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1. 什麼是數值模擬？ 

Definition of Numerical Simulation 

Numerical simulations use a set of numerical methods to solve a set of ordinary 

differential equations and/or partial differential equations, in which at least one 

time-derivative term is present in these equations.  Thus, numerical simulation is a set of 

carefully planed numerical schemes to solve initial value problems numerically.   

 

{Numerical Simulations ⊂  Numerical Methods} 

 

Comprehensive knowledge on numerical methods can help us to make a good diagnostics of 

the simulation results.  

 

Objectives of Making Numerical Simulation Studies 

 

The goal of using numerical simulations to study nonlinear phenomena includes: 

 To test theoretical model to see if one can reproduce the observed phenomena 

based on the given theoretical model. 

 To understand detail nonlinear evolution processes and to determine the 

complicated cause-and-result relationships.  

 To make a prediction or forecasting of the observed phenomena (applications of 

numerical simulations). 
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2. 如何選擇電漿數值模擬碼 

How to Choose a Suitable Simulation Code for Your Problem 

 

Plasma consists of positive charged ions and negative charged electrons.  Since 

ei mm >> , there are many intrinsic time scales in a plasma system even in a uniform 

background environment.  For time scale less than the intrinsic time scales, it is hard for the 

plasma to reach a thermal dynamic equilibrium state.  As a result, the kinetic effect might 

become important for time scale less than the intrinsic time scales of the plasma. 

Present plasma simulation codes can be classified based on their phase space resolutions 

as listed in Table 2.1.  Note that the so-called particle-code simulation is indeed a 

multiple-fluid simulation.  A simulation particle in the particle-code simulation is indeed a 

fluid element in the phase space ( vx, ). 

Basic equations of a relativistic test particle simulation code, a relativistic full-particle 

code, and a relativistic Vlasov simulation code are given in Tables, 2.2, 2.3, and 2.4, 

respectively. 

 

Table 2.1. Classification of Plasma Simulation Codes 

Assuming thermal 

dynamic 

equilibrium? 

 

Simulation Code  
Phenomena scale 

length λ  

e-e i-i e-i 

MHD code 
iλλ 310≥  yes yes yes Fluid 

Simulations Two-Fuild code 
ii λλλ 10103 ≥≥  yes yes no 

Hybrid code 

fluid electrons & kinetic ions
ii λλλ ≥≥10  yes no no 

Full particle code ei λλλ ≥≥  no no no 

Test particle code Strong magnetic field n/a n/a n/a 

Kinetic 

Simulations 

Vlasov Code ei λλλ ≥≥  no no no 
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Table 2.2. Equations of motion of a relativistic test particle α , with mass αm  and  
charge αe , moving in a background electric field )(xE  and magnetic field )(xB  

2]/)([1

)()(

ctu

t
td

td

α

αα

+
=

ux
 

)(2
)](

]/)([1

)(
+)([

)(
t

ctu

t
m
e

td
td

α

α

α

α

αα
xxxB

u
xE

u
=×

+
=  

 
Table 2.3. Governing equations of relativistic electromagnetic particle code simulation 

(the simulation particle is a finite-size particle with shape function S) 
Equation of motion of simulation particles: 
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Table 2.4. Governing equations of electromagnetic Vlasov simulation code 

with relativistic electrons and non-relativistic ions 
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A fluid simulation code can provide reasonable and quick simulation results when the 

kinetic effects are unimportant.  The magnetohydrodynamic (MHD) simulation code is good 

to simulate large-scale nonlinear plasma phenomena.  The Hall MHD simulation code and 

the two-fluid simulation code are good to simulate medium-scale nonlinear plasma 

phenomena, in which dispersion effect due to finite ion inertial length effect is important.   

The kinetic effect becomes important when the non-uniformity scale length of the 

system is comparable to the characteristic scale length of a species (ions and/or electrons), or 

when the wave speed observed in the center of mass frame of a species is approximately 

equal or less than the thermal speed of that species.  When the kinetic effect is important, 

we have to use a kinetic simulation code to study the nonlinear evolutions of wave-particle 

interactions in the phase space.   
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3. 處理微分與積分常用的數值方法 

Numerical Methods for Differentiations and Integrations 

As we have discussed in Section 1 that numerical simulation is a set of carefully planed 

numerical schemes to solve initial value problems numerically.  Let us consider the 

following three types of differential equations,  

)()( tf
dt

tdy
=               (3.1) 

),()( tyf
dt

tdy
=              (3.2) 
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The numerical methods for time integration of these equations will be discussed in the 

next section (Section 4).  Before we conduct the time integration, we need to determine the 

differentiations ,..., 2

2

x
y

x
y

∂
∂

∂
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 and integrations ∫ ,...dxy  on the left hand side of the equation 

(3.3) at each grid point.   

In this section, we are going to discuss the following four types of numerical methods, 

which are commonly used in spatial differentiations and integrations. 

 Finite Differences (based on Taylor’s expansion) 

 FFT (Fast Fourier Transform) 

 Cubic Spline  

 Cubic Spline with Corrections 

 

3.1. Finite Differences 

 

For convenience, we shall use the following notation in the rest of this lecture notes. 
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Using finite difference method, we can obtain derivatives of a tabulated function f .   
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Table 3.1 lists examples of the first order finite difference expressions of 
ixxdxfd =]/[ , 

ixxdxfd =]/[ 22 , and 
ixxdxfd =]/[ 33 .  Table 3.2 lists examples of the finite difference 
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expressions of ∫= dxfy . 

 

Table 3.1. The first order numerical differentiations based on finite difference method 

Derivatives Central Difference Forward Difference Backward Difference 
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Exercise 3.1.  Determine the second order and the forth order central differences 

expressions of 
ixxdxfd =]/[ , and 

ixxdxfd =]/[ 22 , based on the Taylor expansions of the 

function f . 

 

Exercise 3.2.  Use the first order, the second order, and the forth order central differences 

expressions to determine the dxfd / , and 22 / dxfd , an analytical function f  with a 

fixed x∆ .  Determine the numerical errors in your results.  Compare the numerical 

errors obtained from different finite differences expressions. 

 

Table 3.2. The spatial integrations based on finite difference method 

 
)()( xf

dx
xyd

= , xh ∆=  

1st order integration yi+1 = yi + h fi + O(h2 f ) 

2nd order integration 

Trapezoidal rule 
)(

2
31

1 fhO
ff

hyy ii
ii ′′+

+
+= +

+  

4th order integration 

Simpson’s rule 
)()

6
1

6
4

6
1( )4(5

1)2/1(1 fhOfffhyy iiiii ++++= +++  

3rd order integration 

Simpson’s 3/8 rule 
)()

8
3

8
9

8
9

8
3(

3
4

1
3
2

3
11 fhOffffhyy iiiiii ′′′+++++= +

++
+

 



數值模擬的基本知識    by Ling-Hsiao Lyu  July 2005  

 9

補助教材： 

Show that, for )()( xfxy =′ , 
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Exercise 3.3. 

Derive Simpson’s 3/8 rule. 

 

3.2. FFT (Fast Fourier Transform) 

 

A function can be expanded by a complete set of sine and cosine functions.  In the Fast 

Fourier Transform, the sine and cosine tables are calculated in advance to save the CPU time 

of the simulation. 

For a periodic function f , one can use FFT to determine its differentiations and 

integrations, i.e.,  

)]}([{1 fFFTikFFT
dx

fd −=  

)]}([1{1 fFFT
ik

FFTfdx −=∫  for 0>k . 

 

Exercise 3.4. 

Use an FFT subroutine to determine the first derivatives of a periodic analytical function 

f .  Determine the numerical errors in your results.   

Exercise 3.5. 

Use an FFT subroutine to determine the first derivatives of a non-periodic analytical 

function f .  Determine the numerical errors in your results.   

 

3.3. Cubic Spline  

 

A tabulate function can be fitted by a set of piece-wise continuous functions, in which 

the first and the second derivatives of the fitting functions are continuous at each grid point.  

One need to solve a tri-diagonal matrix to determine the piece-wise continuous cubic spline 

functions.  The inversion of the tri-diagonal matrix depends only on the position of grid 

points.  Thus, for simulations with fixed grid points, one can evaluate the inversion of the 

tri-diagonal matrix in advance to save the CPU time of the simulation. 

For a non-periodic function f , it is good to use the cubic spline method to determine its 

differentiations and integrations at each grid point.  Results of differentiations obtained from 

the cubic spline show the same order of accuracy as the results obtained from the forth order 

finite differences scheme. 
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補助教材： 

The piece-wise continuous function in the cubic spline can be written in the following 

form. 
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Exercise 3.6. 

Use a Cubic Spline subroutine to determine the first derivatives of an analytical function 

f .  Determine the numerical errors in your results.   

 

3.4. Cubic Spline with Corrections 

 

Numerical oscillation may take place when we use higher order finite difference scheme 

or Cubic Spline to determine the differentiations of a sharp-changed function f .  An 

exponential correction can reduce this type of numerical errors.  Adding a damping term, 
22 / xf ∂∂ , in the simulation code can also reduce this type of numerical errors in the 

simulation. 
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4. 處理時間積分的數值方法 

Schemes for Solving Initial Value Problems—Numerical Methods for Time Integrations 

 

All the numerical time integrations are constructed based on finite difference numerical 

schemes.  FFT and Cubic Spline become useless in the numerical time integration processes.  

The numerical time integration schemes can be classified into the following two categories: 

 

 Explicit Scheme:  

 The future information are determined based on the present and the post 

information 

 Easy to program, easy to blowout! 

 To avoid blowout  Choose shorter time step  Require more CPU time 

 

 Implicit Scheme: 

 The future information are determined based on the future, the present, and the post 

information 

 Difficult to program and/or Require more memory 

 Stable in large time step  Save CPU time 

 

4.1. Examples of Explicit Scheme 

 

Examples of explicit time integration schemes include Euler method, Runge-Kutta method, 

Adams' open Formula, which is also called Adams-Bashforth Formula, and Lax-Wendroff 

scheme.  Table 4.1. lists the numerical schemes of Euler method and Runge-Kutta method.  

Table 4.2 lists Adams' open formulae at different orders of accuracy, which will be discussed 

in the subsection 4.3.  The Lax-Wendroff scheme to be discussed in this subsection is 

commonly used in fluid simulations. 
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Table 4.1. Explicit time integrations and their corresponding spatial integrations 

The spatial integrations based on finite 

differences scheme The explicit time integrations 
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Exercise 4.1. 

Solve proton’s trajectory in a uniform magnetic field 0BzeB =  and electric field 

0EyeE =  by means of (i) Euler method, (ii) 2nd order Runge-Kutta method, and (iii) 4th 

order Runge-Kutta method, where ye  and ze  are the unit vectors along the y  and z  

directions, respectively.  Solve this problem for 100 gyro periods with the following three 

different initial conditions.  Plot proton’s trajectory in both x - y  space and in xv - yv  

space.  Compare your numerical results with the analytical solutions. 

Case 1: 0)0( ==tx  and 0)0( ==tv  

Case 2: 0)0( ==tx  and xBEt ev )/5.2()0( 00==  

Case 3: 0)0( ==tx  and xBEt ev )/5.0()0( 00==  

 

The Lax-Wendroff scheme is an explicit scheme.  It is good for solving fluid equations with 

absence of diffusion or dissipation terms.  A set of one-dimensional fluid equations, without 

dissipation or diffusion terms, can be written in the following conservative form 

0)(
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xt ∂
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∂
∂ UFU  

which can be solved numerically by the second order Lax-Wendroff scheme. 
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Step 2: 
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n +1 = Ui
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∆ t
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[F(U
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2 ) − F(U
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2

n+ 1
2 )] 

Additional examples and advanced discussion on using Lax-Wendroff scheme to solve fluid 

equations can be found in the book by Richtmyer and Morton (1967).   

 

Exercise 4.2. 

Using the second order Lax-Wendroff scheme to solve Korteweg-deVries (KdV) equation  

0)( 3
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0 =+++
x
V

x
VVC

t
V

∂
∂α

∂
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∂
∂  

with uniform boundary condition and a given initial profile )0,( =txV  with a bump at 

center of the simulation domain.  Plot evolutions of spatial profile ),( txV .  You can 
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normalize your velocity field by 0C .  Study the following two cases: one for 0>α , and 

the other for 0<α . 

 

4.2. Examples of Implicit Scheme 

 

Consider a charge particle moving in a uniform strong magnetic field.  Momentum equation 

of this charge particle is 

0)()( Bvv
×= t

m
q

td
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The following numerical scheme is an implicit scheme of Eq. (4.1) 
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Exercise 4.3. 

Solve Eq. (4.2) to obtain 1+n
xv , 1+n

yv  and 1+n
zv  for a given set of n

xv , n
yv , n

zv , xB0 , yB0 , 

and zB0 . 

Exercise 4.4. 

Solve proton’s trajectory in Exercise 4.1 by means of the implicit scheme discussed this 

section. 

 

In addition to the gyro motion, the diffusion equation is another type of differential 

equation, which should be solved by an implicit scheme. 

補助教材： 

The diffusion equation 
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where 10 << λ .  For 2/1=λ , Eq. (4.6) is reduced to Eq. (4.4).  For 1=λ , Eq. (4.6) 

is reduced to Eq. (4.5).  Eq. (4.4) can be written as 
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where 2)(2 x
t
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For given boundary conditions 0)0( TxT == , and 
xNx TxNxT =∆= )( , Eq. (4.7) can be 

rewritten in the following tri-diagonal matrix form: 
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Exercise 4.5. 

Write a subroutine, using Gauss elimination method to solve ( nxxx ,,, 21 L ) in the 

following tri-diagonal set of equations.  Limit number of arrays used in your program.  

There should be no more than five n ×1 arrays used in your program. 
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Examples on how to solve tri-diagonal set of equations numerically can be found at Press 

et al. (1988). 

Exercise 4.6. 

Write a program to solve diffusion equation (4.3) for a given initial condition and boundary 

conditions.  Plot evolution of spatial profile ),( txT . 

 

Adams' close formula, which is also called Adams-Moulton formula, is also an implicit 

scheme.  Table 4.3 lists Adams' close formulae at different orders of accuracy, which will be 

discussed in the next subsection 4.3. 
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4.3. Predictor-Corrector Method Based on Adams Formula  

 

Predictor-Corrector method is an easy-to-program implicit scheme, but require more 

memory than the corresponding explicit scheme.  We use the Adams' formula to construct 

the Predictor-Corrector simulation scheme (e.g., Shampine and Gordon, 1975; Press et al., 

1988).  Tables 4.2 and 4.3 list the Adams' open and close formulae, respectively, at different 

orders of accuracy.  Proof of these Adams' formulae can be found in advanced mathematics 

textbooks (e.g., Hildebrand, 1976).  A 4th order Predictor-Corrector method (e.g., Shampine 

and Gordon, 1975) is summarized in Table 4.4. 

 

Exercise 4.7. 

Using the forth order Predictor-Corrector method described in Table 4.4 to solve 

Korteweg-deVries (KdV) equation in Exercise 4.2 and proton’s trajectory in Exercise 4.4. 

 

Table 4.2. Adams' Open Formulae (also called Adams-Bashforth Formula) 
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Table 4.3. Adams' Close Formulae (also called Adams-Moulton Formula) 

Order of 

Accuracy 

Solving ftdyd =/  or fty =∂∂ /  implicitly with th ∆=  
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Table 4.4. Procedure of the 4th order Predictor-Corrector Method 

Initial  

Steps 
Using 4th order Runge-Kutta method to obtain 1y , 2y , and 3y  from 0y . 

Predicting 

Step 
Using 4th order Adams Open Formula to predict 4y  from 0y , 1y , 2y , and 

3y . 

Using 4th order Adams Close Formula to correct 4y  from 1y , 2y , 3y , and 

the predicted y 4  (or corrected 4y  of the last iteration). 

Correcting 

Steps 

Repeat the correcting step for several times or until the iteration converges. 

[The condition of convergence in an iteration scheme will be discussed in the 

next section (Section 5).] 

…. Repeat the Predicting and Correcting Steps to advance y  from ny  to 1+ny .  
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5. 疊代法與機器誤差估算 

Condition of Convergence in an Iteration Scheme and Estimation of Machine Errors 

 

If U  is the relative error of 1, then an iteration scheme is convergent when 
1111 ++++ <− nknknk yUyy .  

where 1+nk y  is the k th iteration result of 1+ny .   

 

Machine-dependent relative error U  can be obtained from the following program (e.g., 

Shampine and Gordon, 1975). 

 
C  This subroutine determines machine-dependent relative error  

C   relative to 1. 

      Subroutine DGETU(U) 

      Implicit double precision (a-h,o-z) 

      A1=1.d0    !for double precision 

      AH=0.5d0    !for double precision 

C      A1=1.     !for single precision program 

C      AH=0.5     !for single precision program 

      U=A1 

      UU=U 

    1  CONTINUE 

      UU=UU*AH 

      UT=U+UU 

      IF(UT.GT.U) GO TO 1 

      U=UU*2 

      RETURN 

      END 
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6. 亂數產生器簡介（補充教材） 

Random Number Generators 

 

Random number generators are commonly used in particle-code simulations and in 

Monte Carlo simulations (e.g., Snell, 1975). 

 

6.1. Uniform Random Number Generator  

 

Uniform random number generator is a machine-dependent function.  The following 

function is modified from the subroutine RANDU in IBM/SSP (Scientific Subroutine 

Package).  In general, one should be able to find a machine-dependent intrinsic function of 

“uniform random number generator” from a given FORTRAN complier.  However, for 

convenience, one can always use the following function to generate a uniform random 

number in a 32-bits machine. 

 
C  This function obtains a machine-dependent uniform random number. 

C  This function is good for 32 bits computer. 

C  This function is modified from IBM/SSP subroutine RANDU 

C  Constants used in this functions include 

C  2147483648=2**31 

C  0.4656613E-9=2.**(-31) 

C  65539=65536+3=(2**16)+3 

C 

      function ran(ix) 

      iy=ix*65539 

      if(iy)5,6,6 

    5  iy=iy+2147483647+1 

    6  yfl=iy 

      yfl=yfl*.4656613E-9 

      ran=yfl 

      ix=iy 

      return 

      end 

 

Exercise 6.1. 

Write a program to generate more than 1000 uniform random numbers.  Plot distribution 

of these random numbers and compare it with the profile of uniform distribution function. 
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6.2. Random Number Generator of a General Non-uniform Probability Function  

 

From the uniform random number generator, one can obtain random number of any 

given probability function.  The following subroutine is an example of random number 

generator of any given probability function FUNC, in which random number between XL and 

XR are obtained.  FMAX is the maximum of the probability function FUNC(x).  A main 

program need provide an external probability function in order to use the following 

subroutine to generate a random number. 

 
C  This subroutine obtains a random number of a given function FUNC(x). 

C  The resulting random number is in the range of (XL, XR) 

C  Fmax>0 is the maximum of the function FUNC(x) for XL<x<XR   

C  ix is the seed of uniform random number. 

C  program stop if fmax .le.0, or XR.LE.XL, or FUNC(x)<0 for XL<x<XR, 

C 

      subroutine ranfunc(x,FUNC,XL,XR,Fmax,ix) 

      external FUNC 

C-------------- 

      if(Fmax.le.0.) then 

      print *,’program stop because Fmax<0, Fmax=’, Fmax 

      stop 

      endif 

      if(XR.le.XL) then 

      print *,’program stop because XR.LE.XL, XR,XL=’, XR,XL 

      stop 

      endif 

C-------------- 

    1  continue 

      x=ran(ix)*(XR-XL)+XL 

      y=ran(ix)*Fmax 

      y0= FUNC(x) 

C-------------- 

      if(y0.lt.0.) then 

      print *,’program stop because FUNC(x)<0, FUNC(x)=’, y0 

      stop 

      endif 

C-------------- 

      if(y.gt.y0) go to 1 

      return 

      end 

 

 



數值模擬的基本知識    by Ling-Hsiao Lyu  July 2005  

 22

Exercise 6.2. 

Write a program to generate more than 1000 random numbers of a given function.  Plot 

distribution of these random numbers and compare it with the profile of the given 

distribution function. 

 

6.3. Random Number Generator of a Normal Distribution Function  

 

According to Law of Large Numbers, and Central Limit Theorem (e.g., Snell, 1975), 

random number of normal distribution function can be obtained from uniform random 

number generator.  According to subroutine GAUSS in IBM/SSP (Scientific Subroutine 

Package), random number of normal distribution function, with mean equal to zero and 

standard deviation equal to one, can be obtained from 

12/
2

)(
1

K

Kx
Y

K

i
i∑

=

−
=             (6.1) 

where all xi  are obtained from a uniform random number generator.  Y  is a random 

number of normal distribution with mean equal to zero and standard deviation equal to one. 

 

Exercise 6.3. 

Varify Eq. (6.1) based on Law of Large Numbers, and Central Limit Theorem.  

Hint: According to Law of Large Numbers, if the mean of ix  is µ , and variance of ix  

is 2σ  then the mean and variance of KxxxS +++= L21  will be µK  and 2σK , 

respectively.  For uniform random number generator, the corresponding probability 

function is xxf =)(  where 10 ≤≤ x .  It can be easily shown that the mean of this 

uniform probability function is 1/2 and the variance of this uniform probability function is 

1/12.  Thus, if KxxxS +++= L21  and xi  are obtained from uniform random number 

generator, the mean of S  should be 2/K  and variance of S  should be 12/K . 

Exercise 6.4. 

Based on Eq. (6.1), write a program to generate more than 1000 random numbers of a 

normal distribution function with 12=K  and 6=K .  Plot distributions of these two 

sets of random numbers and compare them with the profile of normal distribution function.  

Compare CPU time used in generating random numbers in Exercise 6.2 and in this 

Exercise. 
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7. 數值模擬的診斷分析 

Diagnostics of Simulation Results 

 

We need to make a good diagnostics to understand detail nonlinear evolution processes 

and to determine the complicated cause-and-result relationships from the simulation results.  

Making good diagnostics is as important as choosing a good simulation scheme. 

 

Guideline for making a correct simulation and good diagnostics 

 Check your simulation results 

 Check and make sure the total energy is conserved. 

 Check and make sure that your simulation results satisfy the Courant condition.  

That is, the maximum speed v  (which is equal to the largest possible wave speed 

plus the maximum flow speed or particle speed) multiplying one time step t∆  is 

less than one grid size x∆ .  Indeed, we recommend that xtv ∆<∆ 1.0 .  

 Check and make sure that your simulation results are almost unchanged when the 

simulation system length is doubled, or when the simulation time step is reduced in 

half, or when the simulation grid size is reduced in half, or when the number of 

simulation particles is doubled, or when the real ion-electron mass ratio is used. 

 Always use double precision in your simulation. 

 Display your simulation results 

 Carefully trace the time evolution of fields and fluid variables. 

 Carefully trace the phase-space trajectories of a group of simulation particles. 

 Use Matlab, IDL, or PV Wave to display massive simulation results automatically. 

 Use Excel or Kaleidagraph to display a single frame of a summary plot.  

 Analysis and understand your simulation results 

 Explain your simulation results based on simple theoretical models. 

 Wave-wave interferences 

 Wave-particle interactions 

 Doppler shift effects 

 Instabilities 

 … 
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8. 總結與討論 

Summary and Discussion 

 

If you want to use numerical simulation to study nonlinear plasma phenomena, you should 

(a) choose a right simulation code for your problem, 

(b) do your best to save CPU time (simulation scheme) and real time (I/O), 

(c) always keep a macroscopic vision and a microscopic alert in your mind, 

(d) make a good diagnostics for your simulation results. 

 

Prospective of Numerical Simulations  

To build up a good simulation group, we need good hardwares, good softwares, and 

scientists with good experiences in doing different types of plasma simulations. 

 

Beethoven can compose a symphony after he lost his hearing ability. 

A simulation expert can predict simulation results even without a computer. 
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