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Chapter 4. Two-Stream Instabilities 

 

Two-stream instability occurs when there are counter-streaming plasma flow in velocity 

space. Let us consider a field-free two-fluid plasma system, which consists of a cold ion fluid 

and a cold electron fluid.  The cold ion fluid is at rest (

€ 

Vi0 = 0) with uniform number density 

€ 

n0 .  The cold electron fluid moves at velocity 

€ 

Ve0 = V0 ˆ x , with number density 

€ 

n0 .  It will 

be shown in this lecture that such a plasma system is unstable to some electrostatic waves 

that propagated in x-direction.  It should be noted that such a two-stream plasma can lead to 

strong electric current in –x direction.  As a result, the background field should not be 

field-free.  To overcome this difficulty, we can consider a system with two 

counter-streaming electrons and one ion fluid at rest, or a system with two counter-streaming 

ions and one electron fluid at rest, or a system with two counter-streaming electrons and two 

counter-streaming ions.  Procedures to obtain electrostatic wave dispersion relation and 

instability growth rate in such systems are similar to the one discussed in this lecture.  Wave 

dispersion relation and instability analysis in these systems will leave as exercises for the 

students to explore.   

 
 

For one ion fluid at rest and one electron fluid with velocity 

€ 

Ve0 = V0 ˆ x , the field structure 

must be of two- or three-dimension.  However, for simplicity, we shall consider “local 

approximation” and assume 

€ 

∇ = (∂ /∂x) ˆ x  in a finite extended column along x-axis.  For 

electrostatic waves, we have 

€ 

E1 = −∇Φ1 = Ex1 ˆ x .  The linearized electrostatic two-fluid 

equations are 

 

Linearized continuity equations 

€ 

∂ni1
∂ t

+ n0
∂Vi1x

∂x
= 0               (4.1) 

€ 

∂ne1
∂ t

+V0
∂ne1
∂x

+ n0
∂Ve1x

∂x
= 0            (4.2) 
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Linearized momentum equations 

€ 

n0mi
∂Vi1x

∂ t
= en0E1x               (4.3) 

€ 

n0me (
∂
∂ t

+V0
∂
∂x
)Ve1x = −en0E1           (4.4) 

Poisson equation 

€ 

∂
∂x

E1 =
e
ε0
(ni1 − ne1)             (4.5) 

 

We assume a plane-wave type of linear perturbation: 

€ 

A1(x, t) = Re{ ˜ A 1(k,ω)exp[i(kx −ωt)]}. 

Fourier and Laplace transform of Eq. (4.1)-(4.5), yields 

€ 

−iω ˜ n i1 + n0ik ˜ V i1x = 0              (4.1a) 

€ 

−i(ω −V0k) ˜ n e1 + n0ik ˜ V e1x = 0             (4.2a) 

€ 

n0mi(−iω) ˜ V i1x = en0
˜ E 1x              (4.3a) 

€ 

n0me (−i)(ω −V0k) ˜ V e1x = −en0
˜ E 1           (4.4a) 

€ 

ik ˜ E 1 =
e
ε0

( ˜ n i1 − ˜ n e1)               (4.5a) 

 

There are two ways to determine dispersion relation of this system.  

 

Method 1 

Substituting (4.5a) into (4.3a) and (4.4a), then substituting the resulting equation into (4.1a) 

and (4.2a) yields 

€ 

1− ω
2

ω pi
2 −1

−1 1− (ω − kV0)2

ω pe
2

 

 

 
 
 
 

 

 

 
 
 
 

˜ n i1

˜ n e1

 

 

 
 

 

 

 
 

=
0

0

 

 

 
 

 

 

 
 
 

If 

€ 

˜ n i1  and 

€ 

˜ n e1 have non-trivial solutions then 

€ 

det
1− ω

2

ω pi
2 −1

−1 1− (ω − kV0)
2

ω pe
2

 

 

 
 
 
 

 

 

 
 
 
 

= ( ω
ω pi

)2(ω − kV0
ω pe

)2 − ( ω
ω pi

)2 − (ω − kV0
ω pe

)2 = 0    (4.6) 
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Method 2 

Substituting (4.3a) and (4.4a) into (4.1a) and (4.2a), respectively, then substituting resulting 

equations into (4.5) yields 

€ 

ε(k,ω)ik ˜ E 1x = 0  

where 

€ 

ε(k,ω) =1− (
ω pi

ω
)2 − (

ω pe

ω − kV0
)2 = 0           (4.7) 

It will be shown that Eq. (4.6) obtained in Method 1 is useful for finding numerical solutions 

of different wave modes and growth rate of different wave mode.  Whereas, Eq. (4.7) 

obtained in Method 2 is useful for determining solution space of unstable wave modes 

analytically.  

 

Let 

€ 

x =ω /ω pe , 

€ 

α = kV0 /ω pe , then (4.7) becomes 

€ 

1− me

mi

1
x 2
−

1
(x −α)2

= 0             (4.8) 

To estimate solution of Eq. (4.8), let us consider the following function 

€ 

f (x) =
me

mi

1
x 2

+
1

(x −α)2
            (4.9) 

Figure 4.1 sketches (a) 

€ 

y =1/ x 2, (b) 

€ 

y =1/(x −α )2 , and (c) 

€ 

y = f (x) =
me

mi

1
x 2

+
1

(x −α)2
. 

Solutions of (4.8) are the intersections of 

€ 

y =1 and 

€ 

y = f (x) .  Instability occurs when Eq. 

(4.8) has complex roots.  It occurs when the local minimum of 

€ 

y = f (x)  for 

€ 

0 < x < α  is 

greater than 1.  Let local minimum of 

€ 

y = f (x)  is located at 

€ 

x = xA , then 

€ 

′ f (xA ) = −2me

mi

1
xA
3 − 2

1
(xA −α)

3 = 0 , or  

€ 

xA =
α

1+ mi /me
3

=
α
1+ A

≈ 0.075α           (4.10) 

where 

€ 

A = mi /me
3 ≈12.25  
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Figure 4.1  Sketches of (a) 

€ 

y =1/ x 2 , (b) 

€ 

y =1/(x −α )2 , and (c) 

€ 

y = f (x) =
me

mi

1
x 2

+
1

(x −α)2
. Two-stream instability occurs when 

€ 

f (x = xA ) >1  

 

Thus, instability condition becomes 

€ 

f (xA ) =
me

mi

1
xA
2 +

1
(xA −α)

2 =
1
A3
(1+ A)2

α 2 +
(1+ A)2

α 2A2
=
(1+ A)3

α 2A3
>1or 

€ 

α 2 < (1+ A
A
)3 ≈ (13.25

12.25
)3 ≈1.265           (4.11) 

which yields  

€ 

α <1.12486   or 

€ 

kV0 <1.12486ω pe .          (4.12) 

 

Eq. (4.12) determines solution space of unstable wave modes, but does not tell us what is the 

most unstable wave mode. The most unstable wave mode can only be obtained by directly 

solving Eq. (4.6).  We can rewrite Eq. (4.6) into the following form,  

€ 

x 2(x −α)2 − x 2 − me

mi

(x −α)2 = 0  

or 
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€ 

x 4 − 2αx 3 + x 2(α 2 −1− me

mi

) + (2me

mi

α)x −α 2 me

mi

= 0       (4.13) 

Figure 4.2 shows all solutions of 

€ 

ω  as a function of wave number 

€ 

k , which include one 

real root 

€ 

ω > α , one real root 

€ 

ω < 0 .  The other two roots are two real roots 

€ 

ω =ωr1 and ω r2  or two complex conjugates roots 

€ 

ω =ωr ± iω i .  The most unstable wave 

mode occurs near 

€ 

α ≈1 or 

€ 

kV0 ≈ ω pe  as can be seen in lower panel of Figure 4.2.  The 

curve of 

€ 

ω i  in Figure 4.2b is similar to the curve 4 in Figure 9.3.2 in the textbook [N. A. 

Krall and A. W. Trivelpiece, Principles of Plasma Physics, McGraw-Hill, New York, p.452 

(1973)] and in literature [T. E. Stringer, Plasma Physics, J. Nucl. Energy, C6, 267 (1964)].  

To understand solutions shown in Figure 2a, we can compare them with the solutions of Eq. 

(4.7) at

€ 

mi →∞  or 

€ 

ω pi → 0.  It can be shown that for 

€ 

ω pi → 0, the four roots are  

€ 

x = 0, 0,α +1, andα −1  or 

€ 

ω = 0, 0, kV0 +ω pe, and kV0 −ω pe . 

Similarly, for finite ion mass, we can expect the following four wave modes,  

€ 

x =ω pi /ω pe, −ω pi /ω pe ,α +1, and α −1          (4.14) 

or  

€ 

ω =ω pi, −ω pi, kV0 +ω pe , and kV0 −ω pe           (4.15) 

It can be seen from top panel of Figure 4.2 that the four real roots at short wavelength limit 

(

€ 

kV0 /ω pe >>1 ) approach to the solutions listed in Eq. (4.14) or (4.15).  In long wavelength 

limit 

€ 

kV0 /ω pe <1, two real roots approach  

€ 

x =α +1, andα −1  or 

€ 

ω = kV0 +ω pe, and kV0 −ω pe . 

Wave-mode coupling occurs at the intersection of 

€ 

x = −ω pi /ω pe, and x =α −1 .   

Maximum growth rate occurs near intersection of 

€ 

x =ω pi /ω pe and x = α −1. Namely, after 

Doppler shift, the wave mode that is close to ion’s plasma frequency becomes electrons’ 

plasma frequency in electrons’ moving frame. 
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Figure 4.2  Solutions of Eq. (4.13) plotted with 

€ 

x  as a function of 

€ 

α , (or 

€ 

ω  as a 
function of wave number 

€ 

k ).  Solutions include one real root 

€ 

ω > α , one real root 

€ 

ω < 0.  
The other two roots are two real roots 

€ 

ω =ωr1 and ω r2  or two complex conjugates roots 

€ 

ω =ωr ± iω i .  The most unstable wave mode occurs near 

€ 

α ≈1 or 

€ 

kV0 ≈ ω pe  (lower 
panel).  Four real roots at short wavelength limit (

€ 

kV0 /ω pe >>1 ) approach to 

€ 

x =ω pi /ω pe, −ω pi /ω pe ,α +1, and α −1 .  Two real roots in long wavelength limit 
(

€ 

kV0 /ω pe <1 ) approach 

€ 

x =α +1, andα −1 .  Wave-mode coupling occurs at the 
intersection of 

€ 

x = −ω pi /ω pe, and x =α −1 .  Maximum growth rate occurs near 
intersection of 

€ 

x =ω pi /ω pe and x = α −1. 
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Exercise 4.1 

Consider a field-free plasma system, which consists of 

a cold ion fluid at rest with density 

€ 

n0 , and a finite 

temperature electron fluid with velocity 

€ 

Ve0 = V0 ˆ x , 

number density 

€ 

n0 , and temperature 

€ 

Te0 .  Assume 

the thermal speed of the electron fluid is much smaller 

then the electron drift speed 

€ 

V0.  Determine linear dispersion relations of this system.  

Find solutions of 

€ 

ω  as a function of wave number 

€ 

k  and plot you results in 

€ 

ω − k  

space. 

 

Exercise 4.2 

Consider a field-free plasma system, which consists 

of a cold ion fluid at rest with density 

€ 

n0 , and two 

counter-streaming electron fluids.  One of them is 

characterized by density 

€ 

n0 /2 , and velocity 

€ 

(V0 /2) ˆ x .  

The other one is characterized by density 

€ 

n0 /2 , and 

velocity 

€ 

−(V0 /2) ˆ x .  Determine linear dispersion 

relations of this system.  Find solutions of 

€ 

ω  as a function of wave number 

€ 

k  and plot 

you results in 

€ 

ω − k  space. 

 

Exercise 4.3 

Consider a field-free plasma system, which consists 

of a cold electron fluid at rest with density 

€ 

n0 , and 

two counter-streaming ion fluids.  One of them is 

characterized by density 

€ 

n0 /2 , and velocity 

€ 

(V0 /2) ˆ x .  

The other one is characterized by density 

€ 

n0 /2 , and 

velocity 

€ 

−(V0 /2) ˆ x .  Determine linear dispersion 

relations of this system.  Find solutions of 

€ 

ω  as a function of wave number 

€ 

k  and plot 

you results in 

€ 

ω − k  space. 

 

Exercise 4.4 

Consider a field-free plasma system, which consists of two counter-streaming ion fluids 

and two counter-streaming electron fluids.  One of the electron fluids and one of the ion 
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fluids are characterized by density 

€ 

n0 /2 , and velocity 

€ 

(V0 /2) ˆ x .  The other electron fluid 

and ion fluid are characterized by density 

€ 

n0 /2 , and velocity 

€ 

−(V0 /2) ˆ x . Determine linear 

dispersion relations of this system and plot linear wave modes and growth rate in a 

€ 

ω − k  

diagram. 

 

 
 

Exercise 4.5 

(a) Find a positive feedback effect that can lead to nonlinear amplification of two-stream 

instability. 

(b) Find an electrostatic kinetic wave-particle interaction process that can lead to nonlinear 

saturation of two-stream instability. 

(c) Discuss long-term evolution of two-stream instability obtained in Exercises 4.1–4.4, if 

there is a uniform but weak background magnetic field along the x-direction.   

(d) Perform one-dimensional full particle code simulations to verify your results. 

 


