
數值模擬的基本知識 by Ling-Hsiao Lyu July 2005

 1

雷射電漿物理暑期學校
Laser-Plasma Interaction Summer School

7/4 ~ 7/9, 2005
中研院原分所浦大邦講堂

數值模擬的基本知識

呂凌霄

國立中央大學

太空科學研究所

數值模擬的基本知識 by Ling-Hsiao Lyu July 2005

 2

課程大綱

1. 什麼是數值模擬？

2. 如何選擇電漿數值模擬碼

3. 處理微分與積分常用的數值方法

4. 處理時間積分的數值方法

5. 疊代法與機器誤差估算

6. 亂數產生器（補充教材）

7. 數值模擬的診斷分析

8. 總結與討論

數值模擬的基本知識 by Ling-Hsiao Lyu July 2005

 3

1. 什麼是數值模擬？

Definition of Numerical Simulation

Numerical simulations use a set of numerical methods to solve a set of ordinary

differential equations and/or partial differential equations, in which at least one

time-derivative term is present in these equations. Thus, numerical simulation is a set of

carefully planed numerical schemes to solve initial value problems numerically.

{Numerical Simulations ⊂ Numerical Methods}

Comprehensive knowledge on numerical methods can help us to make a good diagnostics of

the simulation results.

Objectives of Making Numerical Simulation Studies

The goal of using numerical simulations to study nonlinear phenomena includes:

 To test theoretical model to see if one can reproduce the observed phenomena

based on the given theoretical model.

 To understand detail nonlinear evolution processes and to determine the

complicated cause-and-result relationships.

 To make a prediction or forecasting of the observed phenomena (applications of

numerical simulations).

數值模擬的基本知識 by Ling-Hsiao Lyu July 2005

 4

2. 如何選擇電漿數值模擬碼

How to Choose a Suitable Simulation Code for Your Problem

Plasma consists of positive charged ions and negative charged electrons. Since

ei mm >> , there are many intrinsic time scales in a plasma system even in a uniform

background environment. For time scale less than the intrinsic time scales, it is hard for the

plasma to reach a thermal dynamic equilibrium state. As a result, the kinetic effect might

become important for time scale less than the intrinsic time scales of the plasma.

Present plasma simulation codes can be classified based on their phase space resolutions

as listed in Table 2.1. Note that the so-called particle-code simulation is indeed a

multiple-fluid simulation. A simulation particle in the particle-code simulation is indeed a

fluid element in the phase space (vx,).

Basic equations of a relativistic test particle simulation code, a relativistic full-particle

code, and a relativistic Vlasov simulation code are given in Tables, 2.2, 2.3, and 2.4,

respectively.

Table 2.1. Classification of Plasma Simulation Codes

Assuming thermal

dynamic

equilibrium?

Simulation Code
Phenomena scale

length λ

e-e i-i e-i

MHD code
iλλ 310≥ yes yes yes Fluid

Simulations Two-Fuild code
ii λλλ 10103 ≥≥ yes yes no

Hybrid code

fluid electrons & kinetic ions
ii λλλ ≥≥10 yes no no

Full particle code ei λλλ ≥≥ no no no

Test particle code Strong magnetic field n/a n/a n/a

Kinetic

Simulations

Vlasov Code ei λλλ ≥≥ no no no

數值模擬的基本知識 by Ling-Hsiao Lyu July 2005

 5

Table 2.2. Equations of motion of a relativistic test particle α , with mass αm and
charge αe , moving in a background electric field)(xE and magnetic field)(xB

2]/)([1

)()(

ctu

t
td

td

α

αα

+
=

ux

)(2
)](

]/)([1

)(
+)([

)(
t

ctu

t
m
e

td
td

α

α

α

α

αα
xxxB

u
xE

u
=×

+
=

Table 2.3. Governing equations of relativistic electromagnetic particle code simulation

(the simulation particle is a finite-size particle with shape function S)
Equation of motion of simulation particles:

2]/)([1

)()(

ctu

t
td

td

α

αα

+
=

ux

xxxxB
u

xE
u

dtSt
ctu

t
t

m
e

td
td

)]([)],(
]/)([1

)(
+),([

)(
2 α

α

α

α

αα −×
+

= ∫

Maxwell’s equations:

xxxxxxE ′′−−′=⋅∇ ∫∑ dS
e

t)()(),(
0

α
α

α δ
ε

0=⋅∇ B

),(),(t
t

t xExB
×−∇=

∂
∂

t
t

c
dSt

ctu

t
et

∂
∂δµ α

α α

α
α

),(1)()]([
]/)([1

)(
),(220

xExxxxx
u

xB +′′−−′
+

=×∇ ∫∑

Table 2.4. Governing equations of electromagnetic Vlasov simulation code

with relativistic electrons and non-relativistic ions

u
BuE

x
u

∂
∂

∂
∂

∂
∂ e

e

ee f

cum
ef

cut
f

⋅×
+

+⋅
+

−=)
)/(1

+(
)/(1 22

v
BvE

x
v

∂
∂

∂
∂

∂
∂ i

i

ii f
m
ef

t
f

⋅×−⋅−=)+(

EB
×−∇=

t∂
∂

]
)/(1

[3

2

3

0

2 ∫∫∫∫∫∫
+

−−×∇= udf
cu

vdfec
t ei

uvBE
ε∂

∂

Initial conditions
0=⋅∇ B

][33

0
∫∫∫∫∫∫ −=⋅∇ udfvdfe

eiε
E

數值模擬的基本知識 by Ling-Hsiao Lyu July 2005

 6

A fluid simulation code can provide reasonable and quick simulation results when the

kinetic effects are unimportant. The magnetohydrodynamic (MHD) simulation code is good

to simulate large-scale nonlinear plasma phenomena. The Hall MHD simulation code and

the two-fluid simulation code are good to simulate medium-scale nonlinear plasma

phenomena, in which dispersion effect due to finite ion inertial length effect is important.

The kinetic effect becomes important when the non-uniformity scale length of the

system is comparable to the characteristic scale length of a species (ions and/or electrons), or

when the wave speed observed in the center of mass frame of a species is approximately

equal or less than the thermal speed of that species. When the kinetic effect is important,

we have to use a kinetic simulation code to study the nonlinear evolutions of wave-particle

interactions in the phase space.

數值模擬的基本知識 by Ling-Hsiao Lyu July 2005

 7

3. 處理微分與積分常用的數值方法

Numerical Methods for Differentiations and Integrations

As we have discussed in Section 1 that numerical simulation is a set of carefully planed

numerical schemes to solve initial value problems numerically. Let us consider the

following three types of differential equations,

)()(tf
dt

tdy
= (3.1)

),()(tyf
dt

tdy
= (3.2)

),...,...,,,,(),(
2

2

∫= dxy
x

y
x
yytf

t
txy

∂
∂

∂
∂

∂
∂ (3.3)

The numerical methods for time integration of these equations will be discussed in the

next section (Section 4). Before we conduct the time integration, we need to determine the

differentiations ,..., 2

2

x
y

x
y

∂
∂

∂
∂

 and integrations ∫ ,...dxy on the left hand side of the equation

(3.3) at each grid point.

In this section, we are going to discuss the following four types of numerical methods,

which are commonly used in spatial differentiations and integrations.

 Finite Differences (based on Taylor’s expansion)

 FFT (Fast Fourier Transform)

 Cubic Spline

 Cubic Spline with Corrections

3.1. Finite Differences

For convenience, we shall use the following notation in the rest of this lecture notes.

),,,(),,,(n
kji

n
ijk tzyxftntzkzyjyxixff =∆=∆=∆=∆==

Using finite difference method, we can obtain derivatives of a tabulated function f .

Ni

Ni

ffff
xxxx
Ni

L

L

L

21

21

:
:

21:

Table 3.1 lists examples of the first order finite difference expressions of
ixxdxfd =]/[,

ixxdxfd =]/[22 , and
ixxdxfd =]/[33 . Table 3.2 lists examples of the finite difference

數值模擬的基本知識 by Ling-Hsiao Lyu July 2005

 8

expressions of ∫= dxfy .

Table 3.1. The first order numerical differentiations based on finite difference method

Derivatives Central Difference Forward Difference Backward Difference

ixxdx
fd

=

x
ff

f ii
i ∆

−
= −+

2
11δ

x
ff

f ii
i ∆

−
=∆ +1

x
ff

f ii
i ∆

−
=∇ −1

ixxdx
fd

=
2

2

2

112

)(
2

x
fff

f iii
i ∆

+−
= −+δ 2

122

)(
2
x

fff
f iii

i ∆
+−

=∆ ++
2

212

)(
2

x
fff

f iii
i ∆

+−
=∇ −−

d3 f
dx3

x= xi

3

2112

3

)(2
22

x
ffff

f

iiii

i

∆
−+−

=

−−++

δ

3
123

3

)(
33

x
ffff

f

iiii

i

∆
−+−

=∆

+++
3

321

3

)(
33
x

ffff
f

iiii

i

∆
−+−

=∇

−−−

Exercise 3.1. Determine the second order and the forth order central differences

expressions of
ixxdxfd =]/[, and

ixxdxfd =]/[22 , based on the Taylor expansions of the

function f .

Exercise 3.2. Use the first order, the second order, and the forth order central differences

expressions to determine the dxfd / , and 22 / dxfd , an analytical function f with a

fixed x∆ . Determine the numerical errors in your results. Compare the numerical

errors obtained from different finite differences expressions.

Table 3.2. The spatial integrations based on finite difference method

)()(xf

dx
xyd

= , xh ∆=

1st order integration yi+1 = yi + h fi + O(h2 f)

2nd order integration

Trapezoidal rule
)(

2
31

1 fhO
ff

hyy ii
ii ′′+

+
+= +

+

4th order integration

Simpson’s rule
)()

6
1

6
4

6
1()4(5

1)2/1(1 fhOfffhyy iiiii ++++= +++

3rd order integration

Simpson’s 3/8 rule
)()

8
3

8
9

8
9

8
3(

3
4

1
3
2

3
11 fhOffffhyy iiiiii ′′′+++++= +

++
+

數值模擬的基本知識 by Ling-Hsiao Lyu July 2005

 9

補助教材：

Show that, for)()(xfxy =′ ,

)(2
1 fhOfhyy iii ++=+

)(
2

31
1 fhO

ff
hyy ii

ii ′′+
+

+= +
+

)()
6
1

6
4

6
1()4(5

1)2/1(1 fhOfffhyy iiiii ++++= +++

Proof:

Since

L+′′′∆
+′′∆

+′∆
+=∆+)(

!3
)()(

!2
)()(

!1
)()(

32

xyxxyxxyxxyxxy

Substituting)()(xfxy =′ into above equation yields

)(2
1 fhOfhyy iii ++=+

or

L+′′′+′′+′++=
+++++

+
2
1

4

2
1

3

2
1

2

2
1

2
11 !4

)2/(
!3

)2/(
!2
)2/(

2 iiiiii fhfhfhfhyy (3.1)

L+′′′−
+′′−

+′−
+−=

+++++
2
1

4

2
1

3

2
1

2

2
1

2
1 !4

)2/(
!3

)2/(
!2

)2/(
2 iiiiii fhfhfhfhyy (3.2)

Keeping the 2nd order term and subtracting Eq. (3.2) from Eq. (3.1) yields

)(00 3

2
11 fhOfhyy

iii ′′+++=−
+

+

or

)(
2

31
1 fhO

ff
hyy ii

ii ′′+
+

+= +
+

Keeping the 4th order term and subtracting Eq. (3.2) from Eq. (3.1) yields

)(0
3

)2/(00)4(5

2
1

3

2
11 fhOfhfhyy

iiii ++′′+++=−
++

+

or

)(
)2/(

2
24

)4(5
2

)2/1(1
3

2
11 fhO

h
fffhfhyy iii

iii +
+−

+=− ++

+
+

It yields

)()
6
1

6
4

6
1()4(5

1)2/1(1 fhOfffhyy iiiii ++++= +++

數值模擬的基本知識 by Ling-Hsiao Lyu July 2005

 10

Exercise 3.3.

Derive Simpson’s 3/8 rule.

3.2. FFT (Fast Fourier Transform)

A function can be expanded by a complete set of sine and cosine functions. In the Fast

Fourier Transform, the sine and cosine tables are calculated in advance to save the CPU time

of the simulation.

For a periodic function f , one can use FFT to determine its differentiations and

integrations, i.e.,

)]}([{1 fFFTikFFT
dx

fd −=

)]}([1{1 fFFT
ik

FFTfdx −=∫ for 0>k .

Exercise 3.4.

Use an FFT subroutine to determine the first derivatives of a periodic analytical function

f . Determine the numerical errors in your results.

Exercise 3.5.

Use an FFT subroutine to determine the first derivatives of a non-periodic analytical

function f . Determine the numerical errors in your results.

3.3. Cubic Spline

A tabulate function can be fitted by a set of piece-wise continuous functions, in which

the first and the second derivatives of the fitting functions are continuous at each grid point.

One need to solve a tri-diagonal matrix to determine the piece-wise continuous cubic spline

functions. The inversion of the tri-diagonal matrix depends only on the position of grid

points. Thus, for simulations with fixed grid points, one can evaluate the inversion of the

tri-diagonal matrix in advance to save the CPU time of the simulation.

For a non-periodic function f , it is good to use the cubic spline method to determine its

differentiations and integrations at each grid point. Results of differentiations obtained from

the cubic spline show the same order of accuracy as the results obtained from the forth order

finite differences scheme.

數值模擬的基本知識 by Ling-Hsiao Lyu July 2005

 11

補助教材：

The piece-wise continuous function in the cubic spline can be written in the following

form.

2
1

1

11

1

1

1
1)(

))((
]

)(
)(

[
)(

))((
)(

))((
)(

kk

kk
k

kk

k
k

kk

kk

kk

kk
kk xx

xxxx
b

xx
xx

a
xx

xxxf
xx

xxxf
xxxf

−
−−

+
−
−

+
−
−

+
−
−

=≤≤
+

+

++

+

+

+
+

The constants }11,,{ −→= nkforba kk are chosen such that the matching conditions for

cubic spline can be fulfilled, i.e.,

k

kk

k

kk

xxdx
xxxdf

xxdx
xxxdf

=

≤≤
=

=

≤≤ +−)()(11

and

k

kk

k

kk

xxdx
xxxfd

xxdx
xxxfd

=

≤≤
=

=

≤≤ +−
2

1
2

2
1

2)()(

One can obtain the following two types of recursion formula

))((3)(3))(()](22)[()(1
010

1
1

1
1

k

k
kk

k

k
k

k

k
kk h

h
xfxf

h
h

xf
h

h
xfxf −

−
−

+
−

− ′+′=′++′+′

)]()([6))(()](22)[()(100
11

1
1

1 −
−−

+
−

− ′−′=′′++′′+′′ kk
kk

k
k

k

k
kk xfxf

hh
h

xf
h
h

xfxf

where
kk

kk
k xx

xfxf
xf

−
−

=′
+

+

1

1
0

)()(
)(and kkk xxh −= +1 .

Exercise 3.6.

Use a Cubic Spline subroutine to determine the first derivatives of an analytical function

f . Determine the numerical errors in your results.

3.4. Cubic Spline with Corrections

Numerical oscillation may take place when we use higher order finite difference scheme

or Cubic Spline to determine the differentiations of a sharp-changed function f . An

exponential correction can reduce this type of numerical errors. Adding a damping term,
22 / xf ∂∂ , in the simulation code can also reduce this type of numerical errors in the

simulation.

數值模擬的基本知識 by Ling-Hsiao Lyu July 2005

 12

4. 處理時間積分的數值方法

Schemes for Solving Initial Value Problems—Numerical Methods for Time Integrations

All the numerical time integrations are constructed based on finite difference numerical

schemes. FFT and Cubic Spline become useless in the numerical time integration processes.

The numerical time integration schemes can be classified into the following two categories:

 Explicit Scheme:

 The future information are determined based on the present and the post

information

 Easy to program, easy to blowout!

 To avoid blowout Choose shorter time step Require more CPU time

 Implicit Scheme:

 The future information are determined based on the future, the present, and the post

information

 Difficult to program and/or Require more memory

 Stable in large time step Save CPU time

4.1. Examples of Explicit Scheme

Examples of explicit time integration schemes include Euler method, Runge-Kutta method,

Adams' open Formula, which is also called Adams-Bashforth Formula, and Lax-Wendroff

scheme. Table 4.1. lists the numerical schemes of Euler method and Runge-Kutta method.

Table 4.2 lists Adams' open formulae at different orders of accuracy, which will be discussed

in the subsection 4.3. The Lax-Wendroff scheme to be discussed in this subsection is

commonly used in fluid simulations.

數值模擬的基本知識 by Ling-Hsiao Lyu July 2005

 13

Table 4.1. Explicit time integrations and their corresponding spatial integrations

The spatial integrations based on finite

differences scheme The explicit time integrations

)()(xf
dx

xyd
= , xh ∆=),()(ytf

dt
tyd
= , th ∆=

1st order integration

)(2
1 fhOfhyy iii ++=+

1st order explicit scheme: Euler method

)(),(21 fhOytfhyy nnnn ++=+

2nd order integration

Trapezoidal rule

)(
2

31
1 fhO

ff
hyy ii

ii ′′+
+

+= +
+

2nd order Runge-Kutta method

(an explicit scheme)

),(*)(1 nnnn ytfhyy +=+

2
*)(1

2
1 ++ +
=

nnn yyy

)(),(32
1

2
1

1 fhOytfhyy
nnnn ′′++=
+++

4th order integration

Simpson’s rule

)(

)
6
1

6
4

6
1(

)4(5

1)2/1(

1

fhO

fffh

yy

iii

ii

+

+++

=

++

+

3rd order integration

Simpson’s
3
8

 rule

)(

)
8
3

8
9

8
9

8
3(

3
4

1
3
2

3
1

1

fhO

ffffh
yy

iiii

ii

′′′+

++++

=

+
++

+

4th order Runge-Kutta method

(an explicit scheme)

),(*)(1 nnnn ytfhyy +=+

2
)()(

1
2
1 ++ +
=

nnn yyy

)*)(,(*)*(2
1

2
1

1 +++ +=
nnnn ytfhyy

2
)(*)*(

1
2
1 ++ +
=

nnn yyy

)*)*(,(**)*(2
1

2
1

1 +++ +=
nnnn ytfhyy

)()]**)*(,(
6
1

)*)*(,(
6
2

)*)(,(
6
2

),(
6
1[

)4(511

2
1

2
1

2
1

2
1

1

fhOytf

ytf

ytf

ytfhyy

nn

nn

nn

nnnn

++

+

+

+=

++

++

++

+

數值模擬的基本知識 by Ling-Hsiao Lyu July 2005

 14

Exercise 4.1.

Solve proton’s trajectory in a uniform magnetic field 0BzeB = and electric field

0EyeE = by means of (i) Euler method, (ii) 2nd order Runge-Kutta method, and (iii) 4th

order Runge-Kutta method, where ye and ze are the unit vectors along the y and z

directions, respectively. Solve this problem for 100 gyro periods with the following three

different initial conditions. Plot proton’s trajectory in both x - y space and in xv - yv

space. Compare your numerical results with the analytical solutions.

Case 1: 0)0(==tx and 0)0(==tv

Case 2: 0)0(==tx and xBEt ev)/5.2()0(00==

Case 3: 0)0(==tx and xBEt ev)/5.0()0(00==

The Lax-Wendroff scheme is an explicit scheme. It is good for solving fluid equations with

absence of diffusion or dissipation terms. A set of one-dimensional fluid equations, without

dissipation or diffusion terms, can be written in the following conservative form

0)(
=+

xt ∂
∂

∂
∂ UFU

which can be solved numerically by the second order Lax-Wendroff scheme.

Step 1:

][)()(
22 1

12
1

2
1

n
i

n
i

n
i

n
in

i x
t UFUF

UU
U −

∆
∆

−
+

= +
+

+

+

Step 2:

Ui
n +1 = Ui

n −
∆ t
∆x

[F(U
i+ 1

2

n+ 1
2) − F(U

i−1
2

n+ 1
2)]

Additional examples and advanced discussion on using Lax-Wendroff scheme to solve fluid

equations can be found in the book by Richtmyer and Morton (1967).

Exercise 4.2.

Using the second order Lax-Wendroff scheme to solve Korteweg-deVries (KdV) equation

0)(3

3

0 =+++
x
V

x
VVC

t
V

∂
∂α

∂
∂

∂
∂

with uniform boundary condition and a given initial profile)0,(=txV with a bump at

center of the simulation domain. Plot evolutions of spatial profile),(txV . You can

數值模擬的基本知識 by Ling-Hsiao Lyu July 2005

 15

normalize your velocity field by 0C . Study the following two cases: one for 0>α , and

the other for 0<α .

4.2. Examples of Implicit Scheme

Consider a charge particle moving in a uniform strong magnetic field. Momentum equation

of this charge particle is

0)()(Bvv
×= t

m
q

td
td (4.1)

The following numerical scheme is an implicit scheme of Eq. (4.1)

0

1
1

2
Bvvvv ×

+
∆+=

+
+

nn
nn

m
qt (4.2)

Exercise 4.3.

Solve Eq. (4.2) to obtain 1+n
xv , 1+n

yv and 1+n
zv for a given set of n

xv , n
yv , n

zv , xB0 , yB0 ,

and zB0 .

Exercise 4.4.

Solve proton’s trajectory in Exercise 4.1 by means of the implicit scheme discussed this

section.

In addition to the gyro motion, the diffusion equation is another type of differential

equation, which should be solved by an implicit scheme.

補助教材：

The diffusion equation

2

2

x
T

t
T

∂
∂κ

∂
∂

= (4.3)

can be solved numerically by one of the following implicit schemes.

)]2()2[(
2
1

)(
1

1
11

1112

1
+

−
++

+−+

+

+−++−
∆

=
∆
− n

i
n

i
n

i
n

i
n

i
n

i

n
i

n
i TTTTTT

xt
TT κ (4.4)

or

)2(
)(

1
1

11
12

1
+

−
++

+

+

+−
∆

=
∆
− n

i
n

i
n

i

n
i

n
i TTT

xt
TT κ (4.5)

or

數值模擬的基本知識 by Ling-Hsiao Lyu July 2005

 16

)]2()2)(1[(
)(

1
1

11
1112

1
+

−
++

+−+

+

+−++−−
∆

=
∆
− n

i
n

i
n

i
n

i
n

i
n

i

n
i

n
i TTTTTT

xt
TT

λλκ (4.6)

where 10 << λ . For 2/1=λ , Eq. (4.6) is reduced to Eq. (4.4). For 1=λ , Eq. (4.6)

is reduced to Eq. (4.5). Eq. (4.4) can be written as
n

i
n

i
n

i
n

i
n

i
n

i TTTTTT 11
1

1
11

1)21()21(+−
+

+
++

− +−+=−++− αααααα (4.7)

where 2)(2 x
t

∆
∆

=
κα

For given boundary conditions 0)0(TxT == , and
xNx TxNxT =∆=)(, Eq. (4.7) can be

rewritten in the following tri-diagonal matrix form:

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+−+
+−+

+−+
+−+

=

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+−
−+−

−+−
−+

−−

−−−
+
−

+
−

+

+

xxx

xxx

x

x

N
n

N
n

N

n
N

n
N

n
N

nnn

nn

n
N

n
N

n

n

TTT
TTT

TTT
TTT

T
T

T
T

ααα
ααα

ααα
ααα

αα
ααα

ααα
αα

2)21(
)21(

)21(
)21(2

)21(00
)21(

00
)21(

00)21(

12

123

321

210

1
1

1
2

1
2

1
1

MM

L

M

O

M

L

Exercise 4.5.

Write a subroutine, using Gauss elimination method to solve (nxxx ,,, 21 L) in the

following tri-diagonal set of equations. Limit number of arrays used in your program.

There should be no more than five n ×1 arrays used in your program.

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−−−−

n

n

n

n

nn

nnn

r
r

r
r

x
x

x
x

ba
cba

cba
cb

1

2

1

1

2

1

111

222

11

00

00

00

MM

L

M

O

M

L

Examples on how to solve tri-diagonal set of equations numerically can be found at Press

et al. (1988).

Exercise 4.6.

Write a program to solve diffusion equation (4.3) for a given initial condition and boundary

conditions. Plot evolution of spatial profile),(txT .

Adams' close formula, which is also called Adams-Moulton formula, is also an implicit

scheme. Table 4.3 lists Adams' close formulae at different orders of accuracy, which will be

discussed in the next subsection 4.3.

數值模擬的基本知識 by Ling-Hsiao Lyu July 2005

 17

4.3. Predictor-Corrector Method Based on Adams Formula

Predictor-Corrector method is an easy-to-program implicit scheme, but require more

memory than the corresponding explicit scheme. We use the Adams' formula to construct

the Predictor-Corrector simulation scheme (e.g., Shampine and Gordon, 1975; Press et al.,

1988). Tables 4.2 and 4.3 list the Adams' open and close formulae, respectively, at different

orders of accuracy. Proof of these Adams' formulae can be found in advanced mathematics

textbooks (e.g., Hildebrand, 1976). A 4th order Predictor-Corrector method (e.g., Shampine

and Gordon, 1975) is summarized in Table 4.4.

Exercise 4.7.

Using the forth order Predictor-Corrector method described in Table 4.4 to solve

Korteweg-deVries (KdV) equation in Exercise 4.2 and proton’s trajectory in Exercise 4.4.

Table 4.2. Adams' Open Formulae (also called Adams-Bashforth Formula)

Order of

Accuracy

Solving ftdyd =/ or fty =∂∂ / explicitly with th ∆=

1st)(][21 fhOfhyy nnn ′++=+

2nd
)(]

2
1

2
3[311 fhOffhyy nnnn ′′+−+= −+

3rd
)(]

12
5

12
16

12
23[4211 fhOfffhyy nnnnn ′′′++−+= −−+

4th
)(]

24
9

24
37

24
59

24
55[)4(53211 fhOffffhyy nnnnnn +−+−+= −−−+

5th

)(]
720
251

720
1274

720
2616

720
2774

720
1901[)5(64321

1

fhOfffffh

yy

nnnnn

nn

++−+−+

=

−−−−

+

6th

)(

]
1440
475

1440
2877

1440
7298

1440
9982

1440
7923

1440
4277[

)6(7

54321

1

fhO

ffffffh

yy

nnnnnn

nn

+

−+−+−+

=

−−−−−

+

數值模擬的基本知識 by Ling-Hsiao Lyu July 2005

 18

Table 4.3. Adams' Close Formulae (also called Adams-Moulton Formula)

Order of

Accuracy

Solving ftdyd =/ or fty =∂∂ / implicitly with th ∆=

1st)(][211 fhOfhyy nnn ′++= ++

2nd
)(]

2
1

2
1[311 fhOffhyy nnnn ′′+++= ++

3rd
)(]

12
1

12
8

12
5[4111 fhOfffhyy nnnnn ′′′+−++= −++

4th
)(]

24
1

24
5

24
19

24
9[)4(52111 fhOffffhyy nnnnnn ++−++= −−++

5th

)(]
720
19

720
106

720
264

720
646

720
251[)5(63211

1

fhOfffffh

yy

nnnnn

nn

+−+−++

=

−−−+

+

6th

)(

]
1440

27
1440
173

1440
482

1440
798

1440
1427

1440
475[

)6(7

43211

1

fhO

ffffffh

yy

nnnnnn

nn

+

+−+−++

=

−−−−+

+

Table 4.4. Procedure of the 4th order Predictor-Corrector Method

Initial

Steps
Using 4th order Runge-Kutta method to obtain 1y , 2y , and 3y from 0y .

Predicting

Step
Using 4th order Adams Open Formula to predict 4y from 0y , 1y , 2y , and

3y .

Using 4th order Adams Close Formula to correct 4y from 1y , 2y , 3y , and

the predicted y 4 (or corrected 4y of the last iteration).

Correcting

Steps

Repeat the correcting step for several times or until the iteration converges.

[The condition of convergence in an iteration scheme will be discussed in the

next section (Section 5).]

…. Repeat the Predicting and Correcting Steps to advance y from ny to 1+ny .

數值模擬的基本知識 by Ling-Hsiao Lyu July 2005

 19

5. 疊代法與機器誤差估算

Condition of Convergence in an Iteration Scheme and Estimation of Machine Errors

If U is the relative error of 1, then an iteration scheme is convergent when
1111 ++++ <− nknknk yUyy .

where 1+nk y is the k th iteration result of 1+ny .

Machine-dependent relative error U can be obtained from the following program (e.g.,

Shampine and Gordon, 1975).

C This subroutine determines machine-dependent relative error

C relative to 1.

 Subroutine DGETU(U)

 Implicit double precision (a-h,o-z)

 A1=1.d0 !for double precision

 AH=0.5d0 !for double precision

C A1=1. !for single precision program

C AH=0.5 !for single precision program

 U=A1

 UU=U

 1 CONTINUE

 UU=UU*AH

 UT=U+UU

 IF(UT.GT.U) GO TO 1

 U=UU*2

 RETURN

 END

數值模擬的基本知識 by Ling-Hsiao Lyu July 2005

 20

6. 亂數產生器簡介（補充教材）

Random Number Generators

Random number generators are commonly used in particle-code simulations and in

Monte Carlo simulations (e.g., Snell, 1975).

6.1. Uniform Random Number Generator

Uniform random number generator is a machine-dependent function. The following

function is modified from the subroutine RANDU in IBM/SSP (Scientific Subroutine

Package). In general, one should be able to find a machine-dependent intrinsic function of

“uniform random number generator” from a given FORTRAN complier. However, for

convenience, one can always use the following function to generate a uniform random

number in a 32-bits machine.

C This function obtains a machine-dependent uniform random number.

C This function is good for 32 bits computer.

C This function is modified from IBM/SSP subroutine RANDU

C Constants used in this functions include

C 2147483648=2**31

C 0.4656613E-9=2.**(-31)

C 65539=65536+3=(2**16)+3

C

 function ran(ix)

 iy=ix*65539

 if(iy)5,6,6

 5 iy=iy+2147483647+1

 6 yfl=iy

 yfl=yfl*.4656613E-9

 ran=yfl

 ix=iy

 return

 end

Exercise 6.1.

Write a program to generate more than 1000 uniform random numbers. Plot distribution

of these random numbers and compare it with the profile of uniform distribution function.

數值模擬的基本知識 by Ling-Hsiao Lyu July 2005

 21

6.2. Random Number Generator of a General Non-uniform Probability Function

From the uniform random number generator, one can obtain random number of any

given probability function. The following subroutine is an example of random number

generator of any given probability function FUNC, in which random number between XL and

XR are obtained. FMAX is the maximum of the probability function FUNC(x). A main

program need provide an external probability function in order to use the following

subroutine to generate a random number.

C This subroutine obtains a random number of a given function FUNC(x).

C The resulting random number is in the range of (XL, XR)

C Fmax>0 is the maximum of the function FUNC(x) for XL<x<XR

C ix is the seed of uniform random number.

C program stop if fmax .le.0, or XR.LE.XL, or FUNC(x)<0 for XL<x<XR,

C

 subroutine ranfunc(x,FUNC,XL,XR,Fmax,ix)

 external FUNC

C--------------

 if(Fmax.le.0.) then

 print *,’program stop because Fmax<0, Fmax=’, Fmax

 stop

 endif

 if(XR.le.XL) then

 print *,’program stop because XR.LE.XL, XR,XL=’, XR,XL

 stop

 endif

C--------------

 1 continue

 x=ran(ix)*(XR-XL)+XL

 y=ran(ix)*Fmax

 y0= FUNC(x)

C--------------

 if(y0.lt.0.) then

 print *,’program stop because FUNC(x)<0, FUNC(x)=’, y0

 stop

 endif

C--------------

 if(y.gt.y0) go to 1

 return

 end

數值模擬的基本知識 by Ling-Hsiao Lyu July 2005

 22

Exercise 6.2.

Write a program to generate more than 1000 random numbers of a given function. Plot

distribution of these random numbers and compare it with the profile of the given

distribution function.

6.3. Random Number Generator of a Normal Distribution Function

According to Law of Large Numbers, and Central Limit Theorem (e.g., Snell, 1975),

random number of normal distribution function can be obtained from uniform random

number generator. According to subroutine GAUSS in IBM/SSP (Scientific Subroutine

Package), random number of normal distribution function, with mean equal to zero and

standard deviation equal to one, can be obtained from

12/
2

)(
1

K

Kx
Y

K

i
i∑

=

−
= (6.1)

where all xi are obtained from a uniform random number generator. Y is a random

number of normal distribution with mean equal to zero and standard deviation equal to one.

Exercise 6.3.

Varify Eq. (6.1) based on Law of Large Numbers, and Central Limit Theorem.

Hint: According to Law of Large Numbers, if the mean of ix is µ , and variance of ix

is 2σ then the mean and variance of KxxxS +++= L21 will be µK and 2σK ,

respectively. For uniform random number generator, the corresponding probability

function is xxf =)(where 10 ≤≤ x . It can be easily shown that the mean of this

uniform probability function is 1/2 and the variance of this uniform probability function is

1/12. Thus, if KxxxS +++= L21 and xi are obtained from uniform random number

generator, the mean of S should be 2/K and variance of S should be 12/K .

Exercise 6.4.

Based on Eq. (6.1), write a program to generate more than 1000 random numbers of a

normal distribution function with 12=K and 6=K . Plot distributions of these two

sets of random numbers and compare them with the profile of normal distribution function.

Compare CPU time used in generating random numbers in Exercise 6.2 and in this

Exercise.

數值模擬的基本知識 by Ling-Hsiao Lyu July 2005

 23

7. 數值模擬的診斷分析

Diagnostics of Simulation Results

We need to make a good diagnostics to understand detail nonlinear evolution processes

and to determine the complicated cause-and-result relationships from the simulation results.

Making good diagnostics is as important as choosing a good simulation scheme.

Guideline for making a correct simulation and good diagnostics

 Check your simulation results

 Check and make sure the total energy is conserved.

 Check and make sure that your simulation results satisfy the Courant condition.

That is, the maximum speed v (which is equal to the largest possible wave speed

plus the maximum flow speed or particle speed) multiplying one time step t∆ is

less than one grid size x∆ . Indeed, we recommend that xtv ∆<∆ 1.0 .

 Check and make sure that your simulation results are almost unchanged when the

simulation system length is doubled, or when the simulation time step is reduced in

half, or when the simulation grid size is reduced in half, or when the number of

simulation particles is doubled, or when the real ion-electron mass ratio is used.

 Always use double precision in your simulation.

 Display your simulation results

 Carefully trace the time evolution of fields and fluid variables.

 Carefully trace the phase-space trajectories of a group of simulation particles.

 Use Matlab, IDL, or PV Wave to display massive simulation results automatically.

 Use Excel or Kaleidagraph to display a single frame of a summary plot.

 Analysis and understand your simulation results

 Explain your simulation results based on simple theoretical models.

 Wave-wave interferences

 Wave-particle interactions

 Doppler shift effects

 Instabilities

 …

數值模擬的基本知識 by Ling-Hsiao Lyu July 2005

 24

8. 總結與討論

Summary and Discussion

If you want to use numerical simulation to study nonlinear plasma phenomena, you should

(a) choose a right simulation code for your problem,

(b) do your best to save CPU time (simulation scheme) and real time (I/O),

(c) always keep a macroscopic vision and a microscopic alert in your mind,

(d) make a good diagnostics for your simulation results.

Prospective of Numerical Simulations

To build up a good simulation group, we need good hardwares, good softwares, and

scientists with good experiences in doing different types of plasma simulations.

Beethoven can compose a symphony after he lost his hearing ability.

A simulation expert can predict simulation results even without a computer.

數值模擬的基本知識 by Ling-Hsiao Lyu July 2005

 25

參考文獻

References

Hildebrand, F. B., Advanced Calculus for Applications, 2nd edition, Prentice-Hall, Inc.,

Englewood, Cliffs, New Jersey, 1976.

Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (in C

or in FORTRAN and Pascal), Cambridge University Press, Cambridge, 1988.

Richtmyer, R. D., and K. W. Morton, Difference Methods for Initial-Value Problems, 2nd

edition, John Wiley & Sons, Inc., 1967.

Shampine, L. F., and M. K. Gordon, Computer Solution of Ordinary Differential Equation:

the Initial Value Problem, W. H. Freeman and Company, San Francisco, 1975.

Snell, J. L., Introduction to Probability Theory With Computing, Prentice-Hall, Inc.,

Englewood Cliffs, New Jersey, 1975.

System/360 Scientific Subroutine Package Version III, Programmer’s Manual, 5th edition,

IBM, New York, 1970.

