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Chapter 3. Pseudopotential Methods 
 

Nonlinear waves are solutions of a set of nonlinear time-dependent and spatial-dependent 

partial differential equations.  If we consider solutions of nonlinear one-dimensional plane 

wave (

€ 

∇ = ˆ x ∂ /∂ x ), which propagates at a constant speed, then we can choose a moving 

frame such that the wave structure becomes stationary (time-independent, i.e., 

€ 

∂ /∂ t = 0).  

Thus, the set of partial differential equations (PDEs) are reduced into a set of ordinary 

differential equations (ODEs).  Since numerical methods for solving ordinary differential 

equations are well established, one can always obtain nonlinear-wave solutions by solving 

these ODEs numerically with different boundary conditions.  To understand systematic 

changes on wave characteristics, one may need to examine numerical solutions for many 

different parameters and initial conditions.  Thus, it is very difficult to obtain complete 

dependence from numerical solutions.  However, if the nonlinear wave equations can be 

reduced into equations similar to equations of motion, one can then use the so-called 

pseudopotential method to explore solution space analytically.  Both electrostatic waves and 

electromagnetic waves in collisionless plasma can be studied by means of pseudopotential 

method.  A brief summary of pseudopotential methods of these waves is given below. 

 

Case 1: 

If a function 

€ 

Φ(x)  satisfies 

€ 

d2Φ(x)
d x 2

= −
dΨ(Φ)
dΦ

, 

then the solution characteristics of 

€ 

Φ(x)  should be similar to a particle’s trajectory 

€ 

x(t) , 

which satisfies 

€ 

˙ ̇ x (t) = −∇Ψ(x) .  In this case, we can consider solution of 

€ 

Φ(x)  as a pseudo 

particle’s trajectory moving in the pseudo potential 

€ 

Ψ(Φ)  at a given pseudo time 

€ 

x .  We 

can easily sketch profile of 

€ 

Φ(x) , based on the structure of pseudo potential 

€ 

Ψ(Φ) .  

Examples of nonlinear equations of this type include Korteweg de Vries (KdV) equation and 

nonlinear equation of ion acoustic waves in two-fluid plasma.   

 

Case 2: 

Let us consider two functions 

€ 

By(x)  and 

€ 

Bz(x) , which satisfy the following equations  

€ 

c1Vx (x)
d
d x
[Vx(x)

dBy (x)
d x

] = −
∂Ψ(By,Bz)

∂By
− c2[Vx (x)

dBz (x)
d x

]Bx0  
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€ 

c1Vx (x)
d
d x
[Vx(x)

dBz (x)
d x

] = −
∂Ψ(By,Bz )

∂Bz
+ c2[Vx (x)

dBy(x)
d x

]Bx0  

If we define 

€ 

τ(x) , such that 

€ 

d /dτ( x) =Vx (x)(d /dx)  denotes convective time-derivative, we 

can rewrite the above equations to the following form 

€ 

c1
d2By (x)
d τ(x)2

= −
∂Ψ(By,Bz )

∂By
−c2

dBz (x)
dτ (x)

Bx0  

€ 

c1
d2Bz (x)
dτ (x)2

= −
∂Ψ(By,Bz)

∂Bz
+ c2

dBy (x)
d τ(x)

Bx0  

The solution characteristics of 

€ 

B t(x) = ˆ y By(x) + ˆ z Bz(x)  should be similar to a particle's 

trajectory 

€ 

r(t) = ˆ y y( t) + ˆ z z( t) , which satisfies the following equations of motion 

€ 

c1˙ ̇ r (t) = −∇Ψ −c2 ˙ r (t) × ˆ x Bx 0 .  In this case, we can consider solution of 

€ 

B t  as a trajectory of 

a pseudo particle at a given pseudo time 

€ 

τ(x) .  The motion of pseudo particle is under the 

influence of a pseudopotential-gradient force 

€ 

−∇Bt Ψ(By,Bz )  and a 

pseudo-velocity-dependent force 

€ 

−c2 (dB t /d τ) × ˆ x Bx 0 .  If 

€ 

c1 << c2Bx0  the motion of 

pseudo particle can be decomposed into a high-pseudo-frequency (

€ 

τ / c1 ≈1 >> τ /c2Bx0 ) 

gyro motion and a low-pseudo-frequency (

€ 

τ /c 2Bx0 ≈1 ) drift motion, where the 

low-pseudo-frequency drift motion is characterized by an average drift trajectory 

€ 

< B t > 

follows closely (not exactly) along a 

€ 

Ψ = const. contour.   

 

Exercise 3.1.  Read the following articles: 

[1] Section 7.15 in Nicholson (1983) [Nicholson, D. R., Introduction to Plasma Theory, 

pp. 171-177, John Wiley & Sons, New York, 1983.] 

[2] Section 8.3 in Chen (1984) [Chen, F. F., Introduction to Plasma Physics and 

Controlled Fusion, Volume 1: Plasma Physics, pp. 297-305, Plenum Press, New York, 

1984.] 

[3] Chapter 6 in Tidman and Krall (1971) [Tidman, D. A., and N. A. Krall, Shock Waves 

in Collissionless Plasma, pp. 99-112, Wiley, New York, 1971.]. 

[4] Montgomery, D., Nonlinear Alfven waves in a cold ionized gas, Phys. Fluids, 2, 

585, 1959. 

[5] Lyu, L. H., and J. R. Kan, Nonlinear two-fluid hydromagnetic waves in the solar 

wind: Rotational discontinuity, soliton, and finite-extent Alfven wave train solutions, J. 

Geophys. Res., 94, 6523, 1989. 
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3.1. Solutions of Korteweg-de Vries Equation 

 

Nonlinear wave solutions in a dispersive but non-dissipative medium consist of solitons and 

wavetrains.  A soliton is a solitary wave, which can travel at a constant speed and maintain a 

constant waveform.  Solitons are formed when nonlinear steepening is balanced by 

dispersion.  Soliton solution is first demonstrated by the well-known Korteweg-de Vries 

(KdV) equation: 

€ 

∂V
∂ t

+ (C0 +V ) ∂V
∂ x

+α
∂ 3V
∂ x3

= 0            (3.1) 

 

To demonstrate the dispersion effect, let us consider linear wave dispersion of the KdV 

equation in a uniform background and we choose a moving frame such that 

€ 

V0 = 0 .  

Linearizing Eq. (3.1) yields 

€ 

∂V1
∂ t

+ C0
∂V1
∂ x

+α
∂ 3V1
∂ x3

= 0            (3.1a) 

For plane wave solution, we can assume  

€ 

V1(x,t) = ˜ V 1(k,ω)exp[i(kx −ω t)]           (3.1b) 

Substituting Eq. (3.1b) into Eq. (3.1a) yields 

€ 

ω
k

= C0 −α k
2                (3.1c) 

where 

€ 

ω  is wave angular frequency, 

€ 

k  is wave number, and 

€ 

C0  is phase speed of the 

linear wave at long wavelength limit.  Dispersion characteristics of the KdV equation 

depend on the sign of 

€ 

α .  For 

€ 

α > 0 , phase speed 

€ 

ω / k  decreases with increasing 

€ 

k .  

For 

€ 

α < 0 , phase speed increases with increasing 

€ 

k .   

 

3.1.1. Method of Characteristic Curves 

 

To demonstrate the nonlinear steepening effect, let us consider the simplest case, in which the 

dispersion term 

€ 

α(∂ 3V /∂ x3 )  in the KdV equation (3.1) vanishes.  Namely, let us consider 

the following equation 

€ 

∂V
∂ t

+ (C0 +V ) ∂V
∂ x

= 0              (3.2) 

Eq. (3.2) can be solved based on the concept of characteristic curves.   
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If we can find functions 

€ 

ξ = ξ(x, t) , 

€ 

η =η(x,t)  and inverse functions 

€ 

x = x(ξ,η), 

€ 

t = t(ξ,η), 

such that 

€ 

V(x, t) =V (ξ) .  Namely, 

€ 

ξ(x,t)  is the characteristic curve of Eq. (3.2), and 

€ 

∂V /∂η = 0 .  Thus, we have  

€ 

∂V[x(ξ ,η), t(ξ,η)]
∂η ξ

= 0 =
∂V
∂x

∂ x
∂η ξ

+
∂V
∂ t

∂ t
∂η ξ

         (3.2a) 

Comparing Eq. (3.2) and Eq. (3.2a), it yields 

€ 

∂ t
∂η ξ

=1                 (3.2b) 

€ 

∂x
∂η ξ

= (C0 +V )               (3.2c) 

Solving Eqs. (3.2b) and (3.2c) yields 

€ 

t(ξ = constant,  η) =η              (3.2d) 

€ 

x(ξ = constant,  η) = (C0 + V )η + constant
= (C0 + V )[t(ξ = constant,  η)]+ constant

      (3.2e) 

For convenience, we can choose the last term in Eq. (3.2e) to be 

€ 

ξ .  Thus, the characteristic 

curve 

€ 

ξ(x,t)  becomes 

€ 

ξ(x,t) = x − (C0 +V ) t              (3.3) 

Solution of 

€ 

V  is constant along each characteristic curve.  Namely, 

€ 

V  is a function of 

€ 

ξ .  

Since 

€ 

ξ = x  at 

€ 

t = 0 , the slope of 

€ 

ξ = constant  contour in the 

€ 

t− x  plane depends on the 

amplitude of 

€ 

V(x, t = 0) .  Figure 3.1 shows characteristic curves of Eq. (3.2) and time 

evolution of the nonlinear wave 

€ 

V(x, t) .  According to these characteristic curves, we can 

obtain profile of 

€ 

V(x, t)  at 

€ 

t > 0  from a given initial profile 

€ 

V(x, t = 0) .  Nonlinear 

steepening process can be seen at the leading edge of 

€ 

V(x, t)  profiles.  It can be seen from 

Figure 3.1 that characteristic curves started from large-

€ 

V  region will overtake those started 

from small-

€ 

V  region.  Note that when two characteristic curves intersect with each other, 

we can no longer define functions 

€ 

ξ = ξ(x, t) , 

€ 

η =η(x,t)  and inverse functions 

€ 

x = x(ξ,η) , 

€ 

t = t(ξ,η)  at these intersection points.  Thus, the derivations given in Eqs. (3.2a)~(3.2e) are 

no longer legitimate. 

 

Exercise 3.2. 

Varify solution given in Eq. (3.3) by substituting Eq. (3.3) into Eq. (3.2). 
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Figure 3.1 Characteristic curves of Eq. (3.2) and time evolution of the nonlinear wave 

€ 

V(x, t) .   

 

Now, let us consider solitary wave solution of Eq. (3.1), in which the nonlinear steepening 

effect balances the dispersion effect.   

 

Let us consider a solitary wave that propagates at a constant speed 

€ 

V0 in the lab frame.  

The nonlinear wave solution can be written as 

€ 

V(x,t) =V (x −V0t) .  Let 

€ 

X(x,t) = x −V0t .  

Eq. (3.1) becomes  

€ 

(−V0 + C0 +V ) dV
dX

+α
d3V
d X 3 = 0           (3.4) 

Eq. (3.4) can be integrated once, which yields  
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€ 

d2V
dX 2 = (V0 −C0 )

V
α

+
V 2

2α
             (3.5) 

where we have taken the integration constant to be zero (i.e., we assume that 

€ 

V = 0 at 

€ 

X = 0).  Analytic solution of Eq. (3.5) can be obtained by consider solution of the following 

differential equation 

€ 

′ ′ f = af + bf 2                (3.6) 

It can be shown that solution of Eq. (3.6) can be written as 

If 

€ 

b = 0  and 

€ 

a < 0 , then 

€ 

f (x) = C1 sin( ax) + C2 cos( ax)      

 (3.7a) 

If 

€ 

b = 0  and 

€ 

a > 0 , then 

€ 

f (x) = C1 exp( ax) + C2 exp(− ax)       (3.7b) 

If 

€ 

b ≠ 0  and 

€ 

a < 0 , then 

€ 

f (x) = −
3a
2b
sec2( −a

4
x)        (3.7c) 

If 

€ 

b ≠ 0 , and 

€ 

a > 0 , then 

€ 

f (x) = −
3a
2b
sech2( a

4
x)         (3.7d) 

 

Proof of Eqs. (3.7a) and (3.7b): 

If 

€ 

f (x) = sin(kx) , then 

€ 

′ ′ f = −k2 f  

If 

€ 

f (x) = cos(kx) , then 

€ 

′ ′ f = −k2 f  

If 

€ 

f (x) = exp(kx) , then 

€ 

′ ′ f = k2 f  

If 

€ 

f (x) = exp(−kx) , then 

€ 

′ ′ f = k2 f  

Thus, for 

€ 

b = 0 , solution of Eq. (3.6) can be written as 

If 

€ 

a < 0 , then 

€ 

f (x) = C1 sin( ax) + C2 cos( ax)  

If 

€ 

a > 0 , then 

€ 

f (x) = C1 exp( ax) + C2 exp(− ax)   

 

Proof of Eq. (3.7c): 

Now let us consider 

€ 

f (x) = tan(kx) = sin(kx) /cos(kx) , then  

€ 

′ f = k[1+ tan 2(kx )] = k(1+ f 2) = k sec2 (kx )  

€ 

′ ′ f = k(2 f ′ f )  

€ 

′ ′ ′ f = 2k( ′ f )2 + 2k f ′ ′ f = 2k( ′ f )2 + 2k f (2k f ′ f ) = 2k( ′ f )2 + 4k2 f 2 ′ f    (3.8) 

Let 

€ 

g(x) = sec2(kx).  Eq. (3.8) can be rewritten as  

€ 

′ ′ ′ f = ( ′ f ′ ′ ) = k[sec2(kx) ′ ′ ] = k ′ ′ g = 2k( ′ f )2 + 4k 2 f 2 ′ f = 2k(kg)2 + 4k2(g −1)(kg) 

or 

ling-hsiaolyu
Text Box
-
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€ 

′ ′ g = 6k 2g2 − 4k2g              (3.8a) 

Let 

€ 

G = Ag= A sec2(kx) , where 

€ 

A  is a constant.  Eq. (3.8a) can be rewritten as 

€ 

′ ′ G = −4k 2G +
6k 2

A
G 2              (3.8b) 

 

Proof of Eq. (3.7d): 

Likewise, let us consider 

€ 

f (x) = tanh(kx) = (ekx − e− kx) /(ekx + e−kx ) , then 

€ 

′ f = k[1− tanh2(kx)] = k(1− f 2) = k sech2 (kx)  

€ 

′ ′ f = k(−2 f ′ f )  

€ 

′ ′ ′ f = −2k( ′ f )2 − 2k f ′ ′ f = −2k( ′ f )2 −2k f (−2k f ′ f ) = −2k( ′ f )2 + 4k 2 f 2 ′ f    (3.9) 

Let 

€ 

g(x) = sech2(kx ) 

Eq. (3.9) can be rewritten as  

€ 

′ ′ ′ f = ( ′ f ′ ′ ) = k[sech2(kx ) ′ ′ ] = k ′ ′ g = −2k( ′ f )2 + 4k 2 f 2 ′ f = −2k(kg)2 + 4k 2(1− g)(kg) 

or 

€ 

′ ′ g = −6k 2g2 + 4k2g               (3.9a) 

Let 

€ 

G = Ag= A sech2(kx ), where 

€ 

A  is a constant.  Eq. (3.9a) can be rewritten as 

€ 

′ ′ G = +4k 2G −
6k2

A
G2              (3.9b) 

 

 

Applying Eq. (3.6) and it solutions shown in Eqs. (3.7a)~(3.7d) to Eq. (3.5), a finite 

amplitude solitary wave solution can be obtained when 

€ 

(V0 −C0 )/α > 0 .  Namely, for 

€ 

(V0 −C0 )/α > 0,  

€ 

V(X ) = 3(V0 − C0)sech
2[ (V0 −C0 )

4α
X]          (3.10) 

is a solution of Eq. (3.5).  Substituting 

€ 

X(x,t) = x −V0t  into Eq. (3.10) yields 

€ 

V(x, t) = 3(V0 −C0 )sech
2[ (V0 − C0)

4α
(x −V0t)]        (3.10a) 

is a solution of Eq. (3.1).  Let Mach number 

€ 

M =V0 /C0 .  Eq. (3.10a) can be written as 

€ 

V(x, t) = 3C0(M −1)sech2[ C0 (M −1)
4α

(x −V0t)]        (3.10b) 

Eq. (3.10b) implies that (1) for 

€ 

α > 0, solitary wave solutions can exist only if Mach number 

€ 

M >1, and (2) for 

€ 

α < 0 soliton solutions can exist only if 

€ 

M <1.   
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Exercise 3.3. 

Varify solution (3.10a) by substituting Eq. (3.10a) into KdV equation (3.1). 

[See, Section 7.15 in Nicholson (1983)] 

 

 

3.1.2. Classical Pseudopotential Method  

 

Nonlinear solutions of the KdV equations can also be studied systematically by means of 

pseudopotential method. 

 

According to the classical pseudopotential method, Eq. (3.5) can be rewritten as  

€ 

d2V
dX 2 = −

dΨ(V )
dV

              (3.11) 

where  

€ 

Ψ(V ) =
V 3

6α
− (V0 − C0)

V 2

2α
+ Ψ0            (3.12) 

is the pseudopotential of the KdV equation. Namely, Eq. (3.11) can be viewed as an 

“equation of motion” of a “fictitious particle” under the influence of a one-dimensional 

pseudopotential field 

€ 

Ψ(V )  with pseudo-time 

€ 

X , pseudo-coordinates 

€ 

V , pseudo-velocity 

€ 

dV /d X , and pseudo-acceleration 

€ 

d2V /d X 2 .   

 

Figure 3.2 sketches dispersion curves and pseudopotential structures of KdV equation, where 

column (1) is for 

€ 

α > 0 , and column (2) is for 

€ 

α < 0 .  According to the classical 

pseudopotential method, a soliton solution can exist if the following two conditions are 

fulfilled. (i) Pseudopotential 

€ 

Ψ is a local maximum at 

€ 

X = 0 and with at least one local 

minimum next to it.  (ii) The curve of the pseudopotential on the other side of the local 

minimum must raise up and become higher than the pseudopotential at 

€ 

X = 0 .  

Pseudopotential structures shown in panels (1a) and (2b) satisfy the above conditions.  In 

these cases, a fictitious particle can leave point 

€ 

A  (where 

€ 

V = 0 ) by an infinitesimal 

displacement toward point 

€ 

B and then falling back through the well to return to point 

€ 

A .  

 

Figure 3.3 sketches spatial profiles of these soliton solutions.  Spatial profiles of 

€ 

V(X ) 

shown in Figure 3.3(a) and Figure 3.3(b) are the pseudo-time profiles of fictitious particle 
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trajectory moving in pseudopotentials shown in panels (1a) and (2b) of Figure 3.2, 

respectively.   Conditions for soliton to exist shown in Figures 3.2 and 3.3 are consistent 

with the conditions obtained in Eq. (3.10b). 

 

 
Figure 3.2 Sketches dispersion curves and pseudopotential structures of Korteweg de Vries 
equation (3.1), where column (1) is for 

€ 

α > 0, and column (2) is for 

€ 

α < 0 .   
 

 
 

Figure 3.3 Sketches of spatial profiles of soliton solutions.  Spatial profiles of 

€ 

V(X ) 
shown in (a) and (b) are the pseudo-time profiles of fictitious particle trajectory moving in 
pseudopotentials shown in panels (1a) and (2b) of Figure 3.2, respectively.    
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3.1.3. Multiple-Pseudopotential Method 

 

Figure 3.4 summaries numerical simulation results of the Korteweg de Vries equation (3.1) 

with a given initial profile.  To explain these simulation results, we shall introduce a new 

method, which will be called multiple-pseudopotential method.   

 

The concept of multiple-pseudopotential method is first introduced by Moiseev and Sagdeev 

(1963), when they try to extent the pseudopotential method to an ion acoustic solitary wave at 

Mach number 

€ 

M >1.6 .  Pseudopotential method discussed above is not limited to the 

Korteweg de Vries equation.  Electrostatic ion acoustic soliton solution can also be solved 

by pseudopotential method.  The pseudopotential of ion acoustic wave with cold ions and 

isothermal electrons is called Sagdeev potential [see Section 8.3 in Chen (1984) and Chapter 

6 in Tidman and Krall (1971)].  The model of Sagdeev potential is limited by Mach number 

€ 

M < Mmax ≈1.6 .  At 

€ 

M ≥ Mmax , all the upstream cold ions will be reflected by electrostatic 

potential of the soliton.  Namely, the cold ion assumption is no longer valid.  One must 

take into account the finite thermal spread in the ions’ distribution function when the average 

velocity of these low temperature ions, observed in the soliton rest frame, is reduced to a 

magnitude closed to their thermal speed. To overcome this difficulty, Moiseev and Sagdeev 

(1963) introduced the concept of multiple-pseudopotential method [see Chapter 6 in Tidman 

and Krall (1971), for detail discussion].  As a result, an oscillatory ES shock can be obtained 

from this multiple-pseudopotential method.  In brief, the concept of 

multiple-pseudopotential method is that the pseudopotential is allowed to be a pseudo-time 

dependent structure.  Namely, at different spatial domain, we can use different 

pseudopotential to describe the corresponding nonlinear wave structure. 

 

Figure 3.5 shows how to use multiple-pseudopotential method to explain simulation results 

discussed in Figure 3.4.  A fictitious particle moving successively from 

€ 

Ψ1, 

€ 

Ψ2 , 

€ 

Ψ3 , …, to 

€ 

Ψn  in Figure 3.5 can form to a series of solitons or wavetrains as those shown in Figure 3.4.  

Note that 

€ 

V0 decreases successively from 

€ 

Ψ1, 

€ 

Ψ2 , 

€ 

Ψ3 , …, to 

€ 

Ψn  in each plot shown of 

Figure 3.5. 
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Figure 3.4 Summary of numerical simulation results of the Korteweg de Vries equation (3.1) 
with a given initial profile.   

 

 
Figure 3.5 Illustrations of multiple-pseudopotential method for the corresponding simulation 
results shown in Figure 3.4.  See text for detail discussion.  
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3.2. One-Dimensional Electrostatic Ion Acoustic Solitary Waves 

 

Basic equations for electrostatic two-fluid plasma 

(3.2.1) 

€ 

d
dx
(niVix) = 0  

€ 

niVix = n0V0  

€ 

dVix
dx

= −
n0V0
ni
2
dni
dx

 

(3.2.2) 

€ 

d
dx
(neVex ) = 0  

€ 

neVex = n0V0  

€ 

dVex
dx

= −
n0V0
ne
2
dne
dx

 

(3.2.3) 

€ 

d
dx
(pini

−γ i ) = 0  

€ 

pi = pi 0(
ni
n0
)γ i  

€ 

dpi
dx

=
γ ipi 0
n0

( ni
n0
)γ i −1 dni

dx
 

(3.2.4) 

€ 

d
dx
(pene

−γ e ) = 0  

€ 

pe = pe0(
ne
n0
)γ e  

€ 

dpe
dx

=
γ e pe0
n0

(ne
n0
)γ e−1 dne

dx
 

(3.2.5) 

€ 

d
dx
(miniVixVix + pi) = eniEx  

€ 

[−mi

e
n0
2V0

2

ni
3 +

γ ipi 0
en0

2 (
ni
n0
)γ i − 2] dni

dx
= Ex  

(3.2.6) 

€ 

d
dx
(mineVexVex + pe) = −eneEx  

€ 

[me

e
n0
2V0

2

ne
3 −

γ e pe0
en0

2 (
ne
n0
)γ e− 2] dne

dx
= Ex  

(3.2.7) 

€ 

d
dx
(miniVixVix +meneVexVex + pi + pe −

ε0Ex
2

2
) = 0  

€ 

mi
n0
2V0

2

ni
+me

n0
2V0

2

ne
+ pi0 (

ni
n0
)γ i + pe0 (

ne
n0
)γ e

−
ε0Ex

2

2
= (mi + me)n0V02 + pi 0 + pe0

 

(3.2.8) 

€ 

dEx

dx
=
e(ni − ne )

ε0
 

€ 

d2Ex

dx 2
=
e
ε0
(dni
dx

−
dne
dx
)  

(3.2.9) 

€ 

Ex = −
dφ
dx

 

€ 

d2φ
dx2

= −
e(ni − ne)

ε0
 

 

3.2.1. Sagdeev Potential for Electrostatic Ion Acoustic Solitons 

 

If 

€ 

miniVixVix >> pi  and 

€ 

meneVexVex << pe , we can ignore the ion thermal pressure term and 

the electron inertial term in the ions' and electrons' momentum equations, respectively.  

Substituting equation (3.2.9) into ions' momentum equation (3.2.5), it yields  

€ 

d
dx
(1
2
miVix

2 + eφ) = 0              (3.2.10) 

Integrating equation (3.2.10) once, and substituting equation (3.2.1) to eliminate 

€ 

Vix , it yields 

€ 

1
2
miV0

2 n0
2

ni
2 + eφ =

1
2
miV0

2  
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or 

€ 

ni = n0 (1−
2eφ
miV0

2 )
−1             (3.2.11) 

Substituting equation (3.2.9) into electrons' momentum equation (3.2.6), it yields  

€ 

d
dx
(pe) =

d
dx
(nekBTe) = ene

dφ
dx

           (3.2.12) 

For isothermal electrons, the equation (3.2.12) yields 

€ 

ne = n0 exp(eφ / kBTe )              (3.2.13) 

Substituting the equations (3.2.9), (3.2.11) and (3.2.13) into the Poisson’s equation (3.2.8), it 

yields 

€ 

d2φ
dx2

= −
e(ni − ne)

ε0
= −

en0
ε0
[ 1

1− 2eφ
miV0

2

− exp( eφ
kBTe

)] = −
dψ(φ)
dφ

     (3.2.14) 

where the pseudo potential 

€ 

ψ(φ)  in the above equation is called the Sagdeev potential. For 

convenience, we define the sonic Mach number based on the ion acoustic wave speed 

€ 

CS = kBTe /mi , i.e.,  

€ 

MS = V0 / kBTe /mi               (3.2.15) 

The pseudo particle equation of motion (3.2.14) can be rewritten as 

€ 

d2φ
dx2

= −
dψ(φ)
dφ

= −
en0
ε0
[ 1

1− 2eφ
kBTe

1
MS

2

−exp( eφ
kBTe

)]         (3.2.16) 

Integrating (3.2.16) once yields 

€ 

ψ(φ) =
kBTen0
ε0

[−MS
2

2
ln(1− eφ

kBTe

2
MS

2 ) − exp(
eφ
kBTe

)]+ψ0        (3.2.17) 

Let 

€ 

ψ = 0  at 

€ 

φ = 0 , it yields 

€ 

ψ0 = kBTen0 /ε0 .  Let 

€ 

φ0 = kBTe /e , 

€ 

φ* = φ /φ0 , and 

€ 

ψ* =ψ /ψ0 .  The normalized pseudopotential becomes 

€ 

ψ*(φ* ) =1− MS
2

2
ln(1− φ* 2

MS
2 ) − exp(φ

*)          (3.2.17a) 

Likewise, let 

€ 

x0 = (ε0kBTe /e
2n0)

1/ 2 = CS /ω pi0  and 

€ 

x* = x / x0 .  The normalized pseudo 

equation of motion becomes 

€ 

d2φ*

d(x*)2
= −

dψ*(φ* )
dφ*

= −[ 1

1− φ* 2
MS

2

− exp(φ*)]        (3.2.16a) 

Solution space of 

€ 

φ*(x* ) can be classified based on the function behavior of the normalized 
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pseudopotential function 

€ 

ψ*(φ* ). 

 

Solution of 

€ 

φ*(x* ) can be obtained by solving the following system ODEs 

€ 

dy2 /dx
* = f (y1)  

€ 

dy1 /dx
* = y2  

where 

€ 

y1 = φ* (x*) , 

€ 

y2 = dφ* (x*) /dx* , and 

€ 

f (y1) = −[ 1

1− y1
2
MS

2

−exp( y1)] 

 

Exercise 3.4 

(a) Plot the Sagdeev potential at different Mach number 

€ 

MS . (see References [2] and 

[3] in Exercise 3.1)  

(b) Show that soliton solutions obtained from Sagdeev potential is limited by Mach 

number 

€ 

M < Mmax ≈1.6.   

(c) Show that for 

€ 

min0V0
2 < 2eφ , the ions' thermal pressure becomes important and 

cannot be ignored. 

(d) Plot characteristic curves of ions and electrons in phase space for a given static 

soliton potential (electrostatic potential).  Show that there must be trapped 

electrons in the soliton transition region in order to satisfy Boltzmann relation, in 

which 

€ 

ne  increases with increasing 

€ 

Φ .  Explain how these electrons being 

trapped initially. 

 

3.2.2. Pseudo Potential for Electrostatic Ion Acoustic Solitary Waves 

 

The Poisson's equation (3.2.8) yields 

€ 

ne = ni −
ε0
e
dEx

dx
              (3.2.19) 

Substituting equation (3.2.19) into equation (3.2.7) yields 

€ 

min0V0
2{n0
ni
[1+

me

mi

(1− ε0
eni

dEx

dx
)−1]− (1+

me

mi

)}

+pi 0{(
ni
n0
)γ i [1+

pe0
pi 0
(1− ε0

eni

dEx

dx
)γ e ] − (1+

pe0
pi 0
)} − ε0Ex

2

2
= 0

      (3.2.20) 

which yields  
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€ 

ni = ni(Ex,
dEx

dx
)               (3.2.20a) 

Substituting the left column equations (3.2.5) and (3.2.6) into (3.2.8) yields 

€ 

d2Ex

dx 2
= Ex

e
ε0
{[−mi

e
n0
2V0

2

ni
3 +

γ ipi0
en0

2 (
ni
n0
)γ i − 2]−1− [me

e
n0
2V0

2

ne
3 −

γ i pe0
en0

2 (
ne
n0
)γ e −2 ]−1}    (3.2.21) 

Substituting equation (3.2.19) into (3.2.21) and then substituting (3.2.20a) into the resulting 

equation it yields 

€ 

d2Ex

dx 2
= Fpseudo(Ex,

dEx

dx
)              (3.2.22) 

Solution space of 

€ 

Ex(x)  can be classified based on the function behavior of the normalized 

pseudo force 

€ 

Fpseudo(Ex,
dEx

dx
) . 

 

Let 

€ 

CS0 = [(γ ekBTe0 + γ ikBTi0 )/mi]
1/ 2 , 

€ 

Ci0 = kBTi0 /mi , 

€ 

Ce0 = kBTe0 /me , and 

€ 

ω pi0 = [e2n0 /ε0mi]
1/ 2 .  Define  

€ 

x0 = CS0 /ω pi0 , 

€ 

v0 = CS0 , 

€ 

t0 =1/ω pi0 , and 

€ 

m0 = mi .  It 

yields 

€ 

E0 = m0v0
2 /ex 0 =miCS0ω pi0 /e .  The normalized variables include the Mach number 

€ 

MS0 =V0 /CS 0 , and 

€ 

Ci0
* = Ci 0 /CS0 , 

€ 

Ce0
* = Ce0 /CS0 , 

€ 

x* = x / x0 , 

€ 

ni
* = ni /n0 , 

€ 

ne
* = ne /n 0 , 

€ 

Ex
* = Ex /E0.   

 

Solution 

€ 

Ex
*(x*)  can also be solved numerically by solving the following system equations, 

which are first order ordinary differential equations of 

€ 

Ex
*(x*) , 

€ 

ni
*(x* ) , and 

€ 

ne
*(x* ). 

€ 

dni
*

dx*
=

Ex
*ni
*3

−MS0
2 + γ iCi0

*2(ni
* )γ i +1  

€ 

dne
*

dx*
=

Ex
*ne

*3

MS0
2 − γ eCe0

*2 (ne
*)γ e +1  

€ 

dEx
*

dx*
= ni

* − ne
*  

 

 

Or one can discuss the solution space characteristics of 

€ 

Ex
*(x*)  based on the following 

normalized equation of motion is 

€ 

d2Ex
*

d(x*)2
= Ex

*[ ni
*3

−MS 0
2 + γ iCi 0

*2 (ni
* )γ i +1 −

ne
*3

MS0
2 −γ eCe0

*2(ne
* )γ e +1 ]  
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where 

€ 

ne
* = ni

* −
dEx

*

dx*
 

and 

€ 

MS0
2 ( 1
ni
* −1) + me

*MS0
2 ( 1
ne
* −1) + Ci0

*2(ni
*γ i −1) +me

*Ce0
*2(ne

*γ e −1) − Ex
*2

2
= 0  
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3.3. Nonlinear Solutions of Low-Frequency Electromagnetic Waves in Two-Fluid 

Plasma 

 

Let us consider static 

€ 

(∂ /∂ t = 0)  one-dimensional 

€ 

(∇ = ˆ x d /d t)  nonlinear waves in 

ion-electron two-fluid plasma, in which each species has isotropic pressure and follows 

adiabatic process.  It can be shown that, if a species has isotropic pressure and follows 

adiabatic process, Eqs. (1.

€ 

8α ) can be rewritten as  

€ 

3
2pα

( ∂
∂ t

+V ⋅ ∇)pα −
5
2ρα

( ∂
∂ t

+V ⋅ ∇)ρα = 0          (3.

€ 

13α ) 

where 

€ 

ρα = nαmα .   

 

Exercise 3.6 

Show that for isotropic pressure and adiabatic process, Eqs. (1.

€ 

6α )~(1.

€ 

8α ) lead to adiabatic 

equation of state  

€ 

3
2
( ∂
∂ t

+V ⋅ ∇) ln(pαρα
−5/ 3) = 0            (3.

€ 

13α ) 

 

For static one-dimensional nonlinear wave, Eqs. (1.

€ 

6α )~(1.15') can be rewritten as 

€ 

d
dx
(nαVαx ) = 0                (3.

€ 

14α ) 

€ 

Vα x
d
dx
Vα = − ˆ x 

1
mαnα

d
dx

pα +
eα
mα

(E +Vα ×B)         (3.

€ 

15α ) 

€ 

1
pα

dpα
dx

−
5
3nα

dnα
dx

= 0              (3.

€ 

16α ) 

€ 

dEx

dx
=
e
ε0
(ni − ne )              (3.17) 

€ 

dBx
dx

= 0                 (3.18) 

€ 

ˆ x 
d
dx

×E = 0                (3.19) 

€ 

ˆ x 
d
dx

×B = µ0e(niVi − neVe )             (3.20) 

€ 

d
dx

[miniVixVi + meneVe xVe + ˆ x ( pi + pe +
ε0E

2

2
+

B2

2µ0

) −ε0ExE −
BxB
µ0

] = 0    (3.21) 
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€ 

d
dx

[(miniVi
2

2
+

5pi

2
)Vi x + ( meneVe

2

2
+

5pe

2
)Ve x + ˆ x ⋅

E × B
µ0

] = 0      (3.22) 

If we assume uniform boundary condition at upstream side 

€ 

(x→−∞) , Eq. (3.17) yields 

€ 

ni(x→−∞) = ne(x →−∞)= n0            (3.23) 

€ 

Ex(x →−∞)= Ex0 = 0              (3.24) 

Substituting (3.23) into (3.20) yields 

€ 

Viy(x→−∞) =Vey (x→−∞) =Vy0            (3.25) 

€ 

Viz(x →−∞)= Vez(x→−∞) =Vz 0            (3.26) 

Therefore, one can choose a moving frame such that  

€ 

Vy0 = Vz0 = 0                (3.27) 

For simplicity, one can choose a coordinate system such that 

€ 

B(x →−∞) = ˆ x Bx 0 + ˆ y By 0             (3.28) 

From Eqs. (3.24)~(3.27), the 

€ 

x  component of Eq. (3.

€ 

15α ) at upstream boundary is 

automatically fulfilled.  Applying uniform boundary condition and Eq. (3.28) to the 

€ 

y,z  

components of Eq. (3.

€ 

15α ) yields 

€ 

Vix(x→−∞) =Vex (x→−∞) =Vx0            (3.29) 

€ 

Ey(x →−∞)= Ey0 = Vx0Bz (x→−∞) = 0          (3.30) 

€ 

Ez (x→−∞) = Ez0 = −Vx0By (x→−∞) = −Vx0By0         (3.31) 

Integrating Eqs. (3.

€ 

14α ), (3.

€ 

16α ), (3.18), (3.19), (3.21), (3.22) once and making use of Eqs. 

(3.23)~(3.31) yields 

€ 

niVi x = n0Vx0                (3.32) 

€ 

neVex = n0Vx0                (3.33) 

€ 

pini
−5 / 3 = pi 0n0

−5/ 3               (3.34) 

€ 

pene
−5/ 3 = pe0n0

−5/ 3               (3.35) 

€ 

Bx = Bx0                 (3.36) 

€ 

Ey = Ey0 = 0                (3.37) 

€ 

Ez = Ez0 = −Vx0By0               (3.38) 

€ 

miniVix
2 +meneVex

2 + pi + pe −
ε0Ex

2

2
+
By
2 + Bz

2

2µ0
= (mi +me)n0Vx0

2 + pi 0 + pe0 +
By0
2

2µ0
  (3.39) 

€ 

miniVixViy +meneVexVey −
Bx0By

µ0
= −

Bx0By0
µ0

         (3.40) 
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€ 

miniVixViz + meneVexVez + ε0ExVx0By0 −
Bx0Bz

µ0
= 0         (3.41) 

€ 

(miniVi
2

2
+
5pi
2
)Vix + (meneVe

2

2
+
5 pe
2
)Vex +

Vx0By0By
µ0

€ 

= [min0Vi0
2 +men0Ve0

2

2
+
5(pi 0 + pe0 )

2
+
By0
2

µ0
]Vx0        (3.42) 

where Eqs. (3.36)~(3.38) have been used to obtain Eqs. (3.39)~(3.42).  In addition to these 

conservation equations, a system of ODEs can be obtained from Eqs. (3.

€ 

15α ), (3.17), and 

(3.20).  From Eq. (3.

€ 

15α ), we have 

€ 

niVi x
d
dx
Vix = n0Vx0

d
dx
Vix = −

1
mi

d
dx

pi +
eni
mi

(Ex +ViyBz −VizBy)      (3.43) 

€ 

neVex
d
dx
Vex = n0Vx0

d
dx
Vex = −

1
me

d
dx

pe −
ene
me

(Ex +VeyBz −VezBy)     (3.44) 

€ 

niVi x
d
dx
Viy = n0Vx0

d
dx
Viy = +

eni
mi

(0 + VizBx0 −VixBz )        (3.45) 

€ 

neVex
d
dx
Vey = n0Vx0

d
dx
Vey = −

ene
me

(0 + VezBx0 −VexBz )        (3.46) 

€ 

niVi x
d
dx
Vi z = n0Vx0

d
dx
Viz = +

eni
mi

(−Vx0By0 +VixBy −ViyBx0)       (3.47) 

€ 

neVex
d
dx
Vez = n0Vx0

d
dx
Vez = −

ene
me

(−Vx0By0 +VexBy −VeyBx0 )       (3.48) 

From Eq. (3.20), we have 

€ 

dBy
dx

= µ0e(niViz − neVez )              (3.49) 

€ 

dBz
dx

= −µ0e(niViy − neVey )             (3.50) 

The above ODEs can be simplified by multiplying each equation by 

€ 

Vix .  For convenience, 

we define a convective time 

€ 

τ = [Vix (x)]
−1dx∫ , such that the convective time derivative can 

be written as 

€ 

VixdA / dx = dA /dτ = ˙ A .  Thus, multiplying Eqs. (3.17), (3.43)~(3.50) by 

€ 

Vix , 

yields 

€ 

˙ E x =
e
ε0

n0Vx 0 (1− ne

ni

)              (3.51) 

or  

€ 

ne

ni

=1− ε0
˙ E x

en0Vx 0

=1−ε(x)             (3.52) 
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€ 

˙ V ix = −
˙ p i

min0Vx 0

+
e

mi

(Ex + ViyBz −Vi zBy)           (3.53) 

€ 

˙ V e x = −
˙ p e

men0Vx0

−
ene

meni

(Ex +Ve yBz −Ve z By)          (3.54) 

€ 

˙ V iy = +
e
mi

(Viz Bx 0 −Vi xBz )             (3.55) 

€ 

˙ V e y = −
ene

meni

(Ve z Bx0 −Ve xBz ) = −
e
me

(1− ε0
˙ E x

en0Vx 0

)(Ve zBx0 −Ve xBz )      (3.56) 

€ 

˙ V iz = +
e

mi

(−Vx 0By 0 + VixBy −ViyBx 0 )           (3.57) 

€ 

˙ V e z = −
e

me

(1− ε0
˙ E x

en0Vx0

)(−Vx 0By 0 + Ve xBy −Ve yBx0 )         (3.58) 

€ 

˙ B y = µ0en0Vx 0 (Viz −
ne

ni

Vez ) = µ0 en0Vx 0[Viz − (1− ε0
˙ E x

en0Vx0

)Vez ]       (3.59) 

€ 

˙ B z = −µ0 en0Vx 0 (Viy −
ne

ni

Vey ) = −µ0 en0Vx 0[Viy − (1− ε0
˙ E x

en0Vx 0

)Vey ]     (3.60) 

Solving (3.40) and (3.60) for 

€ 

(Viy ,Vey )  yields 

€ 

Viy

Vx0

=

(1−ε)(Bx 0

B0

By − By 0

B0

) − 1
Ωe 0

˙ B z
B0

MA0
2 [1− mi

mi + me

ε]
          (3.61) 

€ 

Vey

Vx0

=

Bx 0

B0

By − By 0

B0

+
1
Ωi 0

˙ B z
B0

MA0
2 [1− mi

mi + me

ε]
            (3.62) 

Likewise, solving (3.41) and (3.59) for 

€ 

(Viz ,Vez ) yields 

€ 

Viz

Vx0

=

(1−ε)(Bx 0

B0

Bz

B0

−
ExVx 0

B0c
2

By 0

B0

) +
1
Ωe 0

˙ B y
B0

MA 0
2 [1− mi

mi + me

ε]
         (3.63) 

€ 

Vez

Vx0

=

Bx 0

B0

Bz

B0

−
ExVx 0

B0c
2

By 0

B0

−
1
Ωi 0

˙ B y
B0

MA0
2 [1− mi

mi + me

ε]
          (3.64) 

where  

€ 

ε =ε0
˙ E x /en0Vx 0 = (ne / ni) −1,  
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€ 

Ω i0 = eB0 /mi  is the upstream ion cyclotron frequency,  

€ 

Ωe0 = eB0 /me  is the upstream electron cyclotron frequency,  

€ 

VA0 = B0 / µ0n0(mi +me )  is the upstream Alfven speed, and 

€ 

MA0 =Vx0 /VA0 = µ0n0(mi +me)Vx0 /B0  is the upstream Alfven Mach number. 

 

Taking convective time derivative of Eqs. (3.59) and (3.60) yields 

€ 

˙ ̇ B y = µ0en0Vx 0[ ˙ V iz − (1− ε0
˙ E x

en0Vx 0

) ˙ V ez +
ε0

˙ ̇ E x
en0Vx 0

Vez ]         (3.65) 

€ 

˙ ̇ B z = −µ0 en0Vx 0[ ˙ V iy − (1− ε0
˙ E x

en0Vx 0

) ˙ V ey +
ε0

˙ ̇ E x
en0Vx0

Vey ]         (3.66) 

Substituting (3.55)~(3.58) into Eqs. (3.65) and (3.66) to eliminate 

€ 

( ˙ V iy , ˙ V ey , ˙ V iz , ˙ V ez ) , and then 

substituting (3.61)~(3.64) into the resulting equations to eliminate 

€ 

(Viy ,Vey ,Viz ,Vez )  yields 

€ 

˙ ̇ B y /B0

Ωi0Ωe 0MA 0
2 =

Ωi0 +Ωe0(1−ε)2

Ωi0 +Ωe0

(−
By 0

B0

)

+
Ωi0 +Ωe 0(1−ε)
Ωi0 +Ωe 0

(
By

B0

Vix

Vx0

)

− (1−ε) 1
MA 0

2
Bx 0

2

B0
2

By − By0

B0

− (1−ε
Ωi0

−
1
Ωe 0

) 1
MA 0

2
Bx0

B0

˙ B z
B0

−
1

Ωi0 +Ωe 0(1−ε)
˙ ε 1

MA 0
2 (Bx 0

B0

Bz

B0

−
ExVx0

B0c
2

By 0

B0

−
1
Ωi0

˙ B y
B0

)

    (3.67) 

 

€ 

˙ ̇ B z /B0

Ωi0Ωe 0MA 0
2 =

Ωi0 +Ωe0(1−ε)
Ωi0 +Ωe0

( Bz

B0

Vix

Vx 0

)

− (1−ε) 1
MA 0

2
Bx 0

B0

(Bx 0

B0

Bz

B0

−
ExVx0

B0c
2

By 0

B0

)

+ (1−ε
Ωi0

−
1
Ωe 0

) 1
MA 0

2
Bx0

B0

˙ B y
B0

−
1

Ωi0 +Ωe 0(1−ε)
˙ ε 1

MA 0
2 [Bx 0

B0

(By − By 0)
B0

+
1
Ωi0

˙ B z
B0

]

     (3.68) 

where 

€ 

˙ ε =ε0
˙ ̇ E x /en0Vx 0  and 

€ 

1− mi

mi +me

ε =
Ω i0 +Ωe0 (1−ε)
Ωi 0 +Ωe0

 has been used to obtain Eqs. 

(3.67) and (3.68).  The last term in Eqs. (3.67) and (3.68) can be important when 

€ 

Bx0 → 0 .  
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We still need to know 

€ 

Vix  and 

€ 

Ex  before we can solve 

€ 

By  and 

€ 

Bz .  Substituting Eqs. 

(3.32)~(3.35) into (3.39), yields 

€ 

[ 1
1−ε

Ωi 0 +Ωe0 (1−ε)
Ωi 0 +Ωe0

Vix
Vx0

−1] +
β 0
2MA0

2 [
pi0 + pe0(1−ε)5 / 3

pi0 + pe0
(Vix
Vx0
)−5/ 3 −1]  

€ 

+
1
MA0

2 [
By
2 + Bz

2

2B0
2 −

By0
2

2B0
2 ] −

1
2
Ex
2

B0
2
1
c2

1
MA 0

2 = 0    (3.69) 

where 

€ 

β0 = ( pi0 + pe0)2µ0 /B0
2  and 

€ 

c =1/ µ0ε0  is the speed of light.  The last term in Eq. 

(3.69), which can also be written as 

€ 

(Ex
2 /2B0

2Vx0
2 )(VA 0

2 /c2 ) , becomes an important term when 

€ 

β0c
2 << 1 or 

€ 

VA0
2 → c2 .  This is the condition for presence of inertial Alfven wave, which 

may be an important mechanism for auroral arc formation.  For simplicity, we can classify 

nonlinear wave solutions into two types.  One of them is for finite 

€ 

β0 , 

€ 

VA0
2 << c2 , and finite 

€ 

Bx0 .  The other is for 

€ 

β0c
2 << 1 and 

€ 

Bx0 → 0 .  

 

Case 1 

For finite 

€ 

β0 , 

€ 

VA0
2 << c2 , and finite 

€ 

Bx0 , we can ignore the last term in Eq. (3.69) and make 

quasi-neutrality assumption, i.e., 

€ 

ε =1− (ne /ni)→ 0 , and 

€ 

˙ ε → 0 .  The quasi-neutrality 

assumption yields 

€ 

ni = ne = n, Vix =Vex = Vx , and 

€ 

ExVx0 /B0c
2 → 0 .  Thus, equations 

(3.67)~(3.69) can be rewritten as 

€ 

˙ ̇ B y /B0

Ωi0Ωe 0MA 0
2 = −

By 0

B0

+
By

B0

Vx

Vx0

−
1

MA 0
2

Bx0
2

B0
2

By − By 0

B0

− ( 1
Ωi0

−
1
Ωe0

) 1
MA 0

2
Bx 0

B0

˙ B z
B0

  (3.67') 

€ 

˙ ̇ B z /B0

Ωi0Ωe 0MA 0
2 =

Bz

B0

Vx

Vx 0

−
1

MA 0
2

Bx 0
2

B0
2

Bz

B0

+ ( 1
Ωi0

−
1
Ωe0

) 1
MA 0

2
Bx 0

B0

˙ B y
B0

     (3.68') 

€ 

[Vx
Vx0

−1]+ β0
2MA0

2 [(
Vx
Vx0
)−5/ 3 −1] +

1
MA 0

2 [
By
2 + Bz

2

2B0
2 −

By0
2

2B0
2 ] = 0       (3.69') 

 

We can solve Eq. (3.69') to obtain 

€ 

Vx =Vx(By,Bz ).  Substituting 

€ 

Vx =Vx(By,Bz ) into (3.67') 

and (3.68') yields 

€ 

˙ ̇ B y /B0

Ωi0Ωe 0MA 0
2 = −

∂Ψ(By,Bz)
∂By

− ( 1
Ωi0

−
1
Ωe 0

) 1
MA 0

2
Bx0

B0

˙ B z
B0

       (3.67") 

€ 

˙ ̇ B z /B0

Ωi0Ωe 0MA 0
2 = −

∂Ψ(By,Bz)
∂Bz

+ ( 1
Ωi0

−
1
Ωe 0

) 1
MA 0

2
Bx0

B0

˙ B y
B0

       (3.68") 

where 



Nonlinear Space Plasma Physics (I) [SS-8041] Chapter 3  by Ling-Hsiao Lyu  2005 Spring 

 3-23 

€ 

∂Ψ(By,Bz )
∂By

= [ 1
MA0

2
Bx0
2

B0
2 −

Vx(By,Bz )
Vx0

]
By
B0

− ( 1
MA0

2
Bx0
2

B0
2 −1)

By0
B0

      (3.70) 

€ 

∂Ψ(By,Bz )
∂Bz

= [ 1
MA0

2
Bx0
2

B0
2 −

Vx(By,Bz )
Vx0

] Bz
B0

          (3.71) 

 

Let 

€ 

B t = ˆ y By + ˆ z Bz , the Eqs. (3.67") and (3.68") can be rewritten in the following vector form 

€ 

˙ ̇ B t /B0

Ω i0Ωe 0MA0
2 = −∇Bt

Ψ(By,Bz ) − ( 1
Ω i0

−
1
Ωe0

) 1
MA 0

2

˙ B t
B0

×
ˆ x Bx 0

B0

      (3.72) 

Solution 

€ 

B t(x) = ˆ y By(x) + ˆ z Bz(x)  of Eq. (3.72) is similar to a particle’s trajectory 

€ 

r(t) = ˆ y y( t) + ˆ z z( t) , which satisfies the following equations of motion 

€ 

c1˙ ̇ r (t) = −∇Ψ −c2 ˙ r (t) × ˆ x Bx 0 .  In this case, we can consider solution 

€ 

B t  as a trajectory of a 

pseudo particle at a given pseudo time 

€ 

τ(x) .  The motion of pseudo particle is under the 

influence of a pseudopotential-gradient force 

€ 

−∇Bt Ψ(By,Bz )  and a 

pseudo-velocity-dependent force as the last term in Eq. (3.72).  

 

For 

€ 

Ω i0Ωe0 >> Ωi 0(B0 /Bx0)  the motion of pseudo particle can be decomposed into a 

high-pseudo-frequency (

€ 

Ω i0Ωe0τ ≈1 >>Ω i0(B0 /Bx0 )τ ) gyro motion and a 

low-pseudo-frequency (

€ 

Ω i0(B0 /Bx0 )τ ≈1) drift motion, where the low-pseudo-frequency drift 

motion is characterized by an average drift trajectory 

€ 

< B t > follows closely (not exactly) 

along a 

€ 

Ψ = const. contour.   

 

Previous studies (References [4] and [5] in Exercise 3.1) show that pseudopotential 

€ 

Ψ(By,Bz )  can be obtained analytically and indirectly from conservation of energy flux. 

 

From 

€ 

( ˙ B t /B0) ⋅ (2.72)  yields 

€ 

1
Ω i0Ωe0MA0

2
1
2
d
dτ

˙ B t2

B0
2 = −

d
dτ

Ψ(By,Bz )           (3.73) 

Integrating (3.73) once, yields 

€ 

1
Ω i0Ωe 0MA0

2
1
2

˙ B y
2 + ˙ B z

2

B0
2 +Ψ(By,Bz ) = 0          (3.74) 

Substituting Eqs. (3.61)~(3.64) and (3.69) into (3.42), then applying quasi-neutrality 

condition to the resulting equation, yields, 
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€ 

MA0
2

2
( Vx
Vx0
)2 +

5β0
4
(Vx
Vx0
)1−γ +

By0
B0

By
B0

+
1

2MA0
2
Bx0
2

B0
2 [(

By − By0
B0

)2 + (Bz
B0
)2]  

€ 

+
1

Ω i0Ωe0 MA0
2

1
2

˙ B y
2 + ˙ B z

2

B0
2 =

MA0
2

2
+

5β0

4
+

By 0
2

B0
2    (3.75) 

where 

€ 

γ = 5/ 3.  Comparing (3.74) and (3.75) yields 

 

€ 

Ψ(By,Bz ) =
MA 0

2

2
{[Vx(By,Bz )

Vx0
]2 −1} +

5β 0
4
{[Vx(By,Bz )

Vx0
]1−γ −1}

+
By0
B0

By − By0
B0

+
1

2MA0
2
Bx0
2

B0
2 [(

By − By0
B0

)2 + (Bz
B0
)2]

     (3.76) 

 

As we can see from Eq. (3.74) that the average drift trajectory of the pseudo particle 

€ 

< B t > 

slightly deviates from 

€ 

Ψ = const.  contour.  The deviation from 

€ 

Ψ = const.  contour 

increases with increasing pseudo kinetic energy. 

 

Exercise 3.7 

Follow reference [5] in Exercise 3.1 to obtain structures of 

€ 

Vx =Vx(By,Bz )  and 

pseudopotential 

€ 

Ψ(By,Bz )  for a given set of upstream conditions. 

 

For a given set of 

€ 

(By,Bz ) , two roots of 

€ 

Vx can be obtained from Eq. (3.69').  One of them 

is greater than the local sound speed. The other is less than the local sound speed.  Since 

€ 

Vx  

is a double value function of 

€ 

(By,Bz ) , according to Eq.  (3.76), 

€ 

Ψ(By,Bz )  should also be a 

double value function of 

€ 

(By,Bz ) .  Figure 3.6 shows structures 

€ 

Ψ(By,Bz )  for different 

upstream parameters, where 

€ 

by = By − By0 , 

€ 

bz = Bz , superscripts ‘*’ denotes normalized 

variables.  Namely, 

€ 

by
* = by /B0 , 

€ 

bz
* = bz /B0 , 

€ 

By0
* = By0 /B0 , … etc.  Under the uniform 

upstream boundary condition, the nonlinear solution must start from point A, where 

€ 

by = By  

or 

€ 

By = By0 .  Thus only if an equal pseudopotential contour passing through point A with a 

finite length can be considered as a nonlinear solution.  However, if we remove the uniform 

upstream boundary conditions, then any equal pseudopotential contour can be a nonlinear 

wave solution (for 

€ 

Bx0 /B0 >> me /mi ), but definition of constants 

€ 

Bx0,By0,B0,Vx0, pi0, pe0,n0  

need to be redefined.   
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It can be seen from Figure 3.6 that the supersonic surface and subsonic surface of the 

pseudopotential structure meet at a sonic circle.  Equal pseudopotential contour may 

intersect with the sonic circle.  It can be shown that only points on half of the sonic circle 

can be attractors in a pseudo particle’s trajectory.  Namely, an acceptable nonlinear solution 

can be a trajectory of a pseudo particle, which starts from point A or a sonic emitter, then 

follows closely along an equal pseudopotential contour to a sonic attractor or back to point A.   

We can also apply the multiple-pseudopotential method to this problem.  Figure 3.7 shows 

how to use two pseudopotential surfaces with slightly different 

€ 

MA0  to explain the 

hook-shaped magnetic hodogram obtained from a numerical simulation study of a rotational 

discontinuity. Isentropic nonlinear solutions obtained in this section are particularly useful in 

modeling isentropic nonlinear waves propagated near Alfven mode speed.  
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Figure 3.6 Structures of 

€ 

Ψ(By,Bz )  for different upstream parameters, where 

€ 

by = By − By0 , 

€ 

bz = Bz , superscripts ‘*’ denotes normalized variables. Point A is located at 

€ 

(By,Bz ) = (By0,0) . 
Point is located at 

€ 

(By,Bz ) = (0,0) .  Notations 

€ 

VSL0 ,VAX 0,VF0  are the upstream MHD slow 
mode, Alfven mode, and fast mode speed, respectively. 

€ 

CS0  is the upstream sound speed.  
See text for detail discussion. 
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Case 2 

For 

€ 

β0c
2 << 1 and 

€ 

Bx0 → 0 , we can ignore changes on magnetic field and the thermal 

pressure terms in the x-component momentum equations as well as in the equations of 

conservations of momentum and energy fluxes.  We are looking for nonlinear electrostatic 

waves in a magnetize plasma with wave normal direction nearly perpendicular to the local 

magnetic field (

€ 

Bx0 /B0 < me /mi ).  Studies of these types of nonlinear waves are on going 

research topics.  Students are encouraged to solve the general problem without 

simplifications.  Governing equations of a general problem include Eqs. (3.42)~(3.44), 

(3.61)~(3.64), and (3.67)~(3.69). 

 

Exercise 3.8 

Obtain pseudopotential structure and nonlinear static wave solutions of Case 2 with 

€ 

β0c
2 << 1 and 

€ 

Bx0 /B0 << me /mi .  

 

 
Figure 3.6 (Continued) Structures of 

€ 

Ψ(By,Bz )  for different upstream parameters. 
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Figure 3.6 (Continued) Structures of 

€ 

Ψ(By,Bz )  for different upstream parameters. 

 



Nonlinear Space Plasma Physics (I) [SS-8041] Chapter 3  by Ling-Hsiao Lyu  2005 Spring 

 3-29 

 
 

Figure 3.6 (Continued) Structures of 

€ 

Ψ(By,Bz )  for different upstream parameters. 
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Figure 3.6 (Continued) Structures of 

€ 

Ψ(By,Bz )  for different upstream parameters. 
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Figure 3.7 An illustration on how to use one or two pseudopotential surfaces to explain 

magnetic hodograms obtained from numerical simulations of rotational discontinuities.  The 

two pseudopotential surfaces are obtained for slightly different 

€ 

MA0 , which can explain the 

hook-shaped magnetic hodogram obtained in the simulation. 

 




