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Chapter 2. Jump Conditions of Shocks and Discontinuities  

 

Shocks and discontinuities are nonlinear phenomena that are commonly observed in space 

plasmas.  Jump conditions of one-dimensional static shocks or discontinuities can help us to 

identify the shocks and discontinuities from the space observations.  In reality, structure of 

shock or discontinuity may change slowly with time and may not be a perfect plane wave.  

Deviations from ideal assumptions of uniform boundary condition, zero heat flux, and 

isotropic pressure at both upstream and downstream boundaries can also modify the resulting 

jump conditions.  High-resolution data, multiple-satellite observations, and numerical 

simulations can help us to learn more about the necessity of modification on these jump 

conditions.  Jump conditions do not provide any information on shock heating process nor 

fine structure in the transition region of a shock or discontinuity.  The fine structure in the 

transition region of a discontinuity can be solved based on the pseudo-potential method, 

which will be discussed in the next chapter.   The turbulent structures in the transition 

region of a shock are commonly studied by means of kinetic plasma simulations.  Jump 

condition can help these simulations to choose their initial conditions and boundary 

conditions, so that these kinetic simulations can be done in a limited simulation domain.  

 

For simplicity, we shall assume that one-dimensional steady state is a good assumption in all 

cases discussed in this chapter.  For one-dimensional static structure, we can let 

€ 

∂ /∂t = 0, and ∇ = ˆ x (d /d x) .  To obtain shock jump conditions, we are looking for structures 

with uniform boundary conditions.  That is 

€ 

d /d x→ 0 at both upstream and downstream 

boundaries.  Substituting uniform boundary condition into Poisson’s equation yields  

€ 

ρ
c

= 0    at both upstream and downstream boundaries    (2.1) 

€ 

n
i
= n

e
= n   at both upstream and downstream boundaries    (2.2) 

Substituting static uniform boundary condition into Ampere’s Law yields  

€ 

J = 0    at both upstream and downstream boundaries    (2.3) 

€ 

V
i
= V

e
=V   at both upstream and downstream boundaries    (2.4) 

For 

€ 

n
i
= n

e
= n  and 

€ 

V
i
= V

e
=V  at both boundaries, one can show that  

€ 

P = P
i
+P

e
   at both upstream and downstream boundaries    (2.5) 

€ 

q = q
i
+ q

e
   at both upstream and downstream boundaries    (2.6) 
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Exercise 2.1 

Show that static and uniform boundary condition yields Eq. (2.3). 

 

Exercise 2.2 

Show that for 

€ 

n
i
≈ n

e
≈ n  and 

€ 

V
i
= V

e
=V , we have 

€ 

P = P
i
+P

e
 and 

€ 

q = q
i
+ q

e
.   

 

 

2.1. Fluid Jump Conditions of ES Shocks and Discontinuities in Unmagnetized Plasma 

 

Basic equations of electrostatic nonlinear waves in unmagnetized plasma can be obtained 

from Eqs. (1.13')~(1.15'), (1.9), (1.11) and (1.16) with 

€ 

B = 0  over entire space.  For 

one-dimensional static structure, we assume 

€ 

∂ /∂t = 0, and ∇ = ˆ x (d /d x) .  The fluid 

equations become 

 

€ 

d

dx
(ρV

x
) = 0               (2.7) 

€ 

d

dx
[ρV

x

2
+ P

xx
−
ε
0
E
x

2

2
] = 0            (2.8) 

€ 

d

dx
[ρVxVy + Pxy −ε0ExEy ] = 0            (2.9) 

€ 

d

dx
[ρV

x
V
z

+ P
xz
−ε

0
E
x
E
z
] = 0             (2.10) 

€ 

d

dx
[
1

2
ρVx

3
+
3

2
PxxVx + qx ] = 0             (2.11) 

€ 

d

dx
E
x

=
ρ
c

ε
0

=
e(n

i
− n

e
)

ε
0

             (2.10) 

€ 

d

dx
Ey = 0               (2.11) 

€ 

d

dx
E
z

= 0                (2.12) 

We look for electrostatic structures with uniform boundary conditions.  That is 

€ 

d /d x→ 0 

at both upstream and downstream boundaries.  It yields 

€ 

E = 0 .    at both upstream and downstream boundaries   (2.13) 

For simplicity, we assume that  

€ 

Pxy = Pxz = 0    at both upstream and downstream boundaries    (2.14) 

ling-hsiaolyu
Pencil

ling-hsiaolyu
Pencil
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€ 

qx = 0   at both upstream and downstream boundaries     (2.15) 

 

Integrating Eqs. (2.7), (2.8), and (2.9) from upstream to downstream, and making use of Eqs. 

(2.13), (2.14), and (2.15), we can obtain the following jump conditions 

€ 

ρ
1
V
x1

= ρ
2
V
x2

               (2.16) 

€ 

ρ
1
V
x1

2

+ P
xx1

= ρ
2
V
x2

2

+ P
xx2

            (2.17) 

€ 

ρ
1
Vx1Vy1 = ρ

2
Vx2Vy2               (2.18) 

€ 

ρ
1
V
x1
V
z1

= ρ
2
V
x2
V
z2

              (2.19) 

€ 

(
1

2
ρ
1
V
x1

2
+
3

2
P
xx1
)V

x1
= (
1

2
ρ
2
V
x2

2
+
3

2
P
xx2
)V

x2
         (2.20) 

where subscripts 1 and 2 denote upstream and downstream quantities, respectively. 

Example: 

€ 

dx
d

dx
(ρV

x
)

x=−∞

x= +∞

∫ = ρV
x[ ]

x=−∞

x= +∞
= ρ

2
V
x2
− ρ

1
V
x1

= 0      (2.21) 

 

Substituting Eq. (2.16) into Eqs. (2.18) and (2.19) yields 

€ 

Vy1 =Vy2  and 

€ 

V
z1

= V
z2

.  For 

simplicity, we can choose a moving frame such that 

€ 

Vy1 =Vy2 = 0  and 

€ 

V
z1

= V
z2

= 0 .   

Two types of nonlinear wave solutions can be obtained from Eqs. (2.16), (2.17), and (2.20).  

They are (A) contact discontinuities and (B) shocks. 

 

(A) 1-D Electrostatic Contact Discontinuity 

For 

€ 

V
x1

=V
x2

= 0 , conditions in Eqs. (2.16) and (2.21) are automatically fulfilled, whereas Eq. 

(2.17) can be simplified as 

€ 

P
xx1

= P
xx2

               (2.22) 

or 

€ 

ρ
1
T
1
= ρ

2
T
2
               (2.23) 

This is the jump condition for electrostatic (ES) Contact Discontinuity (CD).  Kinetic jump 

condition of this electrostatic CD will be discussed in section 2.3. 

 

(B) 1-D Electrostatic Shock 

Let 

€ 

CS1

2
= γp

1
/ρ

1
, 

€ 

M
S1

2
= V

x1

2
/C

S1

2
, 

€ 

x = ρ
2
/ρ

1
, 

€ 

y =Vx2 /Vx1 , and 

€ 

z = P
xx2
/P

xx1
, where 

€ 

V
x1

> 0 , 

€ 

γ = ( f + 2) / f = 3, and 

€ 

f =1 is the degree of freedom.  One can obtain ES Shock jump 

conditions from Eqs. (2.16), (2.17), and (2.20): 

ling-hsiaolyu
Pencil



Nonlinear Space Plasma Physics (I) [SS-8041] Chapter 2  by Ling-Hsiao Lyu  2008 Fall 

 2-4 

€ 

ρ
1
V
x1

ρ
1
V
x1

=
ρ
2
V
x2

ρ
1
V
x1

⇒  

€ 

1= xy                 (2.24) 

€ 

ρ
1
V
x1

2

P
xx1

+
P
xx1

P
xx1

=
ρ
2
V
x2

2

P
xx1

+
P
xx2

P
xx1

⇒  

€ 

γMS1

2
+1= γMS1

2
y + z              (2.25) 

€ 

1

2

ρ
1
V
x1

3

P
xx1
V
x1

+
3

2

P
xx1
V
x1

P
xx1
V
x1

=
1

2

ρ
2
V
x2

3

P
xx1
V
x1

+
3

2

P
xx2
V
x2

P
xx1
V
x1

⇒  

€ 

γMS1

2
+ 3 = γMS1

2
y
2

+ 3zy              (2.26) 

Equation (2.24) yields 

€ 

x =
1

y
                (2.24') 

Equation (2.25) yields 

€ 

z = γMS1

2
(1− y) +1=

f + 2

f
MS1

2
(1− y) +1          (2.25') 

Eq. (2.26) can be rewritten as 

€ 

f + 2

f
MS1

2
+ ( f + 2) =

f + 2

f
MS1

2
y
2

+ ( f + 2)zy⇒ MS1

2
+ f = MS1

2
y
2

+ fzy⇒  

€ 

MS1

2
(1− y

2
) + f (1− zy) = 0⇒ MS1

2
(1− y)(1+ y) + f {1− y[(

f + 2

f
MS1

2
(1− y) +1]} = 0⇒ 

€ 

(1− y){MS1

2
(1+ y) + f − y( f + 2)MS1

2
)} = 0⇒ (1− y){MS1

2
+ f − y( f +1)MS1

2
)} = 0⇒ 

€ 

y =1 or 

€ 

y =
1

f +1
(
f

MS1

2
+1)               (2.26') 

where the solution of 

€ 

y =1 is a solution of a uniform system.   

For collisionless ES shock, we have 

€ 

f =1, 

€ 

γ = 3 and 

€ 

y =
1

2
(
1

MS1

2
+1) . 

For collisional gas dynamic shock, we have 

€ 

f = 3, 

€ 

γ = 5 /3 and 

€ 

y =
1

4
(
3

MS1

2
+1). 

 

Exercise 2.3  

Plot jump ratio x, y, and z as functions of upstream Mach number 

€ 

M
S1

.   
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Exercise 2.4  

If 

€ 

T
i1
T
e1

= r
1

 and 

€ 

T
i2
T
e2

= r
2

, determine jump conditions 

€ 

z
e

= (P
e
)
xx2
/(P

e
)
xx1

 and 

€ 

z
i
= (P

i
)
xx2
/(P

i
)
xx1

.  Plot 

€ 

z
e
 and 

€ 

z
i
 as functions of upstream Mach number 

€ 

M
S1

.   

 

Exercise 2.5  

(a)  Let 

€ 

δQ = (qx2 − qx1).  Solve 

€ 

y  in terms of 

€ 

M
S1

 and 

€ 

δQ . 

(b)  Plot your results on 

€ 

y − MS1
 plane for different 

€ 

δQ .  

(c)  Let 

€ 

S
1
 and 

€ 

S
2
 be the upstream and downstream entropy, respectively.  Let 

€ 

δS = S
2
− S

1
.  Carefully examine your solutions to make sure that entropy increases 

across the shock ramp.  Plot 

€ 

δS on 

€ 

δS − M
S1

 plane for different 

€ 

δQ .  

 

Kinetic jump conditions (to be discussed in Section 2.3) and kinetic simulations can provide a 

self-consistent information on the heat flux and pressure anisotropy across the ES shock.   

 

2.2. Fluid Jump Conditions of Shocks and Discontinuities in Magnetized Plasma 

 

To study nonlinear waves in magnetized plasma, basic equations can be obtained from Eqs. 

(1.

€ 

6α )~(1.

€ 

8α ), (1.9)~(1.15), (1.13')~(1.15'), and (1.16)~(1.17).  They are  

€ 

∇ ⋅E =
e(n

i
− n

e
)

ε
0

=
ρ
c

ε
0

             (2.27) 

€ 

∇ ⋅B = 0                 (2.28) 

€ 

∇ ×E = −
∂B

∂ t
               (2.29) 

€ 

∇ × B = µ
0
J                (2.30) 

€ 

∂

∂ t
ρ +∇ ⋅ (ρV) = 0              (2.31) 

€ 

∂

∂ t
[ρV +

1

c
2
(
E ×B

µ
0

)]+∇ ⋅ [ρVV +P +1(
ε
0
E
2

2
+
B
2

2µ
0

) −ε
0
EE −

BB

µ
0

] = 0   (2.32) 

€ 

∂

∂ t
[
1

2
ρV 2 +

3

2
p +

ε
0
E
2

2
+
B
2

2µ
0

]+∇ ⋅ [(
1

2
ρV 2 +

3

2
p)V +P ⋅V + q+

E ×B

µ
0

] = 0  (2.33) 

€ 

∂

∂ t
ρ
c

= −∇ ⋅ [e(n
i
V
i
− n

e
V
e
) = −∇ ⋅ J           (2.34) 
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€ 

∂

∂ t
J +∇ ⋅ [ (eαnαVαVα +

eα

mα

Pα )
α

∑ = (
e
2
nα

mα

)
α

∑ E + (
e
2
nαVα

mα

)
α

∑ ×B     (2.35) 

where 

€ 

α = i,e . 

 

For one-dimensional steady-state structure, we assume 

€ 

∂ /∂t = 0  and 

€ 

∇ = ˆ x (d /d x) .  We 

look for structures with uniform boundary conditions.  Namely, 

€ 

d /d x→ 0  at both 

upstream and downstream boundaries.  Substituting uniform boundary condition into Eqs. 

(2.27) and (2.30) yields Eqs. (2.1)~(2.6). 

 

Substituting static and uniform boundary conditions into Eq. (2.35) yields  

€ 

0 = (
e
2
nα

mα

)
α

∑ E + (
e
2
nαVα

mα

)
α

∑ ×B  at both boundaries       (2.36) 

For 

€ 

m
e

<< m
i
, Eq. (2.36) can be approximated  

€ 

E = −V
e
×B   at both upstream and downstream boundaries     (2.37) 

The uniform boundary conditions yield 

€ 

n
e
≈ n

i
= n  and

€ 

V
e
≈ V

i
= V  at both boundaries.  

As a result, Eq. (2.37) can be rewritten as 

€ 

E = −V× B   at both upstream and downstream boundaries     (2.38) 

Namely, the boundary plasma satisfies the MHD (Magnetohybrodynamic) approximation. 

 

For 

€ 

V
1
<< c  and 

€ 

V
2

<< c , we have  

€ 

ε
0
E
2

<< B
2
/µ

0
  at both upstream and downstream boundaries    (2.39) 

 

Under one-dimensional assumption, Eq. (2.28) yields  

€ 

B
x

= constant    from upstream to downstream, over entire system   (2.40) 

 

Two examples with different plasma boundary conditions will be discussed in this section. 

 

Example 1: Plasma boundary conditions with zero heat flux and isotropic pressure 

 

For simplicity, we assume that boundary conditions of plasma distributions are Maxwellian in 

velocity space.  Namely, we have 

€ 

Pi = 1pi = 1nkBTi , 

€ 

Pe =1pe = 1nkBTe , and 

€ 

qxi = qxe = 0  at 

both boundaries.  Substituting these boundary conditions into Eqs. (2.5) and (2.6), one can 

show that Eqs. (2.14) and (2.15) are also applicable to this example. 
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Substituting Eqs. (2.14), (2.15), (2.38), (2.39), (2.40) into Eqs. (2.29), (2.31), (2.32), (2.33) 

under one-dimensional and steady-state assumptions, and then integrating the resulting 

equations from upstream boundary to the downstream boundary, we can obtain the following 

jump conditions: 

€ 

Ey1 = Ey2 ⇒Vx1Bz1 −Vz1Bx =Vx2Bz2 −Vz2Bx         (2.41) 

€ 

Ez1 = Ez2 ⇒Vy1Bx −Vx1By1 =Vy2Bx −Vx2By2         (2.42) 

€ 

ρ
1
V
x1

= ρ
2
V
x2

               (2.43) 

€ 

ρ
1
Vx1

2 + p
1
+
By1

2 + Bz1

2

2µ
0

= ρ
2
Vx2

2 + p
2

+
By2

2 + Bz2

2

2µ
0

        (2.44) 

€ 

ρ
1
Vx1Vy1 −

BxBy1

µ
0

= ρ
2
Vx2Vy2 −

BxBy2

µ
0

          (2.45) 

€ 

ρ
1
V
x1
V
z1
−
B
x
B
z1

µ
0

= ρ
2
V
x2
V
z2
−
B
x
B
z2

µ
0

           (2.46) 

€ 

[
1

2
ρ1V1

2 +
5

2
p1]Vx1 + (

E1 ×B1
µ0

)x = [
1

2
ρ2V2

2 +
5

2
p2]Vx2 + (

E2 ×B2
µ0

)x      (2.47) 

or 

€ 

(
1

2
ρ1V1

2 +
5

2
p1 +

B1
2

µ0
)Vx1 − (Vx1Bx +Vy1By1 +Vz1Bz1)

Bx

µ0
 

€ 

= (
1

2
ρ2V2

2 +
5

2
p2 +

B2
2

µ0
)Vx2 − (Vx2Bx +Vy2By2 +Vz2Bz2)

Bx

µ0
      (2.47a) 

Nonlinear solutions that satisfy the above jump conditions are discussed below. 

 

Case I:  1-D Tangential Discontinuity (TD) Solutions 

For 

€ 

V
x1

=V
x2

= 0  and 

€ 

B
x

= 0 , conditions in Eqs. (2.41)~(2.43) and (2.45)~(2.47) are 

automatically fulfilled, and Eq. (2.44) can be simplified as 

€ 

p
1
+
Bt1

2

2µ
0

= p
2

+
Bt 2

2

2µ
0

    or    

€ 

[p +
Bt

2

2µ
0

] = 0         (2.48) 

where we use 

€ 

B t = ˆ y By + ˆ z Bz  to denote the tangential magnetic field.  The notation 

€ 

[A] 

denotes 

€ 

[A] = A
2
− A

1
.  Nonlinear structure, which satisfies Eq. (2.48), 

€ 

V
x1

=V
x2

= 0 , 

€ 

B
x

= 0 , but with 

€ 

B
t1
≠ B

t 2
, is called Tantgential Discontinuity (TD) in MHD plasma.  The 

tangential magnetic fields on two-sides of a TD are different either in their magnitude and/or 

in their direction.   

ling-hsiaolyu
Text Box
Tangential
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Let 

€ 

Vt = ˆ y Vy + ˆ z Vz  denote the tangential velocity field.  

€ 

[V
t
] can be zero or non-zero. 

Strong velocity shear (i.e., 

€ 

[V
t
] ≠ 0) on two-sides of a TD may lead to Kelvin-Helmholtz 

(K-H) instability, which will be discussed in Chapter 4.  If there is a large angle between 

€ 

B
t1
 and 

€ 

B
t2

, a tearing mode instability may take place in the TD layer and result in magnetic 

reconnection.   

 

In summary, the MHD TD satisfies the following jump conditions 

€ 

V
n

= 0                 (2.49a) 

€ 

B
n

= 0                 (2.49b) 

€ 

[p +
Bt

2

2µ
0

] = 0                (2.49c) 

€ 

[B
t
] ≠ 0                 (2.49d) 

 

In contrast, the tangential discontinuity in the classical gas dynamics satisfies the following 

jump conditions 

€ 

V
n

= 0                 (2.50a) 

€ 

[p] = 0                (2.50b) 

€ 

[V
t
] ≠ 0                 (2.50c) 

 

Case II:  1-D Contact Discontinuity (CD) Solutions 

For 

€ 

V
x1

=V
x2

= 0  but 

€ 

B
x
≠ 0 , Eqs. (2.40)-(2.47) yield the jump conditions of Contact 

Discontinuity (CD) in the MHD plasma.  The jump conditions of the CD are summarized 

below. 

€ 

V
n

= 0                 (2.51a) 

€ 

B
n
≠ 0                 (2.51b) 

€ 

[V
t
] = 0                 (2.51c) 

€ 

[B
t
] = 0                 (2.51d) 

€ 

[p] = 0                (2.51e) 

€ 

[ρ] ≠ 0                (2.51f) 

€ 

[T] ≠ 0                (2.51g) 

€ 

[S] ≠ 0                 (2.51h) 
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where 

€ 

S  is the entropy of the equilibrium plasma. 

 

Case III:  1-D Perpendicular Fast Shock Solutions 

For 

€ 

V
x1

> 0  and 

€ 

B
x

= 0 , and let 

€ 

ρ
2

ρ
1

= x,
Vx2

Vx1

= y,
p
2

p
1

= z  

Eqs. (2.40)-(2.47) yield  

€ 

xy =1                (2.52) 

€ 

By2

By1

=
Bz2

Bz1

=
Bt2

Bt1

=
B
2

B
1

= x =
1

y
            (2.53) 

and  

€ 

[V
t
] = 0                 (2.54) 

If we choose the normal incident frame (NIF) such that 

€ 

V
t1

= 0, Eq. (2.54) yields 

€ 

V
t2

= 0 . 

Eqs. (2.44) and (2.47) becomes 

€ 

2MA1

2
+ β

1
+1= 2MA1

2
y + β

1
z +

1

y
2

           (2.55) 

€ 

MA1

2
+
5

2
β1 + 2 = (MA1

2
y +

5

2
β1z +

2

y
2
)y           (2.56) 

where  

€ 

M
A1

2 =
V
x1

2

B
1

2
/µ

0
ρ
1

, 

€ 

β
1

=
p
1

B
1

2
/2µ

0

.  

 

Exercise 2.6  

Solve Eqs. (2.55) and (2.56) to obtain 

€ 

y  and 

€ 

z  in terms of 

€ 

β
1
 and 

€ 

M
A1

.  Choosing 

three different 

€ 

β
1
, plot 

€ 

y  as a function of 

€ 

M
A1

. 

 

For 

€ 

V
x1

> 0  and 

€ 

B
x
≠ 0, we can multiply Eqs. (2.45) and (2.46) by 

€ 

B
x

ρV
x

.  The resulting 

equations are  

€ 

BxVy1 −
Bx

2
By1

µ
0
ρ
1
Vx1

= BxVy2 −
Bx

2
By2

µ
0
ρ
2
Vx2

           (2.57) 

€ 

B
x
V
z1
−
B
x

2
B
z1

µ
0
ρ
1
V
x1

= B
x
V
z2
−
B
x

2
B
z2

µ
0
ρ
2
V
x2

           (2.58) 

Subtracting Eqs. (2.42) from (2.57) yields, 
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€ 

Vx1By1(1−
Bx

2

µ
0
ρ
1
Vx1

2
) =Vx2By2(1−

Bx

2

µ
0
ρ
2
Vx2

2
)           (2.59) 

Summation of Eqs. (2.41) and (2.58) yields, 

€ 

V
x1
B
z1
(1−

B
x

2

µ
0
ρ
1
V
x1

2
) =V

x2
B
z2
(1−

B
x

2

µ
0
ρ
2
V
x2

2
)           (2.60) 

Let 

€ 

M
An1

2 =
V
x1

2

B
x

2
/µ

0
ρ
1

 and 

€ 

M
An2

2 =
V
x2

2

B
x

2
/µ

0
ρ
2

. Eqs. (2.59) and (2.60) can be rewritten as  

€ 

Vx1By1(1−
1

MAn1

2
) =Vx2By2(1−

1

MAn2

2
)           (2.59') 

€ 

V
x1
B
z1
(1−

1

M
An1

2
) =V

x2
B
z2
(1−

1

M
An2

2
)           (2.60') 

Eqs. (2.59') and (2.60') yield the following five types of solutions   

 

Case IV: 

€ 

M
An1

2
=1, 

€ 

M
An2

2
=1, and 

€ 

[B
t
] ≠ 0 . It leads to the rotational discontinuity solutions. 

Case V: 

€ 

M
An1

2
=1, 

€ 

M
An2

2
≠1, and 

€ 

B
t 2

= 0 . It leads to the switch-off slow shock solutions. 

Case VI: 

€ 

M
An1

2
≠1, 

€ 

M
An2

2
=1 , and 

€ 

B
t1

= 0 . It leads to the low-beta low-Mach-number 

switch-on fast shock solutions. 

Case VII: 

€ 

B
x
≠ 0, 

€ 

M
An1

2
≠1 and 

€ 

M
An2

2
≠1 but 

€ 

B
t1

= B
t 2

= 0 . It leads to gas-dynamic-like 

parallel shocks, including high Mach number fast shock solutions and low Mach number 

slow shock and intermediate shock solutions.  

Case VIII: 

€ 

B
x
≠ 0 , 

€ 

M
An1

2
≠1, 

€ 

M
An2

2
≠1, 

€ 

B
t1
≠ 0  and 

€ 

B
t2
≠ 0 . It leads to oblique shock 

solutions, including fast shock, slow shock and intermediate shock solutions. 

 

Co-planarity Condition of Oblique Shock Solutions 

For 

€ 

M
An1

2
≠1 and 

€ 

M
An2

2
≠1, Eqs. (2.59') and (2.60') yield  

€ 

By1

Bz1

=
By2

Bz2

               (2.61) 

Since 

€ 

ex ⋅ (B1 ×B2) = By1Bz2 − Bz1By2, Eq. (2.61) yields 

€ 

e
x
⋅ (B

1
×B

2
) = 0 .  That is the shock 

normal direction, 

€ 

−e
x
, and the upstream and downstream magnetic fields are co-planar. 

 

The de-Hoffman Taylor Frame 

For 

€ 

V
x1

> 0  and 

€ 

B
x
≠ 0 , Eqs. (2.41) and (2.42) allow us to choose a moving frame such that 

€ 

V
1
//B

1
 and 

€ 

V
2
//B

2
.  Namely, 

€ 

E
t1

= E
t 2

= 0 .  This moving frame is called the 
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de-Hoffman-Taylor frame (dHTF).  For convenience, we shall discuss the jump conditions 

of Cases IV~VIII based on the de-Hoffman-Taylor frame. 

 

Case IV:  1-D Rotational Discontinuity (RD) Solutions 

For 

€ 

M
An1

2
=1 and 

€ 

M
An2

2
=1, we have  

€ 

V
x1

2
= B

x

2
/µ

0
ρ
1
               (2.62a) 

€ 

V
x2

2
= B

x

2
/µ

0
ρ
2
               (2.62b) 

Substituting Eqs. (2.62a) and (2.62b) into Eq. (2.40)-(2.47), and choose the 

de-Hoffman-Taylor frame, 

€ 

E
t1

= E
t 2

= 0 .  It yields 

€ 

ρ
1

= ρ
2

= ρ                (2.63) 

€ 

V
x1

=V
x2

=V
x

= ±B
x
/ µ

0
ρ             (2.64) 

€ 

V
t1

= ±
B
t1

µ
0
ρ

               (2.65a) 

€ 

V
t2

= ±
B
t2

µ
0
ρ

               (2.65b) 

€ 

p
1
+
Bt1

2

2µ
0

= p
2

+
Bt 2

2

2µ
0

             (2.66) 

€ 

Bt1

2

2µ
0

+
5

2
p
1

=
Bt1

2

2µ
0

+
5

2
p
2
             (2.67) 

Eqs. (2.66) and (2.67) yield 

€ 

p
1

= p
2
 and 

€ 

B
t1

= B
t 2

.  A nonlinear structure, which satisfies 

Eqs. (2.62a)-(2.67), but with 

€ 

B
t1
≠ B

t 2
, is called Rotational Discontinuity (RD).  The jump 

condition of RD is summarized below: 

€ 

B
n

= −B
x
≠ 0                (2.68a) 

€ 

V
x

= ±B
x
/ µ

0
ρ > 0               (2.68b) 

€ 

V
t

= ±
B
t

µ
0
ρ

               (2.68c) 

€ 

[ρ] = 0                (2.68d) 

€ 

[V
n
] = 0                 (2.68e) 

€ 

[p] = 0                (2.68f) 

€ 

[B
t
] = 0                 (2.68g) 

but  

€ 

[B
t
] ≠ 0                 (2.68h) 
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It can be shown that entropy across an RD is constant. Therefore, structure of RD can be 

studied using the pseudo potential method discussed in Chapter 3.  

 

Case V:  1-D Switch-Off Slow Shock Solutions  

€ 

M
An1

2
=1, 

€ 

M
An2

2
≠1, and 

€ 

B
t 2

= 0 .  

 

Case VI:  1-D Switch-On Fast Shock Solutions 

€ 

M
An1

2
≠1, 

€ 

M
An2

2
=1, and 

€ 

B
t1

= 0. 

  

Case VII: 1-D Gas-Dynamic-Like Parallel Shock Solutions 

€ 

B
x
≠ 0, 

€ 

M
An1

2
≠1 and 

€ 

M
An2

2
≠1 but 

€ 

B
t1

= B
t 2

= 0 .  

 

Case VIII: 1-D Oblique Shock Solutions (Satisfy the Co-Planarity Condition) 

€ 

B
x
≠ 0, 

€ 

M
An1

2
≠1, 

€ 

M
An2

2
≠1, 

€ 

B
t1
≠ 0 and 

€ 

B
t2
≠ 0  yields 

€ 

e
x
⋅ (B

1
×B

2
) = 0 . That is the shock 

normal direction, 

€ 

−e
x
, and the upstream and downstream magnetic fields are co-planar.   

 

For simplicity, we shall choose a coordinate system such that 

€ 

By1 = By2 =Vy1 =Vy2 = 0, and 

the de-Hoffman-Taylor frame such that 

€ 

E
t1

= E
t 2

= 0 .  The jump conditions of Case VIII 

(and Case V) can be obtained from Eqs. (2.40)~(2.47). 

Let 

€ 

ρ
2

ρ
1

= x,
Vx2

Vx1

= y,
p
2

p
1

= z, and for 

€ 

B
z1
≠ 0, let 

€ 

B
z2

B
z1

= u  

(2.40)  

€ 

B
x1

= B
x2

= B
x
 

(2.41) 

€ 

Ey1 = Ey2 = 0⇒Vx1Bz1 −Vz1Bx =Vx2Bz2 −Vz2Bx = 0⇒

€ 

V
z1

=V
x1

B
z1

B
x

V
z2

=V
x2

B
z2

B
x

 

 

 
 
 
 

 

 

 
 
 
 

  (2.69) 

(2.42) 

€ 

0 − 0 = 0 − 0  

(2.43) 

€ 

xy =1 

(2.44)

€ 

ρ
1
Vx1

2 + p
1

+
Bz1

2

2µ
0

= ρ
2
Vx2

2 + p
2

+
Bz2

2

2µ
0

B
1

2

2µ
0

⇒   

€ 

2MA1

2
+ β

1
+ sin

2θBN1 = 2MA1

2
y + β

1
z + sin

2θBN1u
2 ⇒   
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€ 

z =1+
1

β
1

[2MA1

2
(1− y) + (1− cos2θBN1)(1− u

2
)]      (2.70) 

(2.45) 

€ 

0 − 0 = 0 − 0  

(2.46) 

€ 

ρ
1
V
x1
V
z1
−
B
x
B
z1

µ
0

= ρ
2
V
x2
V
z2
−
B
x
B
z2

µ
0

⇒  (using Eq. (2.69) to eliminate 

€ 

V
z1

 and 

€ 

V
z2

) 

€ 

ρ
1
Vx1Vx1

Bz1

Bx

−
BxBz1

µ
0

= ρ
2
Vx2Vx2

Bz2

Bx

−
BxBz2

µ
0

⇒

Bz1(ρ1Vx1Vx1 −
BxBx

µ
0

) = Bz2(ρ2Vx2Vx2 −
BxBx

µ
0

)⇒

1−
1

MAn1

2
= (y −

1

MAn1

2
)u⇒

 

€ 

u =

1−
1

MAn1

2

y −
1

MAn1

2

       `      (2.71) 

(Note that for Case V, 

€ 

B
t 2

= 0 , 

€ 

M
An1

2
=1, thus 

€ 

u =
B
z2

B
z1

= 0 , and (2.71) is fulfilled.) 

(2.47) 

€ 

[
1

2
ρ1V1

2 +
5

2
p1]Vx1 + (

E1 ×B1
µ0

)x = [
1

2
ρ2V2

2 +
5

2
p2]Vx2 + (

E2 ×B2
µ0

)x ⇒  

€ 

[
1

2
ρ1(Vx1

2 +Vz1

2
) +
5

2
p1]Vx1 = [

1

2
ρ2(Vx2

2 +Vz2

2
) +
5

2
p2]Vx2 ⇒

[
1

2
ρ1Vx1

2
(1+

Bz1

2

Bx

2
) +
5

2
p1]Vx1 = [

1

2
ρ2Vx2

2
(1+

Bz2

2

Bx

2
) +
5

2
p2]Vx2 ⇒

1

2
ρ1Vx1

3 B1
2

Bx

2
+
5

2
p1Vx1 =

1

2
ρ2Vx2

3 B2
2

Bx

2
+
5

2
p2Vx2

 

 
 

 

 
 ⋅

Bx

2

Vx1B1
4
/2µ0

⇒

 

€ 

MA1

2
+
5

2
β1 cos

2θBN1 = MA1

2
y
2
(
B2
2

B1
2
) +
5

2
β1 cos

2θBN1zy      (2.72) 

where  

€ 

B2
2

B1
2

=
B
x

2
+ B

z2

2

B1
2

= cos
2θ

BN1 + sin
2θ

BN1u
2

= u
2

+ cos
2θ

BN1(1− u
2
)    (2.72a) 

 

Exercise 2.7  

(a) Show that Eqs. (2.70)~(2.72) yield the following equations for 

€ 

y: 

€ 

(1− y)(y
3

+ ay
2

+ by + c) = 0  

(b) Determine the coefficients 

€ 

a , 

€ 

b, and 

€ 

c . 

(c) Choosing different 

€ 

β
1
 and 

€ 

θ
BN1

, plot 

€ 

y  as a function of 

€ 

M
A1

. 
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http://www.ss.ncu.edu.tw/~lyu/lecture_files/2008Fall/lyu_NLSPP_Notes/Lyu_NLSPP_AnswerChap2.pdf 

 

The solutions obtained in Exercise 2.7 are for 

€ 

0° < θ
BN1

< 90° .  Only solutions with 

increasing entropy are acceptable solutions.  When applying the solution of Exercise 2.7 to 

the case 

€ 

θ
BN1

= 90°, it gives one additional root, 

€ 

y = 0.  It yields 

€ 

x→∞, thus it is certainly 

not an acceptable solution.  When applying the solution of Exercise 2.7 to the case 

€ 

θ
BN1

= 0° , it gives one root 

€ 

y =1/MAn1

2
= cos

2θ /MA1

2 .  This solution is the switch-on shock 

solution when the upstream plasma beta and Mach number are low enough.  For higher 

plasma beta and Mach number, this solution yields 

€ 

B
z2

2
< 0 , thus it is not an acceptable 

solution in high Mach number parallel shock.  

 

Parallel Shock 

For parallel shock, 

€ 

B
t1

= 0.  

Let 

€ 

ρ
2

ρ
1

= x,
Vx2

Vx1

= y,
p
2

p
1

= z, and 

€ 

B
z2

B
1

= w  

(2.40)  

€ 

B
x1

= B
x2

= B
x

= B
1
 

(2.41) 

€ 

V
z1

= 0

V
z2

=V
x2

B
z2

B
x

=V
x2

B
z2

B
1

 

 

 
 
 

 

 

 
 
 

           (2.69') 

(2.42) 

€ 

0 − 0 = 0 − 0  

(2.43) 

€ 

xy =1 

(2.44)

€ 

ρ
1
Vx1

2 + p
1

= ρ
2
Vx2

2 + p
2

+
Bz2

2

2µ
0

B
1

2

2µ
0

⇒  

€ 

2MA1

2
+ β

1
= 2MA1

2
y + β

1
z + w

2 ⇒   

€ 

z =1+
1

β
1

[2MA1

2
(1− y) − w2

]          (2.70') 

(2.45) 

€ 

0 − 0 = 0 − 0  

(2.46) 

€ 

ρ
1
V
x1
V
z1
−
B
x
B
z1

µ
0

= ρ
2
V
x2
V
z2
−
B
x
B
z2

µ
0

⇒  (using Eq. (2.69) to eliminate 

€ 

V
z1

 and 

€ 

V
z2

) 

€ 

0 = ρ
1
V
x1
V
x2

B
z2

B
1

−
B
1
B
z2

µ
0

⇒ 

€ 

0 = B
z2
(ρ

1
V
x1
V
x1

V
x2

V
x1

−
B
1

2

µ
0

)⇒  
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€ 

0 = Bz2ρ1Vx1

2
(y −

1

MA1

2
) 

Since 

€ 

ρ
1
V
x1

2
> 0 , it yields 

(a) 

€ 

y =
1

MA1

2
      `       (2.71a) 

(b) 

€ 

B
z2

= 0       `       (2.71b) 

 

(2.47) 

€ 

[
1

2
ρ1V1

2 +
5

2
p1]Vx1 + (

E1 ×B1
µ0

)x = [
1

2
ρ2V2

2 +
5

2
p2]Vx2 + (

E2 ×B2
µ0

)x ⇒  

€ 

[
1

2
ρ1(Vx1

2
) +
5

2
p1]Vx1 = [

1

2
ρ2(Vx2

2 +Vz2

2
) +
5

2
p2]Vx2 ⇒

[
1

2
ρ1Vx1

2 +
5

2
p1]Vx1 = [

1

2
ρ2Vx2

2
(1+

Bz2

2

B1
2
) +
5

2
p2]Vx2 ⇒

1

2
ρ1Vx1

3 +
5

2
p1Vx1 =

1

2
ρ2Vx2

3
(1+ w2

) +
5

2
p2Vx2

 

  
 

  
⋅

1

Vx1B1
2
/2µ0

⇒

 

€ 

MA1

2
+
5

2
β1 = MA1

2
y
2
(1+ w

2
) +
5

2
β1zy         (2.72') 

 

Switch-on Shock : 

€ 

B
z2
≠ 0  and 

€ 

y =1/MA1

2  

Substituting Eqs. (2.70') and (2.71a) into (2.72'), it yields 

€ 

MA1

2
+
5

2
β1 = MA1

2 1

MA1

4
(1+ w

2
) +
5

2

1

MA1

2
[β1 + 2MA1

2
(1− y) − w2

]⇒ 

€ 

M
A1

4
+
5

2
β1MA1

2
= (1+ w

2
) +
5

2
[β1 + 2M

A1

2 − 2 − w2
]⇒  

€ 

M
A1

4
+
5

2
β
1
M

A1

2
=
5

2
β
1
+ 5M

A1

2 − 4 −
3

2
w
2 ⇒ 

€ 

w
2

= −
8

3
−
2

3
M

A1

4
+
5

3
β1(1−MA1

2
) +
10

3
M

A1

2  

Only a limited range of 

€ 

M
A1

2  and 

€ 

β
1
 can yield 

€ 

w
2

> 0 .  It can be shown that, for 

€ 

M
A1

2
>1, 

€ 

w
2

> 0 

€ 

+
5

2
β1(1−MA1

2
) > (M

A1

2 −1)(M
A1

2 − 4)⇒  

€ 

M
A1

2
< 4 −

5

2
β
1
 

For 

€ 

β
1

= 0 , it yields the switch on shock can be found when 

€ 

1< M
A1

< 2  

For 

€ 

M
A1

2
>1, it yields 

€ 

5

6
β
1

<1 or 

€ 

γ

2
β
1

=
C
S1

2

C
A1

2
<1 is one of the necessary conditions for the 
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existence of the switch-on shock solution.  Namely, there is no switch-on shock solution if 

€ 

C
S1

2
> C

A1

2 . 

 

Gas-Dynamic-Like Parallel Shock: 

€ 

B
z2

= 0  

€ 

B
z2

= 0

€ 

w
2

= 0  

(2.70') 

€ 

z =1+
1

β
1

[2MA1

2
(1− y)],           (2.70") 

(2.72') 

€ 

MA1

2
+
5

2
β
1

= MA1

2
y
2

+
5

2
β
1
zy           (2.72") 

Substituting Eqs. (2.70") and into (2.72"), it yields 

€ 

MA1

2
+
5

2
β1 = MA1

2
y
2

+
5

2
y[β1 + 2MA1

2
(1− y)]⇒  

€ 

MA1

2
(1− y 2) +

5

2
(1− y)β1 − 5MA1

2
(1− y)y = 0⇒ 

€ 

MA1

2
(1+ y) +

5

2
β1 − 5MA1

2
y = 0⇒  

€ 

y =
1

4
+
5

8

β
1

MA1

2
 

For 

€ 

y <1, it yields 

€ 

5

6
β
1

< M
A1

2   or 

€ 

V
x1

> C
S1

 

Substituting 

€ 

y =
1

4
+
5

8

β
1

MA1

2
 into equation (2.70"), it yields 

€ 

z =
3

2

M
A1

2

β
1

−
1

4
 

 

The solution of Case VI and Case VII are summarized below   

Case VI:  1-D Switch-On Fast Shock (Low-Mach Number Parallel Fast Shock) 

€ 

B
x
≠ 0, 

€ 

B
t1

= 0, 

€ 

M
An1

2
= M

A1

2
≠1, 

€ 

M
An2

2
=1, and 

€ 

B
t2
≠ 0  

€ 

y =
Vx2

Vx1

=
1

MA1

2
 

€ 

1< M
A1

2
< 4 −

5

2
β
1
 

€ 

C
S1

2
> C

A1

2   or  

€ 

5

6
β
1

<1 
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€ 

w
2

=
B
z2

2

B1
2

= −
8

3
−
2

3
M

A1

4
+
5

3
β1(1−MA1

2
) +
10

3
M

A1

2
 

€ 

z =
p
2

p
1

=1+
1

β
1

[2MA1

2
(1− y) − w2

] 

 

Case VII: 1-D Gas-Dynamic-Like Parallel Shock 

€ 

B
x
≠ 0, 

€ 

B
t1

= B
t 2

= 0 , 

€ 

M
An1

2
= M

A1

2
≠1, and 

€ 

M
An2

2
= M

A 2

2
≠1. 

€ 

y =
Vx2

Vx1

=
1

4
+
5

8

β
1

MA1

2
 

€ 

w
2

=
B
z2

2

B
1

2
= 0 

€ 

[B] = [B
x
] = 0 

€ 

z =
p
2

p
1

=
3

2

MA1

2

β
1

−
1

4
 

€ 

5

6
β
1

< M
A1

2   or 

€ 

V
x1

> C
S1

 

 

Let us define the curves 

€ 

y = (1/4) + (5 /8)(β1 /MA1

2
) and 

€ 

y =1/MA1

2 to be Curves I and II, 

respectively.  The intersection of the two curves is located at 

€ 

M
A1

2
= 4 − (5β1 /2) .  For 

Curve I, solutions on the right-hand side of the intersection point correspond to the fast shock 

solutions. Solutions on the left-hand side of the intersection point include the slow shock 

solutions and the intermediate shock solutions.  For Curve II, solutions on the right-hand 

side of the intersection point are unacceptable solutions. Solutions on the left-hand side of the 

intersection point are the switch-on fast shock solutions. (See Figure 2.3a)  The intersection 

point does not exist when 

€ 

C
S1

> C
A1

. 

 

It can be shown that solutions obtained from Eqs. (2.70)-(2.72) include fast shock, slow 

shock, fast-Alfven-slow shock, fast-Alfven shock, Alfven shock, and Alfven-slow shock.  

Definition of these shocks are given in Table 2.1 and Figure 2.1, where 

€ 

V
FA1

, 

€ 

V
AX1

, and 

€ 

V
SL1

 

are upstream fast-mode speed, Alfven-mode speed, and slow-mode speed, respectively.  

€ 

V
FA2

, 

€ 

V
AX 2

, and 

€ 

V
SL2

 are downstream fast-mode speed, Alfven-mode speed, and slow-mode 

speed, respectively.  Examples of solution space of intermediate shocks (i.e., 

fast-Alfven-slow shock, fast-Alfven shock, Alfven shock, and Alfven-slow shock) are shown 

in Figure 2.2.  Examples of solution 

€ 

y =Vx2 /Vx1  as function of upstream Mach number 



Nonlinear Space Plasma Physics (I) [SS-8041] Chapter 2  by Ling-Hsiao Lyu  2008 Fall 

 2-18 

€ 

M
A1

 is given in Figure 2.3.  Jump conditions obtained from Eqs. (2.40)~(2.47) are also 

called Rankine-Hugoniot (R-H) relation. 
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[Kennel, C. F., R. D. Blandford, and P. Coppi, MHD intermediate shock discontinuities. Part 

1. Rankine-Hugoniot conditions, J. Plasma Phys., 42, 299, 1989.] 
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Exercise 2.8  

Let 

€ 

y =Vx2 /Vx1  

€ 

β
1

= p
1
/(B

1

2
/2µ

0
), obtain jump conditions of 

€ 

y  as a function of 

€ 

M
A1

 for 

different 

€ 

θ
BN1

 and 

€ 

β
1
.  

Consider the following cases:  

€ 

(θ
BN1,β1) = (0°,0.1),(20°,0.1),(45°,0.1),(15°,2),(75°,2) .   

Plot solutions 

€ 

V
x2
/V

x1
, 

€ 

ρ
2
/ρ
1
, 

€ 

p
2
/ p

1
, 

€ 

B
2
/B
1
, 

€ 

S
2
− S

1
, 

€ 

V
x1
/V

FA1
, 

€ 

V
x1
/V

AX 1
, 

€ 

V
x1
/V

SL1
, 

€ 

V
x2
/V

FA 2
, 

€ 

V
x2
/V

AX 2
, 

€ 

V
x2
/V

SL2
, as functions of 

€ 

M
A1

 for each case and determine solution 

types to be fast shock, or slow shock, or Alfven shock, or Alfven-slow shock, or 

fast-Alfven shock, or fast-Alfven-slow shock, or any other type of solutions.  Compare 

your results with solutions shown in Figure 2.3. 

 

Example 2: Plasma boundary condition with non-zero heat flux and anisotropic pressure  

 

Jump conditions of RDs and Shocks can also be generalized to include both 

pressure-anisotropy and heat-flux effects.  In this example, we assume that 

€ 

P ≈ bbp|| + (1−bb)p⊥   at both upstream and downstream boundaries   (2.73) 

where 

€ 

b = B /B  denotes the unit vector along the local magnetic field.  By definition, the 

scalar pressure is  
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€ 

p =
1

3
trace(P) =

1

3
(p|| + 2p⊥ )             (2.74) 

For convenience, we shall define an anisotropy parameter  

€ 

ξ =1−
p
||
− p⊥

B
2
/µ

0

              (2.75) 

Substituting Eq. (2.75) into Eq. (2.73) yields, 

€ 

P ≈1p⊥ + (1−ξ)
BB

µ
0

  at both upstream and downstream boundaries   (2.76) 

Solving Eqs. (2.74) and (2.75) yields, 

€ 

p⊥ = p −
1

3
(1−ξ)

B
2

µ
0

             (2.77) 

and 

€ 

p⊥ +
B
2

2µ
0

= p +
1

3
(ξ +

1

2
)
B
2

µ
0

            (2.78) 

Substituting Eqs. (2.76) and (2.38)~(2.40) into Eqs. (2.32) and (2.33) yields 

€ 

∂

∂ t
(ρV) +∇ ⋅ [ρVV +1(p⊥ +

B
2

2µ
0

) −ξ
BB

µ
0

] = 0         (2.79) 

€ 

∂

∂ t
[
ρV 2

2
+
3p

2
+
B
2

2µ
0

]+∇ ⋅ [(
ρV 2

2
+
3p

2
+
B
2

µ
0

)V + p⊥V −ξ
BB

µ
0

⋅V + q] = 0    (2.80) 

or 

€ 

∂

∂ t
[
ρV 2

2
+
3p⊥

2
+
2 −ξ

2

B
2

µ0
]+∇ ⋅ [(

ρV 2

2
+
5p⊥

2
+
3−ξ

2

B
2

µ0
)V −ξ

BB

µ0
⋅V + q] = 0   (2.81) 

Substituting Eqs. (2.77) and (2.78) into Eqs. (2.79) and (2.80) yields 

€ 

∂

∂ t
(ρV) +∇ ⋅ [ρVV +1(p +

2ξ +1

3

B
2

2µ
0

) −ξ
BB

µ
0

] = 0        (2.82) 

€ 

∂

∂ t
[
ρV 2

2
+
3p

2
+
B
2

2µ0
]+∇ ⋅ [(

1

2
ρV 2 +

5

2
p +

2 + ξ

3

B
2

µ0
)V −ξ

BB

µ0
⋅V + q] = 0    (2.83) 

Integrating Eqs. (2.79) and (2.81) from upstream to downstream, under one-dimensional 

steady-state assumption, yields 

€ 

ρ
1
Vx1

2 + (p⊥1 +
B
1

2

2µ
0

) −ξ
1

Bx

2

µ
0

= ρ
2
Vx2

2 + (p⊥2 +
B
2

2

2µ
0

) −ξ
2

Bx

2

µ
0

      (2.84) 

€ 

ρ
1
Vx1Vy1 −ξ1

BxBy1

µ
0

= ρ
2
Vx2Vy2 −ξ2

BxBy2

µ
0

         (2.85) 
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€ 

ρ
1
V
x1
V
z1
−ξ

1

B
x
B
z1

µ
0

= ρ
2
V
x2
V
z2
−ξ

2

B
x
B
z2

µ
0

         (2.86) 

€ 

(
ρ1V1

2

2
+
5p⊥1

2
+
3−ξ1
2

B1
2

µ0
)Vx1 −ξ1

Vx1Bx +Vy1By1 +Vz1Bz1

µ0
Bx + qx1 

€ 

= (
ρ2V2

2

2
+
5p⊥2

2
+
3−ξ

2

B2
2

µ0
)Vx2 −ξ2

Vx2Bx +Vy2By2 +Vz2Bz2

µ0
Bx + qx2   (2.87) 

According to Eqs. (2.82) and (2.83), we can rewrite Eqs. (2.84) and (2.87) in the following 

forms. 

€ 

ρ
1
Vx1

2 + p
1

+
2ξ

1
+1

3

B
1

2

2µ
0

−ξ
1

Bx

2

µ
0

= ρ
2
Vx2

2 + p
2

+
2ξ

2
+1

3

B
2

2

2µ
0

−ξ
2

Bx

2

µ
0

    (2.84') 

€ 

(
ρ1V1

2

2
+
5p1

2
+
ξ1 + 2

3

B1
2

µ0
)Vx1 −ξ1

Vx1Bx +Vy1By1 +Vz1Bz1

µ0
Bx + qx1 

€ 

= (
ρ2V2

2

2
+
5p2

2
+
ξ2 + 2

3

B2
2

µ0
)Vx2 −ξ2

Vx2Bx +Vy2By2 +Vz2Bz2

µ0
Bx + qx2    (2.87') 

For 

€ 

V
x1

2 = ξ
1
B
x

2
/µ

0
ρ
1
 and 

€ 

V
x2

2 = ξ
2
B
x

2
/µ

0
ρ
2
, RD type of solutions can be obtained from Eqs. 

(2.41)~(2.43) and (2.84)~(2.87).  Likewise, for 

€ 

V
x1

2 ≠ ξ
1
B
x

2
/µ

0
ρ
1
 and 

€ 

V
x2

2 ≠ ξ
2
B
x

2
/µ

0
ρ
2

, 

shock type of solutions can be obtained from Eqs. (2.41)~(2.43) and (2.84)~(2.87') with three 

vectors, shock normal 

€ 

n = − ˆ x , upstream magnetic field 

€ 

B
1
, and downstream magnetic field 

€ 

B
2
, lying on the same plane.   

 

Exercise 2.9 

Read the following papers.  Derive RD and Shock jump conditions shown in these papers 

from Eqs. (2.41)~(2.43) and (2.84)~(2.87') with anisotropic pressure and non-zero heat 

flux. 

 

Chao, J. K., Interplanetary collisionless shock waves, Rep. CSR TR-70-3, MIT Center for 

Space Research, Cambridge, Mass., 1970. 

Chao, J. K., and B. Goldstein, Modification of the Rankine-Hugoniot relations for shocks 

in space, J. Geophys. Res., 77, 5455, 1972. 

Hudson, P. D., Discontinuities in an anisotropic plasma and their identification in the solar 

wind, Planet. Space Sci., 18, 1611, 1970. 

Lyu, L. H., and J. R. Kan, Shock jump conditions modified by pressure anisotropy and heat 

flux for Earth’s bowshock, J. Geophys. Res., 91, 6771, 1986. 
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Exercise 2.10 

Give a few examples to demonstrate modifications on jump conditions of shocks and RDs, 

due to presence of pressure anisotropy and non-zero heat flux at upstream and downstream 

boundaries.   

 

Exercise 2.11 

Show that for a perfect bi-Maxwellian distribution function, its pressure tensor can be 

written as 

€ 

P = bbp|| + (1− bb)p⊥  but with zero heat flux (i.e., 

€ 

q = 0). 

 

Exercise 2.12 

Make a table to summarize jump conditions obtained in Sections 2.1 and 2.2.    

 

2.3. Kinetic Jump Conditions  

 

In fluid jump conditions, ion-electron temperature ratio, pressure anisotropy, heat-flux 

difference, or potential difference are free parameters.  In kinetic jump conditions, these 

parameters must be obtained self-consistently from steady-state Vlasov equations with 

€ 

∇ = ˆ x (∂ /∂x) .   

 

Let us consider the simplest example: ES nonlinear structure in unmagnetized plasma.  For 

1-D electrostatic nonlinear waves, Poisson equation can be written as  

€ 

d
2Φ

dx
2

=
−1

ε
0

eαFαdvx∫
α

∑ = −e(n
i
− n

e
)          (2.88) 

where 

€ 

Fα = Fα (vx,x) = fα (vx,vy,vz,x)dvydvz∫∫  and 

€ 

fα  is distribution function of the 

€ 

αth  

species.  Let 

€ 

Fα  satisfies electrostatic steady-state Vlasov equation, i.e.,  

€ 

v
x

∂Fα

∂x
−
eα

mα

dΦ(x)

dx

∂Fα

∂v
x

= 0            (2.89) 

Solution of Eq. (2.89) is  

€ 

Fα = Fα (vx
2

+
2eαΦ(x)

mα

)             (2.90) 

where 

€ 

mαvx
2

+ 2eαΦ(x) = constant  is a characteristic curve of Eq. (2.89).  Distribution 

function 

€ 

Fα , which satisfies Eq. (2.89), keeps a constant value along a characteristic curve.  
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For a given 

€ 

Φ(x)  profile, the characteristic curves in the phase space (

€ 

x,v
x
) are well 

determined.   

 

 

Figure 2.4 Sketches of 

€ 

Φ(x)  profiles and the corresponding characteristic curves 

€ 

m
i
v
x

2
+ 2eΦ(x) = constant  and 

€ 

m
e
v
x

2
−2eΦ(x) = constant  in phase space (

€ 

v
x
,x ).  See text 

for detail discussion. 
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Figure 2.4 sketches examples of 

€ 

Φ(x) profiles and the corresponding characteristic curves 

€ 

m
i
v
x

2
+ 2eΦ(x) = constant  and 

€ 

m
e
v
x

2
− 2eΦ(x) = constant  in phase space (

€ 

v
x
,x ).  They are 

three types of characteristic curves.  Type-I characteristic curves (black curves) connect 

upstream and downstream boundaries.  These curves denote trajectory of transmitted 

particles.  Type-II characteristic curves (red curves) connect from one part of velocity space 

back to another part of velocity space at the same boundary.  These curves denote trajectory 

of reflected particles.  Type-III characteristic curves (blue curves) form an island in the 

phase space.  These curves denote trajectory of wave-trapped particles.   

 

Let 

€ 

x →−∞  denotes upstream boundary and 

€ 

x → +∞  denotes downstream boundary.  

For one-dimensional steady-state structure with uniform boundary conditions, Poisson 

equation yields zero charge density at both upstream and downstream boundaries.  Namely 

€ 

F
i
(x→ +∞,v

x
)dv

x∫ = F
e
(x→ +∞,v

x
)dv

x∫          (2.91) 

€ 

F
i
(x→−∞,v

x
)dv

x∫ = F
e
(x→−∞,v

x
)dv

x∫          (2.92) 

For one-dimensional steady-state Ampere’s law, Eq.  (2.12) yields zero electric current 

density. That is 

€ 

v
x
F
i
(x,v

x
)dv

x∫ = v
x
F
e
(x,v

x
)dv

x∫            (2.93) 

It can be shown that particle flux is conserved along each characteristic curve.  Thus, if 

boundary distributions satisfy Eq. (2.93) then the entire system shall satisfy Eq. (2.93).  

Thus, for kinetic jump conditions, we look for boundary conditions that satisfy Eqs. (2.91), 

(2.92), and satisfy  

€ 

v
x
F
i
(x→ +∞,v

x
)dv

x∫ = v
x
F
e
(x→ +∞,v

x
)dv

x∫         (2.94) 

€ 

v
x
F
i
(x→−∞,v

x
)dv

x∫ = v
x
F
e
(x→−∞,v

x
)dv

x∫         (2.95) 

Eqs. (2.90), (2.91), (2.92), (2.94), and (2.95), are kinetic jump conditions of 

€ 

Φ , 

€ 

F
i
, and 

€ 

F
e
.  

It can be seen from Figure 2.4 that overshoot or undershoot structure on 

€ 

Φ(x)  profile can 

affect solution of the jump conditions.   

 

Since ion-electron temperature ratio, heat flux, and pressure anisotropy can be obtained from 

€ 

F
i
, and 

€ 

F
e
, jump conditions on these quantities become well determined.  The assumption 

of Maxwellian distributions at upstream and downstream boundaries, commonly used in fluid 

jump conditions, can make one characteristic curve of 

€ 

Fα  with different 

€ 

Fα  values at two 

ends of the curve.   Thus, to satisfy the assumption of Maxwellian distributions at upstream 
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and downstream boundaries may require a highly time-dependent transition region. 

 

Kinetic jump conditions given in Eqs. (2.90), (2.91), (2.92), (2.94), and (2.95) are applicable 

to electrostatic contact discontinuities and low Mach number ES shocks.  For very high 

Mach number shocks, turbulent structures in shock transition region usually show strong 

time-dependent variations.  For time-dependent turbulent transition region, particles’ 

trajectories may switch between the ones shown in Cases 1, 2, and 3.  The final destination 

of a particle will depend on the structure of 

€ 

Φ(x,t)  in the transition region when this particle 

arrives the shock transition region.  Thus, even if 

€ 

Φ(x→−∞)  and 

€ 

Φ(x→−∞)  are static, 

we still cannot make a perfect prediction on particle trajectories nor distribution functions at 

upstream and downstream boundaries. 

 

Application of the kinetic jump condition discussed in this section is particularly useful when 

we try to determine plasma jump condition of a contact discontinuity.  It can be easily 

shown from Figure 2.4 that if there is a potential jump across a CD, then ion-electron 

temperature ratio at upstream boundary should not be the same as it at downstream boundary.  

This result predicts that, for a given ion-electron temperature ratio on both upstream and 

downstream boundaries, no steady contact discontinuity can be found in a full-particle-code 

simulation. 

 

Exercise 2.13 

Read the following papers, which study CDs’ structures by means of plasma simulations.  

Show that the initial conditions and boundary conditions used in their simulations do not 

satisfy the kinetic jump condition of a steady-state contact discontinuity. 

 

Wu, B. H., J. K. Chao, W. H. Tsai, Y. Lin, and L. C. Lee, A hybrid simulation of contact 

discontinuity, Geophys. Res. Lett., Vol. 21, No. 18, pp. 2059-2062, 1994. 

Lapenta, G., and J. U. Brackbill, Contact discontinuities in collisionless plasmas: A 

comparison of hybrid and kinetic simulations, Geophys. Res. Lett. Vol. 23, No. 14, 

pp. 1713-1716, 1996. 




