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Chapter 5-Old. Kelvin-Helmholtz Instability 
 

Exercise 5.1 

Read section 11.4.3 in the following textbook and derive symmetric 

Kelvin-Helmholtz instability occurred at a tangential discontinuity (TD) due to 

velocity shear on two sides of the TD. 

Parks, G. K., Physics of Space Plasmas: An Introduction, Addison-Wesley Publ. 

Co., 1991.  

 

Velocity shear at boundary of two mediums may be unstable to Kelvin-Helmholtz 

instability, which can result in large amplitude surface wave at the boundary.  

Kelvin-Helmholtz instability due to wind shear on water surface can lead to large 

amplitude surface wave.  But the tension force of water surface can stabilize 

Kelvin-Helmholtz instability.  Thus, large amplitude water wave can only be found 

when the wind speed is large enough to overcome the tension force.  

Kelvin-Helmholtz instability can also be found in the atmosphere.  An island in 

ocean can disturb airflow above it.  This disturbance can trigger Kelvin-Helmholtz 

instability and result in wavy cloud pattern downstream from the island.  Twisting of 

auroral arcs is another example of Kelvin-Helmholtz instability. 

 

In this lecture, we shall discuss MHD Kelvin-Helmholtz instability occurred at a 

tangential discontinuity, such as dawn and dusk flanks of magnetopause.  The 

Kelvin-Helmholtz instability in this region can result in a mixing layer at low latitude 

boundary layer (LLBL). 

 

Basic equations of an ideal MHD plasma: 

 

Continuity equation 

€ 

∂ρ
∂ t

+∇ ⋅ (ρV) = (∂
∂ t

+ V ⋅ ∇)ρ + ρ∇ ⋅V = 0        (5.1) 

Momentum equation 

€ 

ρ(∂
∂ t

+ V ⋅ ∇)V = −∇p + J ×B          (5.2) 
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Energy equation 

€ 

(∂
∂ t

+ V ⋅ ∇)(pρ−γ ) = 0             (5.3) 

or 

€ 

(∂
∂ t

+ V ⋅ ∇)p =
γ p
ρ
(∂
∂ t

+ V ⋅ ∇)ρ =
γ p
ρ
[−ρ∇ ⋅V] = −γ p∇ ⋅V     (5.3') 

where Eq. (5.1) has been used to obtain Eq. (5.3'). 

 

Charge continuity equation 

€ 

∇ ⋅ J ≈ 0 

MHD Ohm’s Law 

€ 

E + V ×B ≈ 0              (5.4) 

Maxwell’s equations 

€ 

∇ ⋅E ≈ 0  

€ 

∇ ⋅B = 0                (5.5) 

€ 

∂B
∂ t

= −∇ ×E               (5.6) 

€ 

∇ × B ≈ µ0J               (5.7) 

Substituting Eq. (5.4) into Eq. (5.6) yields 

€ 

∂B
∂ t

= −∇ ×E =∇ × (V ×B) = −V ⋅ ∇B−B∇ ⋅V + B ⋅ ∇V + V∇ ⋅B  

or  

€ 

(∂
∂ t

+ V ⋅ ∇)B = −B∇ ⋅V + B ⋅ ∇V           (5.6') 

where Eq. (5.5) has been used to obtain Eq. (5.6'). 

 

Substituting (5.7) into (5.2) yields 

€ 

ρ(∂
∂ t

+ V ⋅ ∇)V = −∇p +
1
µ0
(∇ ×B) ×B = −∇p −∇ B2

2µ0
+
B ⋅ ∇B

µ0
    (5.2') 

Define total pressure  

€ 

ptot = p +
B2

2µ0
              (5.8) 

Eq. (5.2') can be rewritten as 
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€ 

ρ(∂
∂ t

+ V ⋅ ∇)V = −∇ptot +
B ⋅ ∇B

µ0
          (5.2") 

The time derivative of Eq. (5.8) in fluid element moving frame is 

€ 

(∂
∂ t

+ V ⋅ ∇)ptot = (∂
∂ t

+ V ⋅ ∇)p +
B
µ0
⋅ [(∂
∂ t

+ V ⋅ ∇)B]      (5.9) 

Substituting Eqs. (5.3') and (5.6') into Eq. (5.9) yields 

€ 

(∂
∂ t

+ V ⋅ ∇)ptot = −(γ p +
B2

µ0
)∇ ⋅V +

B
µ0
⋅ (B ⋅ ∇V)       (5.10) 

We choose normal direction of the tangential discontinuity (TD) to be the 

€ 

x  

direction.  We consider a TD located at 

€ 

x = 0.  The background magnetic field and 

flow velocity are all in the tangent direction.  To linearize above equations, we 

consider a small perturbation 

€ 

δA  superimpose on a background equilibrium state 

€ 

A0(x)  and assume the small perturbation 

€ 

δA  is in the following form 

€ 

δ A(x,y,t) = δ A (x)exp[i(kt y −ω t)] 

so that we have 

€ 

A(x,y,t) = A0(x) + δ A (x)exp[i(kt y −ω t)]        (5.11) 

The equilibrium state of the TD satisfies 

€ 

p0tot = constant = p0(x) +
B0
2(x)
2µ0

= p0(x) +
B0y
2 (x) + B0z

2 (x)
2µ0

     (5.12) 

and  

€ 

B0x = 0               (5.13) 

€ 

V0 = ˆ y V0y (x)               (5.14) 

Differentiating Eq. (5.12) once with respect to 

€ 

x  yields 

€ 

0 =
dp0(x)
dx

+
B0y (x)

µ0

dB0y (x)
dx

+
B0z(x)

µ0

dB0z(x)
dx

       (5.15) 

Applying Eq. (5.11) to Eq. (5.2") yields 

€ 

ρ0(x)(−i)[ω − ktV0y (x)]δV x (x) = −
dδ p tot (x)

dx
+

B0y (ikt )
µ0

δB x (x)     (5.16) 

€ 

ρ0(x)(−i)[ω − ktV0y (x)]δV y (x) = −iktδ p tot (x) +
B0y (ikt )

µ0
δB y (x) 

€ 

+
δB x (x)

µ0

dB0y (x)
dx

− ρ0(x)δV x (x)
dV0y (x)

dx
  (5.17) 

€ 

ρ0(x)(−i)[ω − ktV0y (x)]δV z(x) = 0 +
B0y (ikt )

µ0
δB z(x) +

δB x (x)
µ0

dB0z (x)
dx

   (5.18) 
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Applying Eq. (5.11) to Eq. (5.3') yields 

€ 

(−i)[ω − ktV0y (x)]δ p (x) = −γ p0(x)[
dδV x (x)

dx
+ iktδV y (x)]−δV x (x)

dp0(x)
dx

  (5.19) 

Applying Eq. (5.11) to Eq. (5.6') yields 

€ 

(−i)[ω − ktV0y (x)]δB x (x) = 0 + B0y (x)(ikt )δV x (x)        (5.20) 

€ 

(−i)[ω − ktV0y (x)]δB y (x) = −B0y (x)[
dδV x (x)

dx
+ iktδV y (x)]+ B0y (x)(ikt )δV y (x)   

€ 

+δB x (x)
dV0y (x)

dx
−δV x (x)

dB0y (x)
dx

  (5.21) 

€ 

(−i)[ω − ktV0y (x)]δB z(x) = −B0z (x)[
dδV x (x)

dx
+ iktδV y (x)]+ B0y (x)(ikt )δV z(x)  

€ 

−δV x (x)
dB0z (x)

dx
  (5.22) 

Applying Eq. (5.11) to Eq. (5.10) yields 

€ 

(−i)[ω − ktV0y (x)]δ p tot (x) = −[γ p0(x) +
B0
2(x)
µ0

][dδV x (x)
dx

+ iktδV y (x)] 

€ 

+
B0y (x)

µ0
B0y (x)(ikt )δV y (x) +

B0z (x)
µ0

B0y (x)(ikt )δV z (x) +
B0y (x)

µ0
δB x (x)

dV0y (x)
dx

 (5.23) 

 

Governing equations to be solved include 

Eq. (5.16): {

€ 

δV x,δB x,
dδ p tot

dx
} 

Eq. (5.17): {

€ 

δV x,δV y,δB x,δB y,δ p tot } 

Eq. (5.18): {

€ 

δV z,δB x,δB z} 

Eq. (5.20): {

€ 

δV x,δB x } 

Eq. (5.21): {

€ 

δV x,δV y,δB x,δB y,
dδV x
dx

} 

Eq. (5.22): {

€ 

δV x,δV y,δV z,δB z,
dδV x
dx

} 

Eq. (5.23): {

€ 

δV y,δV z,δB x,δ p tot ,
dδV x
dx

} 

 

Substituting Eq. (5.20) into Eqs. (5.16)~(5.18), (5.21) and (5.23) to eliminate 

€ 

δB x , it 

yields 
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Eq. (5.20) + Eq. (5.16) to eliminate 

€ 

δB x   Eq. (5.24): {

€ 

δV x,
dδ p tot

dx
} 

Eq. (5.20) + Eq. (5.17) to eliminate 

€ 

δB x   Eq. (5.25): {

€ 

δV x,δV y,δB y,δ p tot} 

Eq. (5.20) + Eq. (5.18) to eliminate 

€ 

δB x   Eq. (5.26): {

€ 

δV z,δB z } 

Eq. (5.20) + Eq. (5.21) to eliminate 

€ 

δB x   Eq. (5.27): {

€ 

δV x,δV y,δB y,
dδV x
dx

} 

Eq. (5.20) + Eq. (5.23) to eliminate 

€ 

δB x   Eq. (5.28): {

€ 

δV x,δV y,δV z,δ p tot ,
dδV x
dx

} 

 

We have eliminated 

€ 

δB x .  Now we wish to eliminate 

€ 

δB y  and 

€ 

δB z . 

Eq. (5.25) + Eq. (5.27) to eliminate 

€ 

δB y   Eq. (5.29): {

€ 

δV x,δV y,δ p tot ,
dδV x
dx

} 

Eq. (5.26) + Eq. (5.22) to eliminate 

€ 

δB z   Eq. (5.30): {

€ 

δV x,δV y,δV z,
dδV x
dx

} 

Indeed, we found that Eq. (5.30) is an expression without 

€ 

δV x .  That is we have Eq. 

(5.30): {

€ 

δV y,δV z,
dδV x
dx

} 

 

In summary, after eliminating 

€ 

δB x , 

€ 

δB y , and 

€ 

δB z , we are left with the following 

four governing equations 

Eq. (5.24): {

€ 

δV x,
dδ p tot

dx
} 

Eq. (5.28): {

€ 

δV y,δV z,δ p tot ,
dδV x
dx

} 

Eq. (5.29): {

€ 

δV x,δV y,δ p tot ,
dδV x
dx

} 

Eq. (5.30): {

€ 

δV x,δV y,δV z,
dδV x
dx

} 

 

 

 

The following procedure is for constructing governing equation of 

€ 

δ p tot  

Eq. (5.28) + Eq. (5.30) to eliminate 

€ 

δV z   Eq. (5.31): {

€ 

δV x,δV y,δ p tot ,
dδV x
dx

} 



Nonlinear Space Plasma Physics (I) [SS-841] Chapter 5-Old  by Ling-Hsiao Lyu  2008 Fall 
 

 Old-5-6 

Eq. (5.29) + Eq. (5.31) to eliminate 

€ 

δV y   Eq. (5.32): {

€ 

δV x,δ p tot ,
dδV x
dx

} 

€ 

d
dx

Eq. (5.24)        Eq. (5.33): {

€ 

dδV x
dx

, dδ p tot

dx
, d

2δ p tot

dx 2
} 

Eq. (5.32) + Eq. (5.33) to eliminate 

€ 

dδV x
dx

  Eq. (5.34): {

€ 

δV x,δ p tot ,
dδ p tot

dx
, d

2δ p tot

dx 2
} 

Eq. (5.24) + Eq. (5.34) to eliminate 

€ 

δV x   Eq. (5.35): {

€ 

δ p tot ,
dδ p tot

dx
, d

2δ p tot

dx 2
} 

The Eq. (5.35) is the governing equation of 

€ 

δ p tot .  

 

The following procedure is for constructing governing equation of 

€ 

δV x  

€ 

d
dx

Eq. (5.32)        Eq. (5.36): {

€ 

δV x,
dδV x
dx

, d
2δV x
dx 2

, dδ p tot

dx
} 

Eq. (5.24) + Eq. (5.36) to eliminate 

€ 

dδ p tot

dx
  Eq. (5.37): {

€ 

δV x,
dδV x
dx

, d
2δV x
dx 2

} 

The Eq. (5.37) is the governing equation of 

€ 

δV x .  

 

Similary, we can obtain the governing equations of other functions 

€ 

δV y , 

€ 

δB x , 

€ 

δB y , 

and 

€ 

δB z .  

 

Here we briefly list Eqs. (5.24)~(5.37) 

€ 

δV x (x) =

ω
kt

−V0y (x)

Π0(x)
[−i
kt

d
dx
δ p tot (x)]          (5.24) 

where 

€ 

Π0(x) ≡ ρ0(x){[
ω
kt
−V0y (x)]

2 −
B0y
2 (x)

µ0ρ0(x)
}          (5.24a) 

 

€ 

ρ0(x)[
ω
kt

−V0y (x)]
2δV y (x) = [ω

kt

−V0y (x)]δ p tot (x) − [
ω
kt

−V0y (x)]
B0y (x)

µ0
δB y (x)

−i{
B0y (x)

µ0

1
kt

dB0y (x)
dx

+ [ω
kt

−V0y (x)]
ρ0(x)

kt

dV0y (x)
dx

}δV x (x)
 (5.25) 
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€ 

ρ0(x)[
ω
kt

−V0y (x)]
2δV z (x)

= −[ω
kt

−V0y (x)]
B0y (x)

µ0
δB z (x) −i[

B0y (x)
µ0

1
kt

dB0z(x)
dx

]δV x (x)
     (5.26) 

 

€ 

[ω
kt

−V0y (x)]
B0y (x)

µ0
δB y (x)

= −i
B0y
2 (x)
µ0

1
kt

dδV x (x)
dx

−i[
B0y
2 (x)
µ0

1
kt

dV0y (x)
dx

ω
kt

−V0y (x)
+

B0y (x)
µ0

1
kt

dB0y (x)
dx

]δV x (x)
  (5.27) 

 

€ 

[ω
kt

−V0y (x)]δ p tot (x) + i[γp0(x) +
B0y
2 (x) + B0z

2 (x)
µ0

] 1
kt

dδV x (x)
dx

+ i
B0y
2 (x)
µ0

1
kt

dV0y (x)
dx

ω
kt

−V0y (x)
δV x (x) − [γp0(x) +

B0z
2 (x)
µ0

]δV y (x) = −
B0y (x)B0z (x)

µ0
δV z(x)

 (5.28) 

 

€ 

ρ0(x)[
ω
kt

−V0y (x)]
2δV y (x)

= [ω
kt

−V0y (x)]δ p tot (x) + i
B0y
2 (x)
µ0

1
kt

dδV x (x)
dx

−iδV x (x)Π0(x)

1
kt

dV0y (x)
dx

ω
kt

−V0y (x)

  (5.29) 

 

€ 

Π0(x)δV z(x) = i
B0y (x)B0z (x)

µ0

1
kt

dδV x (x)
dx

−
B0y (x)B0z(x)

µ0
δV y (x)     (5.30) 

 

€ 

[ω
kt

−V0y (x)]δ p tot (x) + i{γp0(x) +
B0y
2 (x)
µ0

+

B0z
2 (x)
µ0

[ω
kt

−V0y (x)]
2

[ω
kt

−V0y (x)]
2 −

B0y
2 (x)

µ0ρ0(x)

} 1
kt

dδV x (x)
dx

+ i
B0y
2 (x)
µ0

1
kt

dV0y (x)
dx

ω
kt

−V0y (x)
δV x (x) −{γp0(x) +

B0z
2 (x)
µ0

[ω
kt

−V0y (x)]
2

[ω
kt

−V0y (x)]
2 −

B0y
2 (x)

µ0ρ0(x)

}δV y (x) = 0

 (5.31) 
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€ 

δ p tot (x)[

ω
kt

−V0y (x)

Π0(x)
]F0(x) +

i
kt

dδV x (x)
dx

+ iδV x (x)

1
kt

dV0y (x)
dx

ω
kt

−V0y (x)
= 0     (5.32) 

where 

€ 

F0(x) =
[ω
kt
−V0y (x)]

2

γp0(x)
ρ0(x)

+
B0y
2 (x) + B0z

2 (x)
µ0ρ0(x)

−
B0y
2 (x)

µ0ρ0(x)

γp0(x)
ρ0(x)

[ω
kt
−V0y (x)]

2

−1      (5.32a) 

 

€ 

i
kt

d
dx
δV x (x) =

1
kt

d
dx
[

ω
kt

−V0y (x)

Π0(x)
][ 1

kt

dδ p tot (x)
dx

]+

ω
kt

−V0y (x)

Π0(x)
[ 1
kt
2

d2δ p tot (x)
dx 2

]  (5.33) 

 

€ 

δ p tot (x)[

ω
kt

−V0y (x)

Π0(x)
]F0(x) +

1
kt

dδ p tot (x)
dx

1
kt

d
dx
[

ω
kt

−V0y (x)

Π0(x)
]

+
1
kt
2

d2δ p tot (x)
dx 2

ω
kt

−V0y (x)

Π0(x)
+ iδV x (x)

1
kt

dV0y (x)
dx

ω
kt

−V0y (x)
= 0

     (5.34) 

 

€ 

1
kt
2

d2δ p tot (x)
dx 2

+
1
kt

dδ p tot (x)
dx

Π0(x)
1
kt

d
dx
[ 1
Π0(x)

]+ δ p tot (x)F0(x) = 0    (5.35) 

 

€ 

i
kt

dδ p tot (x)
dx

=
1
kt

d
dx
{
[ω
kt

−V0y (x)]
1
kt

dδV x (x)
dx

+ δV x (x)
1
kt

dV0y (x)
dx

[ω
kt

−V0y (x)]
2 F0(x)
Π0(x)

}    (5.36) 

 

€ 

Π0(x)
ω
kt

−V0y (x)
δV x (x) +

1
kt

d
dx
{
[ω
kt

−V0y (x)]
1
kt

dδV x (x)
dx

+ δV x (x)
1
kt

dV0y (x)
dx

[ω
kt

−V0y (x)]
2 F0(x)
Π0(x)

} = 0  (5.37) 
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In Summary: 

The governing equation of 

€ 

δ p tot  is 

€ 

1
kt
2

d2δ p tot (x)
dx 2

+
1
kt

dδ p tot (x)
dx

Π0(x)
1
kt

d
dx
[ 1
Π0(x)

]+ δ p tot (x)F0(x) = 0    (5.35) 

The governing equation of 

€ 

δV x  is 

€ 

Π0(x)
ω
kt

−V0y (x)
δV x (x) +

1
kt

d
dx
{
[ω
kt

−V0y (x)]
1
kt

dδV x (x)
dx

+ δV x (x)
1
kt

dV0y (x)
dx

[ω
kt

−V0y (x)]
2 F0(x)
Π0(x)

} = 0  (5.37) 

where 

€ 

Π0(x) ≡ ρ0(x){[
ω
kt
−V0y (x)]

2 −
B0y
2 (x)

µ0ρ0(x)
}          (5.24a) 

€ 

F0(x) =
[ω
kt
−V0y (x)]

2

γp0(x)
ρ0(x)

+
B0y
2 (x) + B0z

2 (x)
µ0ρ0(x)

−
B0y
2 (x)

µ0ρ0(x)

γp0(x)
ρ0(x)

[ω
kt
−V0y (x)]

2

−1      (5.32a) 

 

 

Remark 1:  

€ 

F0(x)  in Eq. (5.32a) can be written as 

€ 

F0(x) =
[ω
kt
−V0y (x)]

4

R0(x)
−1 

where  

€ 

R0(x) = {γp0(x)
ρ0(x)

+
B0y
2 (x) + B0z

2 (x)
µ0ρ0(x)

}[ω
kt
−V0y (x)]

2 −
B0y
2 (x)

µ0ρ0(x)
γp0(x)
ρ0(x)

 

It can be shown that  

€ 

[ω
kt
−V0y (x)]

4 − R0(x)

= [ω
kt
−V0y (x)]

4 −{γp0(x)
ρ0(x)

+
B0y
2 (x) + B0z

2 (x)
µ0ρ0(x)

}[ω
kt
−V0y (x)]

2 −
B0y
2 (x)

µ0ρ0(x)
γp0(x)
ρ0(x)

= {[ω
kt
−V0y (x)]

2 −VF 0y
2 (x)}{[ω

kt
−V0y (x)]

2 −VSL0y
2 (x)}

 

where 

€ 

VF0 y(x)  and 

€ 

VSL0 y(x)  are, respectively, the phase velocity of fast-mode and 
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slow-mode waves which propagate parallel or anti-parallel to the surface wave 

direction (

€ 

k t = kt ˆ y ). 

 

Thus 

€ 

F0(x) > 0  indicates 

 

€ 

[ω
kt
−V0y (x)]

2 >VF 0y
2 (x)  

or 

 

€ 

[ω
kt
−V0y (x)]

2 <VSL0y
2 (x)  

 

Remark 2:  

€ 

Π0(x)  in Eq. (5.24a) can be written as 

€ 

Π0(x) = ρ0(x){[
ω
kt
−V0y (x)]

2 −VA 0y
2 (x)} 

where 

€ 

VA0 y(x)  is the phase velocity of shear Alfven wave which propagates parallel 

or anti-parallel to the surface wave direction (

€ 

k t = kt ˆ y ). 

 

Thus 

€ 

Π0(x) > 0 indicates 

 

€ 

[ω
kt
−V0y (x)]

2 >VA 0y
2 (x)  
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Remark 3: 

For neutral fluid dynamics 

€ 

B0y (x) = B0z (x) = 0, it yields 

€ 

Π0(x) = ρ0(x)[
ω
kt
−V0y (x)]

2 ,  

€ 

F0(x) =
[ω
kt
−V0y (x)]

2

γp0(x)
ρ0(x)

−1, 

and 

€ 

δ p tot (x) = δ p (x) . Thus, Eqs. (5.35) and (5.37) are reduced to  

 

€ 

1
kt
2

d2δ p (x)
dx 2

+
1
kt

dδ p (x)
dx

ρ0(x)[
ω
kt

−V0y (x)]
2 1

kt

d
dx
{ 1

ρ0(x)[
ω
kt

−V0y (x)]
2
}

+ δ p (x){
[ω
kt

−V0y (x)]
2

γp0(x)
ρ0(x)

−1} = 0

 (5.35n) 

 

€ 

ρ0(x)[
ω
kt

−V0y (x)]δV x (x)

+
1
kt

d
dx
{ρ0(x)

[ω
kt

−V0y (x)]
1
kt

dδV x (x)
dx

+ δV x (x)
1
kt

dV0y (x)
dx

[ω
kt

−V0y (x)]
2

γp0(x)
ρ0(x)

−1

} = 0  (5.37n) 

 

Eqs. (5.35n) and (5.37n) are similar to Eqs. (7) and (8), respectively, in the classical 

paper by Blumen (1970), in which density distribution are assumed to be uniform in 

space. 

 

Exercise 5.2 

Read the following classical papers, which study K-H instability in neutral fluid: 

Blumen, W., Shear layer instability of an inviscid compressible fluid, J. Fluid 

Mech., 40, 769, 1970 

Blumen, W., P. G. Drazin, and D. F. Billings, Shear layer instability of an inviscid 
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compressible fluid. Part 2, J. Fluid Mech., 71, 305, 1975. 

Drazin, P. G., and A. Davey, Shear layer instability of an inviscid compressible 

fluid. Part 3, J. Fluid Mech., 82, 255, 1977. 

 

Exercise 5.3 

Read the following classical paper by Miura and Pritchett (1982): 

Miura, A. and P. L. Pritchett, Nonlocal stability analysis of the MHD 

Kelvin-Helmholtz instability in a compressible plasma, J. Geophys. Res., 87, 7431, 

1982. 
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Remark 4: 

For surface wave propagating perpendicular to the ambient magnetic field, i.e., 

€ 

B0y (x) = 0.  It yields 

€ 

Π0(x) = ρ0(x)[
ω
kt
−V0y (x)]

2 , and  

€ 

F0(x) =
[ω
kt
−V0y (x)]

2

γp0(x)
ρ0(x)

+
B0z
2 (x)

µ0ρ0(x)

−1. 

Thus, Eqs. (5.35) and (5.37) are reduced to  

 

€ 

1
kt
2

d2δ p tot (x)
dx 2

+
1
kt

dδ p tot (x)
dx

ρ0(x)[
ω
kt

−V0y (x)]
2 1

kt

d
dx
{ 1

ρ0(x)[
ω
kt

−V0y (x)]
2
}

+ δ p tot (x){
[ω
kt

−V0y (x)]
2

γp0(x)
ρ0(x)

+
B0z
2 (x)

µ0ρ0(x)

−1} = 0

 (5.35⊥) 

 

€ 

ρ0(x)[
ω
kt

−V0y (x)]δV x (x)

+
1
kt

d
dx
{ρ0(x)

[ω
kt

−V0y (x)]
1
kt

dδV x (x)
dx

+ δV x (x)
1
kt

dV0y (x)
dx

[ω
kt

−V0y (x)]
2

γp0(x)
ρ0(x)

+
B0z
2 (x)

µ0ρ0(x)

−1

} = 0  (5.37⊥) 

 

Eqs. (5.35⊥) and (5.37⊥) are similar to Eqs. (5.35n) and (5.37n).  Thus, solutions 

obtained by Drazin and Davey (1997) are applicable to Eqs. (5.35⊥) and (5.37⊥). 
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Remark 5: 

For uniform background,  

€ 

Π0 = ρ0{[
ω
kt
−V0y ]

2 −
B0y
2

µ0ρ0
} 

€ 

F0 =
[ω
kt
−V0y ]

2

γp0
ρ0

+
B0y
2 + B0z

2

µ0ρ0
−
B0y
2

µ0ρ0

γp0
ρ0

[ω
kt
−V0y ]

2

−1 

€ 

d
dx
[ 1
Π0

] = 0 , 

€ 

dV0y
dx

= 0  

Eqs. (5.35) and (5.37) are reduced to 

€ 

1
kt
2

d2δ p tot (x)
dx 2

+ δ p tot (x)F0 = 0           (5.35u) 

€ 

Π0

ω
kt

−V0y

{δV x (x) +
1
F0
1
kt
2

d2δV x (x)
dx 2

} = 0         (5.37u) 

Thus, for 

€ 

δ p tot (x) ≠ 0, it yields 

€ 

F0 +
kxi
2 − kxr

2

kt
2 = 0   

That is fast-mode or slow-mode.  For the shear Alfven mode, we have 

€ 

δ p tot (x) = 0  

For 

€ 

δV x (x) ≠ 0 , it yields  

€ 

Π0 = 0 

€ 

[ω
kt
−V0y ]

2 =
B0y
2

µ0ρ0
  (Shear-Alfven mode) 

or  

€ 

F0 +
kxi
2 − kxr

2

kt
2 = 0

€ 

{(ω
kt
−V0y )

2 −VF 0y
2 }{(ω

kt
−V0y )

2 −VSL0y
2 } =

kxr
2 − kxi

2

kt
2 R0 

where  

€ 

R0 = (γp0
ρ0

+
B0y
2 + B0z

2

µ0ρ0
)(ω
kt
−V0y )

2 −
B0y
2

µ0ρ0

γp0
ρ0

 

 


