2)2 ( )
It yields

4 1
y|+l yl + h( f += 6 f|+(1/2) +E fi+1) + O(h5 f (4))
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Exercise 3.3.

Derive Simpson’s 3/8 rule.
3.2. FFT (Fast Fourier Transform)

A function can be expanded by a complete set of sine and cosine functions. In the Fast
Fourier Transform, the sine and cosine tables are calculated in advance to save the CPU time
of the simulation.

For a periodic function f , one can use FFT to determine its differentiations and
integrations, i.e.,

afr = FFT {ik[FFT ()]}
dx

jfdx = FFT‘l{%[FFT(f)]} for k>0.

Exercise 3.4.
Use an FFT subroutine to determine the first derivatives of a periodic analytical function

f . Determine the numerical errors in your results.

Exercise 3.5.
Use an FFT subroutine to determine the first derivatives of a non-periodic analytical

function f . Determine the numerical errors in your results.

3.3. Cubic Spline

A tabulate function can be fitted by a set of piece-wise continuous functions, in which
the first and the second derivatives of the fitting functions are continuous at each grid point.
One need to solve a tri-diagonal matrix to determine the piece-wise continuous cubic spline
functions. The inversion of the tri-diagonal matrix depends only on the position of grid
points. Thus, for simulations with fixed grid points, one can evaluate the inversion of the
tri-diagonal matrix in advance to save the CPU time of the simulation.

For a non-periodic function f , it is good to use the cubic spline method to determine its

differentiations and integrations at each grid point. Results of differentiations obtained from
the cubic spline show the same order of accuracy as the results obtained from the forth order
finite differences scheme.

10



RISy Bl 7 HIE by Ling-Hsiao Lyu July 2005

At B A
The piece-wise continuous function in the cubic spline can be written in the following

form.

f (Xk)(x B Xk+1) + f (Xk+l)(x B Xk) + [a (X B Xk) +b ] (X B Xk)(X B Xk+l)
(Xk - Xk+1) (Xk+l - Xk) ‘ (Xk+l - Xk) ‘ (Xk+l - Xk)z

The constants {a, ,b,,fork =1— n-1} are chosen such that the matching conditions for

Flx <x<Xx)=

cubic spline can be fulfilled, i.e.,

df (X, <X<X)| _df(x < x< %))

o |x:xk o |x=xk
and
dzf(Xk_lSXSXk)| :dzf(XkSXSXk+l)

dx? ‘szk dx? ‘szk

One can obtain the following two types of recursion formula

L 1000 =310, + 3

)
h k h,

f'(xe) + FI(x)[2+2(

" " h
F(xea) + T2+ 20 ‘

M+ 70006 =250~ 05,

f (Xk+1) —f (Xk)

where f;(x,) =
Xisa = Xk

and h, =X, —X,.

Exercise 3.6.
Use a Cubic Spline subroutine to determine the first derivatives of an analytical function

f . Determine the numerical errors in your results.

3.4. Cubic Spline with Corrections

Numerical oscillation may take place when we use higher order finite difference scheme

or Cubic Spline to determine the differentiations of a sharp-changed function f. An
exponential correction can reduce this type of numerical errors. Adding a damping term,
2%t 16x?, in the simulation code can also reduce this type of numerical errors in the

simulation.

11
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4. RILPER A el iE S %

Schemes for Solving Initial Value Problems—Numerical Methods for Time Integrations

All the numerical time integrations are constructed based on finite difference numerical
schemes. FFT and Cubic Spline become useless in the numerical time integration processes.

The numerical time integration schemes can be classified into the following two categories:

® Explicit Scheme:
»  The future information are determined based on the present and the post
information
»  Easy to program, easy to blowout!

» To avoid blowout - Choose shorter time step = Require more CPU time

® Implicit Scheme:
»  The future information are determined based on the future, the present, and the post
information
»  Difficult to program and/or Require more memory
> Stable in large time step > Save CPU time

4.1. Examples of Explicit Scheme

Examples of explicit time integration schemes include Euler method, Runge-Kutta method,
Adams' open Formula, which is also called Adams-Bashforth Formula, and Lax-Wendroff
scheme. Table 4.1. lists the numerical schemes of Euler method and Runge-Kutta method.
Table 4.2 lists Adams' open formulae at different orders of accuracy, which will be discussed
in the subsection 4.3.  The Lax-Wendroff scheme to be discussed in this subsection is

commonly used in fluid simulations.

12
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Table 4.1. Explicit time integrations and their corresponding spatial integrations

The spatial integrations based on finite

differences scheme

The explicit time integrations

dy(x)
dx

= f(x), h=Ax

dy®

=f(t h = At
it (ty),

1% order integration

y|+1 y|+hf +O(h f)

1% order explicit scheme: Euler method

y"™ =y"+hf(t",y")+0(h*f)

n+1

" order integration

Trapezoidal rule

" order Runge-Kutta method

(an explicit scheme)

n+l _ ,n n n
yi+1 — yl h fl+12 f O(h f”) (y*) - y +hf(t !y )
ynJ% _ yn +(y*)n+l
2
el el
y"™=y"+hft 2,y 2)+0(h*f")
4™ order integration 4™ order Runge-Kutta method
Simpson’s rule (an explicit scheme)
Yin =Yi (y)™ =y"+hft",y")
1 n N+
+h(g fi +— 5 f|+(1/2) + |+1) (y*)n% _ y +(2y*) 1
+0(h° ™)
net net
(y**)™ =y"+hf(t 2,(y*) ?)
d i i n % %\ N+
3" order integration (y**)n% Y 4 (y**)m
. ,. 3 2
Simpson’s = rule
8 n+1 n+1
*AF)VL oy f(t 2 (y**) 2
y.+1y. (y*=*=*)"™ =y " +hf(t 2,(y**) ?)
9 9 3 el i 1., .0 0
——f+ f +=f = =y " +h[=f(t",
( 8 i+% 8 i% 8 |+1) y y [6 ( y )
+0(h*f™)

2 et s
iy ft 2,(y%) ?)

2 et et
+€f(t 2(y**) ?)

+% f(tn+1, (y***)n+l)]+o(h5 f (4))

13
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Exercise 4.1.
Solve proton’s trajectory in a uniform magnetic field B =e, B, and electric field
E=e E, by means of (i) Euler method, (ii) 2" order Runge-Kutta method, and (iii) 4"
order Runge-Kutta method, where e, and e, are the unit vectorsalongthe y and z
directions, respectively. Solve this problem for 100 gyro periods with the following three
different initial conditions.  Plot proton’s trajectory in both x-y spaceandin v,-v,

space. Compare your numerical results with the analytical solutions.
Casel: x(t=0)=0 and v(t=0)=0

Case 2: x(t=0)=0 and v(t=0)=(2.5E,/B,)e,

Case 3: x(t=0)=0 and v(t=0)=(0.5E,/B,)e,

The Lax-Wendroff scheme is an explicit scheme. It is good for solving fluid equations with
absence of diffusion or dissipation terms. A set of one-dimensional fluid equations, without
dissipation or diffusion terms, can be written in the following conservative form

ﬂ+ JF(U) 0
ot OX

which can be solved numerically by the second order Lax-Wendroff scheme.
Step 1:

1 n n

= U, +U: At

U 2 =—it i F(U" Y—F(U"
% 2 2AX[( |+l) ( |)]

At ned ned
U™ =Ul-—I[F(U 2)-FU 2)]
AX |+% l—l2

Additional examples and advanced discussion on using Lax-Wendroff scheme to solve fluid

equations can be found in the book by Richtmyer and Morton (1967).

Exercise 4.2.

Using the second order Lax-Wendroff scheme to solve Korteweg-deVries (KdV) equation
N B
ox?

ﬂ+(C0 +V)ﬂ+a 0
ot OX

with uniform boundary condition and a given initial profile V (x,t =0) with a bump at

center of the simulation domain. Plot evolutions of spatial profile V(x,t). You can

14



RISy Bl 7 HIE by Ling-Hsiao Lyu July 2005

normalize your velocity field by C,. Study the following two cases: one for « >0, and

the other for a <0.
4.2. Examples of Implicit Scheme

Consider a charge particle moving in a uniform strong magnetic field. Momentum equation
of this charge particle is

dv(t) _

g
o= VOxB (4.1)

The following numerical scheme is an implicit scheme of Eq. (4.1)

Vn +Vn+l
vt vt Al Y Y g

T 0 (4.2)

Exercise 4.3.

Solve Eq. (4.2) to obtain v;*, vi* and v;* foragivensetof v;, v, v}, By, By,
and B,, .

Exercise 4.4.

Solve proton’s trajectory in Exercise 4.1 by means of the implicit scheme discussed this

section.

In addition to the gyro motion, the diffusion equation is another type of differential

equation, which should be solved by an implicit scheme.

ALt
The diffusion equation
T o°T
ot Ox? (43)
can be solved numerically by one of the following implicit schemes.
T -T" Kk 1
i i _ - n _2T-n +T-n + T-n+l —2T-n+1 +T-n+1 44
At (AX)Z 2[(T|+1 i |—1) ( i+l i i-1 )] ( )
or
n+l n
Ti T| — K - (T:Il _2Tin+1 +T£I—1 (45)
At (AX)
or

15
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Tin+1 _Tin K

At B (AX)z [(1_2')(Ti21 - 2Tin +Tiil) +A(T P 2Tin+ +Ti:r )] (4.6)

i+1

where 0<A<1. For A=1/2,Eq. (4.6) is reduced to Eq. (4.4). For A=1, Eq. (4.6)
is reduced to Eq. (4.5). Eq. (4.4) can be written as

- aTiffl +(1+ 205)Ti”+1 - ocTiEI1 =aT" +(1-2a)T," + T, 4.7)
KAt
where o = 5
2(AX)

For given boundary conditions T(x=0)=T,,and T(x=N,Ax) =T, , Eq. (4.7) can be

rewritten in the following tri-diagonal matrix form:

1+2a) -« 0 0 T 20T, + (1-22)T," + aT,
-a (+2a) -« : T, aT" + (- 2a)T, +aT]
0 0 C = :
: —a (+2a) -—a |T¢L| |aTy s +0-2a)T , +aT] |
0 0 —a  (+2a) \TyL ) aTl , +@=2a)T{ | +2aT,
Exercise 4.5.

Write a subroutine, using Gauss elimination method to solve (X, X,,---, X, ) in the

following tri-diagonal set of equations.  Limit number of arrays used in your program.

There should be no more than five nx1 arrays used in your program.

b, ¢, 0 - 0} x I,
a, b, ¢, : X, r,
0 0 N
a'n—l bn—l Cn—l Xn—l r-n—l
0 0 a, b, \x, r,

Examples on how to solve tri-diagonal set of equations numerically can be found at Press
et al. (1988).

Exercise 4.6.

Write a program to solve diffusion equation (4.3) for a given initial condition and boundary

conditions.  Plot evolution of spatial profile T(x,t).

Adams' close formula, which is also called Adams-Moulton formula, is also an implicit
scheme. Table 4.3 lists Adams' close formulae at different orders of accuracy, which will be
discussed in the next subsection 4.3.

16
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4.3. Predictor-Corrector Method Based on Adams Formula

Predictor-Corrector method is an easy-to-program implicit scheme, but require more
memory than the corresponding explicit scheme. We use the Adams' formula to construct
the Predictor-Corrector simulation scheme (e.g., Shampine and Gordon, 1975; Press et al.,
1988). Tables 4.2 and 4.3 list the Adams' open and close formulae, respectively, at different
orders of accuracy. Proof of these Adams' formulae can be found in advanced mathematics
textbooks (e.g., Hildebrand, 1976). A 4™ order Predictor-Corrector method (e.g., Shampine

and Gordon, 1975) is summarized in Table 4.4.
Exercise 4.7.
Using the forth order Predictor-Corrector method described in Table 4.4 to solve

Korteweg-deVries (KdV) equation in Exercise 4.2 and proton’s trajectory in Exercise 4.4.

Table 4.2. Adams' Open Formulae (also called Adams-Bashforth Formula)

Order of | Solving dy/dt=f or Jdy/ot=f explicitly with h= At
Accuracy
15t yn+l:yn+h[fn]+o(h2fr)
nd
2 yn+l:yn+h[§fn_ifn—l]+o(h3fv)
2 2
3" . 23 16 5
n+ — n+h_fn__fn—1+_fn—2 +O h4fm
y y [12 12 12 ] ( )
4" . 55 59 37 9
N+l _ n+h_fn__fn—1+_fn—2__fn—3 +O h5f(4)
y y [24 24 24 24 ] ( )
th n+ n
5 y"=y
N h[1901 o 2774 o1 2616 fr2 _1274 £13 +E £7474 O(h® f (5))
720 720 720 720 720
th n+! n
6 y™ =y
N h[4277 o 7923 o 9982 2 _ 7298 o3, 2877 frod_ 475 £1-5]
1440 1440 1440 1440 1440 1440
+0O(h'f ‘6))

17
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Table 4.3. Adams' Close Formulae (also called Adams-Moulton Formula)

Order of | Solving dy/dt="f or Jdy/Jot=f implicitly with h= At
Accuracy
lSt yr1+1 _ yn +h[fn+1]+0(h2f,)
nd
2 yn+l=yn+h[1fn+l+1fn]+0(h3f”)
2 2
3" . 5 8 1
n+l _ n+h_fn+l+_fn__fn—1 +O h4.|:m
y y [12 12 12 1+0( )
4" . 9 19 5 1
n+l n+h_fn+l+_fn__fn—l+_fn—2 +O h5f(4)
y y [24 24 24 24 1+0( )
5th yn+l — yn
+ h[251 £ty 646 f"— 264 frt +@ fn2 _ 19 f"21+0(h° 1 ®)
720 720 720 720 720
Gth yn+l — yn
A 475 f”+1+1427 e 798 o1 482 gz 173 s, 27 £r4]
1440 1440 1440 1440 1440 1440
+0O(h" £ ©)
Table 4.4. Procedure of the 4™ order Predictor-Corrector Method
Initial Using 4" order Runge-Kutta method to obtain y*, y?,and y® from y°.
Steps
Predicting | Using 4™ order Adams Open Formula to predict y* from y°, y!, y?2, and
Step ve.
Correcting | Using 4™ order Adams Close Formula to correct y* from y*, y?, y®, and
Steps

the predicted y* (or corrected y* of the last iteration).

Repeat the correcting step for several times or until the iteration converges.
[The condition of convergence in an iteration scheme will be discussed in the

next section (Section 5).]

n+l

Repeat the Predicting and Correcting Steps to advance y from y" to y

18
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5. FREAPERLEH

Condition of Convergence in an Iteration Scheme and Estimation of Machine Errors

If U isthe relative error of 1, then an iteration scheme is convergent when

k+1,,n+1  k,,n+l

y =y

<U‘kyn+l

where *y™ isthe kth iteration result of y"*.

Machine-dependent relative error U can be obtained from the following program (e.g.,
Shampine and Gordon, 1975).

C This subroutine determines machine-dependent relative error
C relative to 1.

Subroutine DGETU(U)

Implicit double precision (a-h,0-z)

Al=1.d0 Ifor double precision

AH=0.5d0 Ifor double precision
C Al=1. Ifor single precision program
C AH=0.5 Ifor single precision program

U=A1l

uu=u

1 CONTINUE

UU=UU*AH

UT=U+UU

IF(UT.GT.U)GO TO 1

U=uu=*2

RETURN

END

19
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6. F&A2 EMA (Hrkit)

Random Number Generators

Random number generators are commonly used in particle-code simulations and in

Monte Carlo simulations (e.g., Snell, 1975).

6.1. Uniform Random Number Generator

Uniform random number generator is a machine-dependent function. The following
function is modified from the subroutine RANDU in IBM/SSP (Scientific Subroutine
Package). In general, one should be able to find a machine-dependent intrinsic function of
“uniform random number generator” from a given FORTRAN complier. However, for
convenience, one can always use the following function to generate a uniform random

number in a 32-bits machine.

C This function obtains a machine-dependent uniform random number.
C This function is good for 32 bits computer.
C This function is modified from IBM/SSP subroutine RANDU
C Constants used in this functions include
C 2147483648=2**31
C 0.4656613E-9=2.**(-31)
C 65539=65536+3=(2**16)+3
C
function ran(ix)
iy=ix*65539
if(iy)5,6,6
5 iy=iy+2147483647+1
6 yfl=iy
yfl=yfl*.4656613E-9
ran=yfl
ix=iy
return
end
Exercise 6.1.

Write a program to generate more than 1000 uniform random numbers.  Plot distribution

of these random numbers and compare it with the profile of uniform distribution function.
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6.2. Random Number Generator of a General Non-uniform Probability Function

given probability function.
generator of any given probability function FUNC, in which random number between XL and
XR are obtained. FMAX is the maximum of the probability function FUNC(x).

program need provide an external probability function in order to use the following

From the uniform random number generator, one can obtain random number of any

subroutine to generate a random number.

O o0 oo o0

This subroutine obtains a random number of a given function FUNC(x).
The resulting random number is in the range of (XL, XR)
Fmax>0 is the maximum of the function FUNC(x) for XL<x<XR
ix is the seed of uniform random number.

program stop if fmax .le.0, or XR.LE.XL, or FUNC(x)<0 for XL<x<XR,

subroutine ranfunc(x,FUNC,XL,XR,Fmax,ix)
external FUNC

if(Fmax.le.0.) then

print *,”program stop because Fmax<0, Fmax=", Fmax

stop

endif

if(XR.le.XL) then

print *,’program stop because XR.LE. XL, XR,XL=", XR,XL
stop

endif

continue
x=ran(ix)*(XR-XL)+XL
y=ran(ix)*Fmax
y0= FUNC(x)

if(y0.1t.0.) then

print *,”program stop because FUNC(x)<0, FUNC(x)=", y0O
stop

endif

if(y.gt.y0)goto 1l
return

end
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Exercise 6.2.
Write a program to generate more than 1000 random numbers of a given function. Plot
distribution of these random numbers and compare it with the profile of the given

distribution function.
6.3. Random Number Generator of a Normal Distribution Function

According to Law of Large Numbers, and Central Limit Theorem (e.g., Snell, 1975),
random number of normal distribution function can be obtained from uniform random
number generator. According to subroutine GAUSS in IBM/SSP (Scientific Subroutine
Package), random number of normal distribution function, with mean equal to zero and
standard deviation equal to one, can be obtained from

Ox-K
yo= 2

VK /12

where all x; are obtained from a uniform random number generator. Y is a random

(6.1)

number of normal distribution with mean equal to zero and standard deviation equal to one.

Exercise 6.3.

Varify Eq. (6.1) based on Law of Large Numbers, and Central Limit Theorem.

Hint: According to Law of Large Numbers, if the mean of x, is u, and variance of X,

is o? then the mean and variance of S=x, +X,+---+X, Wwill be Kz and Ko?,
respectively. For uniform random number generator, the corresponding probability
function is f(x)=x where 0<x<1. It can be easily shown that the mean of this
uniform probability function is 1/2 and the variance of this uniform probability function is

1/12. Thus, if S=x,+X, +---+X, and x; are obtained from uniform random number

generator, the mean of S should be K /2 and variance of S shouldbe K/12.

Exercise 6.4.

Based on Eqg. (6.1), write a program to generate more than 1000 random numbers of a
normal distribution function with K =12 and K =6. Plot distributions of these two
sets of random numbers and compare them with the profile of normal distribution function.
Compare CPU time used in generating random numbers in Exercise 6.2 and in this

Exercise.
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Diagnostics of Simulation Results

We need to make a good diagnostics to understand detail nonlinear evolution processes
and to determine the complicated cause-and-result relationships from the simulation results.

Making good diagnostics is as important as choosing a good simulation scheme.

Guideline for making a correct simulation and good diagnostics
® Check your simulation results
»  Check and make sure the total energy is conserved.
»  Check and make sure that your simulation results satisfy the Courant condition.
That is, the maximum speed v (which is equal to the largest possible wave speed

plus the maximum flow speed or particle speed) multiplying one time step At is
less than one grid size A,. Indeed, we recommend that vAt <0.1A, .

»  Check and make sure that your simulation results are almost unchanged when the
simulation system length is doubled, or when the simulation time step is reduced in
half, or when the simulation grid size is reduced in half, or when the number of
simulation particles is doubled, or when the real ion-electron mass ratio is used.

»  Always use double precision in your simulation.

® Display your simulation results

»  Carefully trace the time evolution of fields and fluid variables.

»  Carefully trace the phase-space trajectories of a group of simulation particles.

» Use Matlab, IDL, or PV Wave to display massive simulation results automatically.

> Use Excel or Kaleidagraph to display a single frame of a summary plot.

®  Analysis and understand your simulation results

> Explain your simulation results based on simple theoretical models.
< Wave-wave interferences

Wave-particle interactions
Doppler shift effects

Instabilities

R
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Summary and Discussion

If you want to use numerical simulation to study nonlinear plasma phenomena, you should
(@) choose a right simulation code for your problem,
(b) do your best to save CPU time (simulation scheme) and real time (1/0),
(c) always keep a macroscopic vision and a microscopic alert in your mind,

(d) make a good diagnostics for your simulation results.
Prospective of Numerical Simulations
To build up a good simulation group, we need good hardwares, good softwares, and

scientists with good experiences in doing different types of plasma simulations.

Beethoven can compose a symphony after he lost his hearing ability.

A simulation expert can predict simulation results even without a computer.

24



RISy Bl 7 HIE by Ling-Hsiao Lyu July 2005

£ p

References

Hildebrand, F. B., Advanced Calculus for Applications, 2" edition, Prentice-Hall, Inc.,
Englewood, Cliffs, New Jersey, 1976.

Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (in C
or in FORTRAN and Pascal), Cambridge University Press, Cambridge, 1988.

Richtmyer, R. D., and K. W. Morton, Difference Methods for Initial-Value Problems, 2™
edition, John Wiley & Sons, Inc., 1967.

Shampine, L. F., and M. K. Gordon, Computer Solution of Ordinary Differential Equation:
the Initial Value Problem, W. H. Freeman and Company, San Francisco, 1975.

Snell, J. L., Introduction to Probability Theory With Computing, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1975.

System/360 Scientific Subroutine Package Version 111, Programmer’s Manual, 5" edition,
IBM, New York, 1970.

25



