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Chapter 2. Jump Conditions of Shocks and Discontinuities

Shocks and discontinuities are nonlinear phenomena that are commonly observed in space
plasmas. Jump conditions of one-dimensional static shocks or discontinuities can help us to
identify the shocks and discontinuities from the space observations. In reality, structure of
shock or discontinuity may change slowly with time and may not be a perfect plane wave.
Deviations from ideal assumptions of uniform boundary condition, zero heat flux, and
isotropic pressure at both upstream and downstream boundaries can also modify the resulting
jump conditions. High-resolution data, multiple-satellite observations, and numerical
simulations can help us to learn more about the necessity of modification on these jump
conditions. Jump conditions do not provide any information on shock heating process nor
fine structure in the transition region of a shock or discontinuity. The fine structure in the
transition region of a discontinuity can be solved based on the pseudo-potential method,
which will be discussed in the next chapter.  The turbulent structures in the transition
region of a shock are commonly studied by means of kinetic plasma simulations. Jump
condition can help these simulations to choose their initial conditions and boundary

conditions, so that these kinetic simulations can be done in a limited simulation domain.

For simplicity, we shall assume that one-dimensional steady state is a good assumption in all
cases discussed in this chapter. For one-dimensional static structure, we can let
d/dt=0, and V = x(d/dx). To obtain shock jump conditions, we are looking for structures
with uniform boundary conditions. That is d/dx—0 at both upstream and downstream
boundaries. Substituting uniform boundary condition into Poisson’s equation yields

p.=0 at both upstream and downstream boundaries (2.1)
n=n,=n at both upstream and downstream boundaries (2.2)
Substituting static uniform boundary condition into Ampere’s Law yields

J=0 at both upstream and downstream boundaries (2.3)
V.=V =V at both upstream and downstream boundaries (2.4)

For n,=n,=n and V,=V, =V atboth boundaries, one can show that

P=P +P, at both upstream and downstream boundaries (2.5)

q=q;+q, at both upstream and downstream boundaries (2.6)
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Exercise 2.1

Show that static and uniform boundary condition yields Eq. (2.3).

Exercise 2.2

Show that for n,=n,=~n and V,=V, =V, wehave P=P,+P, and q=q; +q,.

2.1. Fluid Jump Conditions of ES Shocks and Discontinuities in Unmagnetized Plasma

Basic equations of electrostatic nonlinear waves in unmagnetized plasma can be obtained
from Egs. (1.13")~(1.15"), (1.9), (1.11) and (1.16) with B =0 over entire space. For
one-dimensional static structure, we assume J/dt=0, and V=x(d/dx) . The fluid

equations become

d

—(pV)=0 (2.7)
dx

d 5 e E?

Lrovisp T2 2.8
dx [p X XX 2 ] ( )
a%[pVXVy +P, -¢EE =0 (2.9)

—[pVV+P e,E . E.]1=0 (2.10) }
N‘+ 1’ +X~0
Swtescan i EEE R ¥

dx X_Q_T 240)(2,129)
dp o ERTCNELD
dx
diEfo e12{2,12 O)
X

We look for electrostatic structures with uniform boundary conditions. That is d/dx—0
at both upstream and downstream boundaries. It yields

E =0. at both upstream and downstream boundaries (2.13)
For simplicity, we assume that

P, =P =0 at both upstream and downstream boundaries (2.14)
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q.=0 at both upstream and downstream boundaries (2.15)

Integrating Egs. (2.7), (2.8), and (2.9) from upstream to downstream, and making use of Egs.
(2.13), (2.14), and (2.15), we can obtain the following jump conditions

oV.,=p,V, (2.16)

pIV +P  =p,V, +P_, (2.17)

PV, = pzvxzvﬂ (2.18)

PV.V= VoV Ve (2.19)

G Al ‘t\z\> -Goly. @TVJ (2.20)
414,, +

where su scrlpts 1 and 2 denote upstream and downstream quantities, respectively.

Example: [ dxa(pvg =[PV ] =p V-0V, =0 (221)

Substituting Eq. (2.16) into Egs. (2.18) and (2.19) yields V, =V, and V,=V,. For
simplicity, we can choose a moving frame such that V, =V, =0 and V,=V,=0.

Two types of nonlinear wave solutions can be obtained from Egs. (2.16), (2.17), and (2.20).
They are (A) contact discontinuities and (B) shocks.

(A) 1-D Electrostatic Contact Discontinuity

For V, =V_, =0, conditions in Eqs. (2.16) and (2.21) are automatically fulfilled, whereas Eq.
(2.17) can be simplified as

Pxxl = Pxx2 (222)
or
p T = p,T, (2.23)

This is the jump condition for electrostatic (ES) Contact Discontinuity (CD). Kinetic jump

condition of this electrostatic CD will be discussed in section 2.3.

(B) 1-D Electrostatic Shock

Let C: =y, /p, Miy=V.ICs, x=p,/p, y= and z=P,,/P

Al ’ xx12

where V, >0,
y=(f+2)/f=3, and f=1 is the degree of freedom. One can obtain ES Shock jump
conditions from Egs. (2.16), (2.17), and (2.20):
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plvxl = p2vx2 =
PVa  PVa
PV’ Pu _ AR + Pos -
Pxxl Pxxl P xxl1 P xxl1
YMg, +1=yMgy + 2 (2.25)
1 plvx13 + 3PV, _ 1 p2‘/x23 + 3P,V -
2 Pxxl‘/xl 2 Pxxlvxl 2 Pxxlvxl 2 Pxxlvxl
YMg, + 3= yMgy® + 3zy (2.26)
Equation (2.24) yields
X = l (2.24Y
y
Equation (2.25) yields
+2 .
2= M- +1= LM - ) 1 2.25)

Eq. (2.26) can be rewritten as

+2 +2
f—M§1+(f+2)=fTM§1y2+(f+2)zy=>M§1+f=M§1y2+fzy=>

f

M=y 4 fl=2)=0= MA(1—y)(1+ )+ - yi(L 22

ML(1-y)+1}=0=

A= {MEA+ )+ f=y(f+2)MI)}=0= (1-y){ML+ f—y(f + DM} =0=
y=1 or

__ S \
v M§1+D (2.26")

where the solution of y =1 is a solution of a uniform system.

For collisionless ES shock, we have f =1, y=3 and y= %(]V;Z +1).

S1

. : 3
For collisional gas dynamic shock, we have f =3, y=5/3 and y= i(Mz +1).

S1

Exercise 2.3

Plot jump ratio x, y, and z as functions of upstream Mach number M.
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Exercise 2.4

If 7,/T,=r, and T,/T,=r, , determine jump conditions z,=(P,) ,/(P,), and

xx2 xx1

z;=(P),,/(P),,. Plot z, and z as functions of upstream Mach number M.

Exercise 2.5

(a) Let 60=(q,,—-q,).- Solve y intermsof M, and 6Q.

(b) Plot your results on y - M, plane for different 6Q.

(c) Let S, and S, be the upstream and downstream entropy, respectively. Let
0S5 =S,-S,. Carefully examine your solutions to make sure that entropy increases

across the shock ramp. Plot S on 6S- M, plane for different 6Q.

Kinetic jump conditions (to be discussed in Section 2.3) and kinetic simulations can provide a

self-consistent information on the heat flux and pressure anisotropy across the ES shock.

2.2. Fluid Jump Conditions of Shocks and Discontinuities in Magnetized Plasma

To study nonlinear waves in magnetized plasma, basic equations can be obtained from Egs.
(1.6,)~(1.8,), (1.9)~(1.15), (1.13")~(1.15"), and (1.16)~(1.17). They are
v.Eoimn) _ P (2.27)
€ €
V-B=0 (2.28)
VxE= _IB (2.29)
ot
VxB=u,J (2.30)
9 V- (pV)=0 2.31)
ot
2 2 BB
i[,oV+ %(EXB)]+V-[pVV+ P+1(€°E +B—)—50EE——] =0 (2.32)
ot ¢ 0 2u, Uy
d1 ., 3 ¢eE* B 1 ., 3 ExB
—[=pV +=p+—+—]+V [(=pV '+ =pV+P-V+q+ =0 2.33
071‘[2p SP*—3 2MO] [PV +2p) q " ] (2.33)
Sp ==V le(nV,=n.V) ==V ] (2.34)
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e’n,

d e, enaVa
EJ+V-[§(eanaVaVa+ P)-= E( )E E( ) xB (2.35)

where a=ie.

For one-dimensional steady-state structure, we assume d/dt=0 and V =x(d/dx). We
look for structures with uniform boundary conditions. Namely, d/dx—0 at both

upstream and downstream boundaries. Substituting uniform boundary condition into Egs.

(2.27) and (2.30) yields Egs. (2.1)~(2.6).

Substituting static and uniform boundary conditions into Eq. (2.35) yields

0= E(e n"‘)E E(e ”aVa) B at both boundaries (2.36)

For m, <<m,, Eq. (2.36) can be approximated

E=-V xB at both upstream and downstream boundaries (2.37)
The uniform boundary conditions yield n, =n,=n andV, =V, =V at both boundaries.
As aresult, Eq. (2.37) can be rewritten as

E=-VxB at both upstream and downstream boundaries (2.38)

Namely, the boundary plasma satisfies the MHD (Magnetohybrodynamic) approximation.

For V,<<c¢ and V, <<c, we have

& E* << B’ /u, at both upstream and downstream boundaries (2.39)

Under one-dimensional assumption, Eq. (2.28) yields

B_ = constant from upstream to downstream, over entire system (2.40)

Two examples with different plasma boundary conditions will be discussed in this section.
Example 1: Plasma boundary conditions with zero heat flux and isotropic pressure

For simplicity, we assume that boundary conditions of plasma distributions are Maxwellian in
velocity space. Namely, we have P, =1p,=1nk,T,, P, =1p, =1nk,T,, and ¢ ,=q, =0 at
both boundaries. Substituting these boundary conditions into Egs. (2.5) and (2.6), one can
show that Egs. (2.14) and (2.15) are also applicable to this example.
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Substituting Egs. (2.14), (2.15), (2.38), (2.39), (2.40) into Egs. (2.29), (2.31), (2.32), (2.33)
under one-dimensional and steady-state assumptions, and then integrating the resulting
equations from upstream boundary to the downstream boundary, we can obtain the following

jump conditions:

Eyl = Ey2 :Vxlel _Vlex =VXZBZZ _VZZBx (241)
Ezl = EZZ = Vlex - VxlByl = VVZBX - VXZByZ (242)
pl‘/xl = pZVrZ (243)
B’ + B? B + B?
PVt P+ == Vo pt = (2.44)
0 Uy
Bval BXBV2
plvxl‘/yl - = pZVxZVyZ - ) (245)
0 Uy
B B B B
plvlezl - == pzvxzvzz -2 (2~46)
0 Uy
1 5 E xB 1 5 E,xB
[E plvlz + Epl]‘/xl +(— l)x = [5 p2V22 + Epz]vxz +(— : ) (2.47)
0 0
or
1 5 B! B
(_ plvlz +t-pt _I)Vxl - (Vxle + Vleyl + Vlezl)_x
2 2 0 Uy
1 5 B: B
= (5 S Epz + =)WV, = (VB + V,B, + V,B ) —* (2.47a)
0 0

Nonlinear solutions that satisfy the above jump conditions are discussed below.

Case I: 1-D Tangential Discontinuity (TD) Solutions
For V,=V,=0 and B =0, conditions in Eqs. (2.41)~(2.43) and (2.45)~(2.47) are

automatically fulfilled, and Eq. (2.44) can be simplified as

2 B2 B2
pl+i=p2+ 12 or [p+—]=0 (2.48)
2u, 2u, 2u,

where we use B, =3B, +ZB_ to denote the tangential magnetic field. The notation [A]
denotes [A]=A,-A,. Nonlinear structure, which satisfies Eq. (2.48), V,=V,=0,
B =0, but with B, =B,,, is called| Tangential[Discontinuity (TD) in MHD plasma. The

tangential magnetic fields on two-sides of a TD are different either in their magnitude and/or

in their direction.
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Let V, =3V, +2V_ denote the tangential velocity field. [V,] can be zero or non-zero.

Strong velocity shear (i.e., [V,]=0) on two-sides of a TD may lead to Kelvin-Helmholtz
(K-H) instability, which will be discussed in Chapter 4. If there is a large angle between
B, and B, atearing mode instability may take place in the TD layer and result in magnetic

reconnection.

In summary, the MHD TD satisfies the following jump conditions

V. =0 (2.49a)
B =0 (2.49b)
2
[p+——]=0 (2.49¢)
2u,
[B,]=0 (2.49d)

In contrast, the tangential discontinuity in the classical gas dynamics satisfies the following

jump conditions

V. =0 (2.50a)
[p1=0 (2.50b)
[V,]=0 (2.50¢c)

Case II: _1-D Contact Discontinuity (CD) Solutions
For V,=V,=0 but B =0, Egs. (2.40)-(2.47) yield the jump conditions of Contact

Discontinuity (CD) in the MHD plasma. The jump conditions of the CD are summarized

below.

V. =0 (2.51a)
B, =0 (2.51b)
[V.]=0 (2.51¢)
[B,]1=0 (2.51d)
[p]1=0 (2.51e)
[p]=0 (2.511)
[T]=0 (2.51g)
[S]1=0 (2.51h)
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where S is the entropy of the equilibrium plasma.

Case III:  1-D Perpendicular Fast Shock Solutions
For V, >0 and B, =0, and let

Py Yo\ P,

pl Vxl pl

Egs. (2.40)-(2.47) yield

=l (2.52)
B

So_B, B, _B _ _1 (2.53)
Byl le le Bl y

and

[V]=0 (2.54)

If we choose the normal incident frame (NIF) such that V, =0, Eq. (2.54) yields V,, =0.
Egs. (2.44) and (2.47) becomes

2M§1+/3’1+1=2M§1y+/31z+i2 (2.55)
y

5 5 2
M3+ =B +2=(Myy + = fz+—5)y (2.56)

2 2 y

2
where M}, = ZV“ , B, = zpl .
B u,p, B 12u,

Exercise 2.6
Solve Egs. (2.55) and (2.56) to obtain y and z in terms of B, and M,,. Choosing

three different [, plot y as a function of M,,.

For V, >0 and B, =0, we can multiply Eqgs. (2.45) and (2.46) by B‘; . The resulting
o

X

equations are

B’B B’B

BV, -—2 =BV, -2 (2.57)
! [INAS 2 UoP,V,s
B’B B’B
BV,-——- =BV, - —— (2.58)
[INAS U5V,

Subtracting Egs. (2.42) from (2.57) yields,
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B! B!
VB, (1-—"=)=V,B ,(1-———) (2.59)
HoPrV U032V 12
Summation of Egs. (2.41) and (2.58) yields,
B’ B’
VuB.l-—5)=V,B,(1-—"—) (2.60)
0PV a1 U2V,
2 2
’ Vi » V5, .
Let My, =—-+ and M}, ,=——"—.Egs. (2.59) and (2.60) can be rewritten as
B, /u,p, B, /u,p,
1 1 ,
VB, (1- m) =V,B,,(1- m) (2.59Y
1 1 ,
VB, (1- m) =V,B,,(1- m) (2.60"

Egs. (2.59") and (2.60") yield the following five types of solutions

Case IV: M; =1, M;,=1,and [B,]=0. It leads to the rotational discontinuity solutions.
Case V: M, =1, M;,=1,and B, =0.Itleads to the switch-off slow shock solutions.

Case VI: M; =1, M,,=1, and B, =0. It leads to the low-beta low-Mach-number
switch-on fast shock solutions.

Case VII: B, =0, M; =1 and M;,=1 but B, =B, =0. It leads to gas-dynamic-like
parallel shocks, including high Mach number fast shock solutions and low Mach number
slow shock and intermediate shock solutions.

Case VIII: B =0, M, =1, M;,=1, B, =0 and B,,=0. It leads to oblique shock

solutions, including fast shock, slow shock and intermediate shock solutions.

Co-planarity Condition of Oblique Shock Solutions
For M =1 and M, , =1, Egs. (2.59") and (2.60") yield
B B.

Byl B—‘z (2.61)

zl z2

Since e (B, xB,)=B,B,,-B,B,,, Eq. (2.61) yields e -(B,xB,)=0. That is the shock

normal direction, —e_, and the upstream and downstream magnetic fields are co-planar.

The de-Hoffman Taylor Frame

For V>0 and B_=0, Eqgs. (2.41) and (2.42) allow us to choose a moving frame such that
V,//B, and V,//B,. Namely, E,=E ,=0. This moving frame is called the

2-10
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de-Hoffman-Taylor frame (dHTF). For convenience, we shall discuss the jump conditions

of Cases IV~VIII based on the de-Hoftman-Taylor frame.

Case IV: 1-D Rotational Discontinuity (RD) Solutions

For M; =1 and M, =1, we have

Vi=Blltp,

Ve =B luyp,

X

Substituting Egs. (2.62a) and (2.62b) into Eq.

de-Hoffman-Taylor frame, E, =E, =0. Ityields

Pr=pP,=p
Vxl =Vx2 =Vx =in/ Aqu
B
Vy==—=~
VYo P
B
V,=x—=
o0
2 B>
Pt L= Pyt 2
0 2u,
B2 2
PS5, BLS,

(2.40)-(2.47),

(2.62a)
(2.62b)

and choose the

(2.63)
(2.64)

(2.65a)

(2.65b)

(2.66)

(2.67)

Egs. (2.66) and (2.67) yield p,=p, and B, =B,,. A nonlinear structure, which satisfies

Egs. (2.62a)-(2.67), but with B, =B ,, is called Rotational Discontinuity (RD). The jump

condition of RD is summarized below:
B =-B =0

V. =«B_/4/u,p >0

V ==+ B,
HoP

[p1=0

[V.1=0

[p]1=0

[B,]=0

but

[B,]=0

2-11
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(2.68¢)

(2.68d)
(2.68¢)
(2.68f)
(2.68g)

(2.68h)
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It can be shown that entropy across an RD is constant. Therefore, structure of RD can be

studied using the pseudo potential method discussed in Chapter 3.

Case V:  1-D Switch-Off Slow Shock Solutions

M: =1, M;,=1,and B, =0.

Case VI:  1-D Switch-On Fast Shock Solutions
M;, =1, M;,=1,and B, =0.

Anl

Case VII: 1-D Gas-Dynamic-Like Parallel Shock Solutions
B =0, M; =1 and M;,=1 but B, =B, =0.

Case VIII: 1-D Oblique Shock Solutions (Satisfy the Co-Planarity Condition)
B, =0, M; =1, M,,=1, B, =0 and B, =0 yields e, -(B,xB,)=0. That is the shock

normal direction, —e_, and the upstream and downstream magnetic fields are co-planar.

For simplicity, we shall choose a coordinate system such that B, =B ,=V =V, =0, and

the de-Hoffman-Taylor frame such that E, =E,, =0. The jump conditions of Case VIII
(and Case V) can be obtained from Egs. (2.40)~(2.47).

B
Let &=x, &=y, &=z, and for B, =0, let —*=u
Py Vi P B,

(240)=> B, =B, =B,

B
Vzl = Vxl le
(2.41)9 Ey1 = Ey2 =0= Vxlel - Vlex = szBZ2 - szBx =0= Bx (2.69)
VZZ = Vx2 Bzz

(2.42)9 0-0=0-0

(2.43)=> xy=1
B’ B’
plvx21 +p+ = p2Vx22 +P,t 27&
(2.44)> Ho e Ho
b
2u,

2 - 2 2 2 2
2M, + B, +sin" Oy, =2M vy + Bz +sin” Oy u” =
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z=1+ ﬁl[zMj,(l — )+ (1=cos’ 0,1 - u?)] (2.70)
1
(2.45)=» 0-0=0-0
B B B B
(246)2> pV,V, -——=pV,V,-—* = (using Eq. (2.69) to eliminate V, and V,,)
Uy Uy
B, BB, B, BB, _
PV V== L=p,V,V,—* :
Bx Mo Bx MO
B B B B
B (plv V -——)= Bz2 (p2vx2vx2 - L) =
Uy Uy
1 1
1- = u=
Mfz\nl (y Minl)
- Ml
u= —i‘”‘ ’ (2.71)
y- M2

(Note that for Case V, B,, =0, M} =1,

zl

1 E, x 5 E,xB,
(247> [2P1V2+ plVy+(—— 1) =15 P2V2+ S PV L e

0 Uy

1 5 1 5
[Epl(vle +Vz?)+_pl]vxl = [_p2(V +V2)+ 2p2]Vx2 =

1 5 5
AT R ARLE TN S
1 B 5 1 B 5 B’
V3oL Vi p V|
pl Bx 2 pz Bz 2[92 x2 VxlBl4 24,
2 5 2 2 .2 322 5 2
M, +—f,cos” Oy, = My (—5) + = ,cOs” Oy 2y (2.72)
2 B 2
where
2 B2 B2
% - % = 08> 6, +sin’ 0, 1” = 1’ +cos” 0y, (1- u?) (2.72a)
1 1

Exercise 2.7
(a) Show that Egs. (2.70)~(2.72) yield the following equations for y:
A=y’ +ay*+by+c)=0
(b) Determine the coefficients a, b, and c.

(c) Choosing different 3, and 6,,,, plot y asa functionof M,,.
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The solutions obtained in Exercise 2.7 are for 0°<6,,, <90°. Only solutions with
increasing entropy are acceptable solutions. When applying the solution of Exercise 2.7 to
the case 6,,, =90°, it gives one additional root, y =0. Ityields x — oo, thus it is certainly
not an acceptable solution. When applying the solution of Exercise 2.7 to the case
0,5, =0°, it gives one root y=1/M =cos’0@/M;,. This solution is the switch-on shock
solution when the upstream plasma beta and Mach number are low enough. For higher
plasma beta and Mach number, this solution yields BZ, <0, thus it is not an acceptable

solution in high Mach number parallel shock.

Parallel Shock
For parallel shock, B, =0.

Let &=x, V"2=y, &=z, and &=w
O Vi y2 B,
(240)=> B, ,=B,=B =B,
V,=0
2.41)=> B B 2.69'
( ) V72 = sz 2 = sz 2 ( )
i Bx Bl

(2.42)% 0-0=0-0
(2.43)=> xy=1

2
z2

Y 2M§1+/31 =2M§1y+/31z+w2:>

plvx21 +p = pzvxzz +p,t

2.44)>
(2.44) B

24,
z=1+ﬁi[2Mjl(1—y)—w2] (2.70"

1

(2.45) 0-0=0-0

B B B B . ..
(246)2> pV, Vv, -——=pV,V,-—* = (using Eq. (2.69) to eliminate V, and V,,)
Uy Uy
B BB
0=pViV,, -
B, Uy
B2
0=B,(pV,V, Yo -—)=
a Mo

2-14



Nonlinear Space Plasma Physics (I) [SS-8041] Chapter 2 by Ling-Hsiao Lyu 2008 Fall

1
Mz)

Al

0= Bz2plvx21(y -

Since p,V; >0, it yields

1
(a) y= (2.71a)
M,
(b) B,=0 ' (2.71b)
1 E, x E, xB
QA [=pV’+= p,]v + (= 1) —[ p2V2 += pZ]V + (22 =
2 Uy Hy
1 5 1 5
[Epl(vfl) + Epl]vxl = [EpZ(VSZ + VZZZ) + EPZ]VXZ =
1 5 1 B, 5
[5 prle + Epl]vxl = [5 pzvxzz(l + B_zlzz) + Epz]vxz =
5 5 1
V>4 1+ w?)+= _ =
[ PV 2p1 pz x2( ) pz r2:| VIB]2/2MO
2 5 2 .2 2 5 '
Mm+5ﬂ=ﬂgyﬂ+w)+5ﬂ@ (2.72"Y

Switch-on Shock : ‘Bﬂ =0 and y= l/Mj]‘

Substituting Egs. (2.70") and (2.71a) into (2.72"), it yields

5 1 5
Mjl+5ﬁl =M§1 3 (1+W2)+5 3 [ﬁ]"'2ZM§1(1_)’)_VV2]=>

Al Al

5 5
My, +5/a’1Mi1 =1+ w2>+5[ﬁ1 +2M2 -2 -wi =

5 5 3
jl+5[3’1Mj1=5[3’1+5M§1—4—5w2:>
g8 2
W= o 2l 2 - M)+ M

Only a limited range of M3, and B, canyield w?>0. Itcan be shown that, for M, >1,

w20 +§/31(1— M:)>(M;, -D)(M;, -4)=

5
M§1 <4_5ﬁ1

For f3, =0, it yields the switch on shock can be found when 1< M, <2

2

For M} >1, it yields % B, <1 or g B, = C—gl <1 is one of the necessary conditions for the
Al
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existence of the switch-on shock solution. Namely, there is no switch-on shock solution if

2 2
Cg, >Cy,.

Gas-Dynamic-Like Parallel Shock:

B,=02w’=0
Q2.70N=> z=1+ ﬂi[zMj,(l -1, (2.70™)
1
[} 2 5 2 .2 5 "
(272> M, + 5/3’1 =M,y +5/51zy (2.72")

Substituting Egs. (2.70") and into (2.72"), it yields

5 5
an +5ﬁ1 = Mi1y2 "'5)’”51 +2M§1(1_)’)]:>
2 N 2
M, (1-y )+5(l—y)[31 -5M, (1-y)y=0=

5
M§1(1+ )’)"'5/51 _5M1-2x1y =0=

o 5
For y <1, ityields gﬁ1<M§1 or V,>Cg

Substituting y = 1 + 5P ~- into equation (2.70"), it yields
4 8 M,
Y
2 B 4

The solution of Case VI and Case VII are summarized below
Case VI:  1-D Switch-On Fast Shock (Low-Mach Number Parallel Fast Shock)
B, =0, B,=0, M; =M; =1, M;,=1,and B, =0

Anl

V, 1
y Vxl Mjl
1<M; < 4—§ﬁ1
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5 10
wo= =____M:1+§/31(1_Mil)+?Mi1

e=22 214 L2 - y)-w?)
P By

Case VII: 1-D Gas-Dynamic-Like Parallel Shock
B =0, B,=B,=0, M, =M; =1,and M;, =M, =1.

Anl
Vx2 1 5 /51

= — 4 — 2
V, 4 8M,

y =
B2

w? = Bzzz
1
[B]=[B,]1=0

=0

P _3M; 1

n 2B 4

5
gﬁ1 < Mjl or V,>Cy

Let us define the curves y=(1/4)+(5/8)(B,/M3,) and y=1/M; to be Curves I and II,
respectively. The intersection of the two curves is located at M;, =4 -(58,/2). For
Curve I, solutions on the right-hand side of the intersection point correspond to the fast shock
solutions. Solutions on the left-hand side of the intersection point include the slow shock
solutions and the intermediate shock solutions. For Curve II, solutions on the right-hand
side of the intersection point are unacceptable solutions. Solutions on the left-hand side of the
intersection point are the switch-on fast shock solutions. (See Figure 2.3a) The intersection

point does not exist when C,, >C,,.

It can be shown that solutions obtained from Egs. (2.70)-(2.72) include fast shock, slow
shock, fast-Alfven-slow shock, fast-Alfven shock, Alfven shock, and Alfven-slow shock.
Definition of these shocks are given in Table 2.1 and Figure 2.1, where V,,,, V,4,,and Vi,
are upstream fast-mode speed, Alfven-mode speed, and slow-mode speed, respectively.
Viwns Vaxs» and Vi, are downstream fast-mode speed, Alfven-mode speed, and slow-mode
speed, respectively. Examples of solution space of intermediate shocks (i.e.,
fast-Alfven-slow shock, fast-Alfven shock, Alfven shock, and Alfven-slow shock) are shown

in Figure 2.2. Examples of solution y=V_,/V, as function of upstream Mach number
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M, is given in Figure 2.3. Jump conditions obtained from Egs. (2.40)~(2.47) are also

called Rankine-Hugoniot (R-H) relation.

Table 2.1 Upstream and downstream normal flow speed of MHD shock waves

Shock Brief Upstream Downstream
Types Notations Flow Speed Flow Speed
Fast 1 -2 Vi1 < Vm Vaxa < VN2 < Vps
Fast-Alfvén 1-3 VrE1 < Vi Vsio < Vya < Vaxa
Fast-Alfvén-Slow 1 —4 Vr1 < Vni VN2 < Vs
Alfvén 2953  Vax1 <Vni<Vp1 Vso < Vya < Vaxa
Alfvén-Slow 254 Vaxi < Vi1 <Vp Vo < Vs
Slow 34 Vs <Vni < Vax VN2 < Vsia

Vw1 is the normal upstream flow speed in the shock rest frame.

V2 is the normal downstream flow speed in the shock rest frame.
Brief notations are obtained based on upstream and downstream states
of each shock and the corresponding areas shown in Figure 2.1.

4
@Cs>Cs (B (b) Gy <Cg B

=B

Figure 2.1 Friedrichs’ diagrams of MHD waves with (@) C4 > Cs and (b) C4 <
Cs. The Friedrichs’ diagram displays the dependence of three MHD wave phase
speeds (radial coordinate) on their angle of propagation with respect to the ambient
magnetic field (the angular coordinate measured from the vertical axis). MHD shock
waves can be found with upstream state in areas 1, 2, and 3 and with downstream
state in areas 2, 3, and 4 as listed in Table 2.1.
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(V, cos 6)/C, (upstream)

40
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Figure 2.2 Solution space and velocity contrast across the intermediate shock in
Friedrichs’ diagram format for a 8 = 0.1 plasma. These diagrams are reproduced from
Kennel et al. [1989], where diagrams (b) and (d) are plotted in an expended scale of
diagrams (@) and (c), respectively. 6 denotes the shock normal angle. Notations Cr,
Cr, and Cy, are the same as notations Vg, Vax, and Vs, used in this chapter. Notations
1 53,1 54,2 — 3 and 2 — 4 are the same as defined in Table 3.1. Thus, the
solution space shown in diagrams (a) and (b) denotes a smooth transition from fast-
Alfvén shock to Alfvén shock. The solution space shown in diagrams (c) and (d)
denotes a smooth transition from fast-Alfvén-slow shock to Alfvén-slow shock.

[Kennel, C. F., R. D. Blandford, and P. Coppi, MHD intermediate shock discontinuities. Part
1. Rankine-Hugoniot conditions, J. Plasma Phys., 42, 299, 1989.]
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(a) Bgn=0° (b) BgN=20° (C) Opn=45°
A B A BC A B C
— ¢ T T
Z & .
= . ®E
Z . '
> el F H s
a D E
BE: fast shock CH: fast shock CF: fast shock
AC: slow shock AD: slow shock AD: slow shock
BD: switch-on fast shock GF: fast-Alfvén shock BE: Alfvén shock
CD: fast-Alfvén-slow shock EF: fast-Alfvén-slow shock|| DE: Alfvén-siow shock
BG: Alfvén shock
DE: Alfvén-slow shock
1 ] ] ] ]
1 2 3 40 1 20 1
Vni/ Ca Vai/ Ca Vni/ Ca

Figure 2.3  Velocity jump across various types of MHD shocks for 8 = 0.1, fpy =
(@) 0°, (b) 20° and (c) 45°, where Vy; and Vy, are the upstream and downstream
normal flow speed in the shock rest frame, respectively.

Exercise 2.8
Let y=V,/V, B =p,/(B}/2u,), obtain jump conditions of y as a function of M, for
different 6,,, and f,.

Consider the following cases:

(@pn1-B)) = (0°,0.1),(20°,0.1),(45°,0.1),(15°,2),(75°2) .
Plot solutions V,/V., p,/p,» p/p» By/By S,=S8,, VilViiis VilVieis ViV,

Vol Visss Vol Visss VoIV, , as functions of M,, for each case and determine solution
types to be fast shock, or slow shock, or Alfven shock, or Alfven-slow shock, or
fast-Alfven shock, or fast-Alfven-slow shock, or any other type of solutions. Compare

your results with solutions shown in Figure 2.3.
Example 2: Plasma boundary condition with non-zero heat flux and anisotropic pressure
Jump conditions of RDs and Shocks can also be generalized to include both

pressure-anisotropy and heat-flux effects.

P =bbp, + 1-bb)p,

In this example, we assume that
at both upstream and downstream boundaries (2.73)
where b=B/B denotes the unit vector along the local magnetic field. By definition, the

scalar pressure is
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1 1
p= gtrace(P) = g(pII +2p)) (2.74)

For convenience, we shall define an anisotropy parameter

b—-P
=1- 2.75
g-1-fo (2.75)
Substituting Eq. (2.75) into Eq. (2.73) yields,
P=1p +(- E)E at both upstream and downstream boundaries (2.76)
Uy
Solving Egs. (2.74) and (2.75) yields,
1 B’
po=p--(1-85— (2.77)
3 Uy
and
B’ 1 B
Pit—=p+ (§+ )— (2.78)
2u, 2y,
Substituting Egs. (2.76) and (2.38)~(2.40) into Egs. (2.32) and (2.33) yields
BZ
—(pV)+v [PVV+1(p, + 2y BB 2.79)
2u, Ho
2 2 2 2
i[pV +3—p+B— +V'[pv +3p+B—)V —EE-V+q]=O (2.80)
at 2 2 2u, 2 2w Uy
or
2 2 2 2
OGPV 3P 2mS B g Y 3P 35 By eBB vy -0 (2.81)
at 2 2 2 U, 2 2 2 u, U,
Substituting Eqgs. (2.77) and (2.78) into Egs. (2.79) and (2.80) yields
J 28 +1 32
2 pV)+ V- [pVV+1(p+ 2= 2" 28 2.82)
at Uy
2 2 2
LA R [(lpv2+§ 25580y BBy q-0 (2.83)
at 2 2 2u, 2 2 3 U U,

Integrating Eqs. (2.79) and (2.81) from upstream to downstream, under one-dimensional

steady-state assumption, yields

B2 Bz B B
| szl +(p+ ) - =P, sz +(p,+ 5, —)-§,— (2.84)
0 ‘uo Uy 20
BXB}2
§l = p2 Vx2v\2 52 (285)

0 Uy
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B B B B
lelel - §1 i = P> szvzz - 'f::z —= (2~86)
0 W,
2 VB, +V,B +V,B,
(p1V1 + 5p¢1 3- 51 -E, xl 2l Bx +q.,
2 2 2 Uy
2 VB, +V,B,+V,B,,
_(PVa  dpn | 3 £ B, Zoyy g, 2B.+q., (2.87)
2 2 2 m
According to Egs. (2.82) and (2.83), we can rewrite Egs. (2.84) and (2.87) in the following
forms.
2E +1 B2 28 +1 B2 B?
pViep st B B pyoy ), 20tlB o B (2.84)
2u, T W 30 2y, uo
2 2 VB, +V,B, +V B,
(%J,%J,MB _g 2Zip g
2 2 3 U,
2 2 V.B +V_B.,+V_ B
— (pZVZ + 5p2 + EZ +2 BZ )V\2 62 X277 x y27y2 22772 Bx + q., (287!)
2 2 3 y

For V:=&B/u,p, and V> =&,B}/u,p,, RD type of solutions can be obtained from Egs.
(2.41)~(2.43) and (2.84)~(2.87). Likewise, for V=& B>/u,p, and V) =& B’ /u,p,,
shock type of solutions can be obtained from Egs. (2.41)~(2.43) and (2.84)~(2.87') with three
vectors, shock normal n=-x, upstream magnetic field B,, and downstream magnetic field

B,, lying on the same plane.

Exercise 2.9
Read the following papers. Derive RD and Shock jump conditions shown in these papers

from Eqgs. (2.41)~(2.43) and (2.84)~(2.87") with anisotropic pressure and non-zero heat

flux.

Chao, J. K., Interplanetary collisionless shock waves, Rep. CSR TR-70-3, MIT Center for
Space Research, Cambridge, Mass., 1970.

Chao, J. K., and B. Goldstein, Modification of the Rankine-Hugoniot relations for shocks
in space, J. Geophys. Res., 77, 5455, 1972.

Hudson, P. D., Discontinuities in an anisotropic plasma and their identification in the solar
wind, Planet. Space Sci., 18, 1611, 1970.

Lyu, L. H., and J. R. Kan, Shock jump conditions modified by pressure anisotropy and heat
flux for Earth’s bowshock, J. Geophys. Res., 91, 6771, 1986.
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Exercise 2.10
Give a few examples to demonstrate modifications on jump conditions of shocks and RDs,
due to presence of pressure anisotropy and non-zero heat flux at upstream and downstream

boundaries.

Exercise 2.11
Show that for a perfect bi-Maxwellian distribution function, its pressure tensor can be

written as P =bbp, + (1- bb)p, but with zero heat flux (i.e., q=0).

Exercise 2.12

Make a table to summarize jump conditions obtained in Sections 2.1 and 2.2.

2.3. Kinetic Jump Conditions

In fluid jump conditions, ion-electron temperature ratio, pressure anisotropy, heat-flux
difference, or potential difference are free parameters. In kinetic jump conditions, these
parameters must be obtained self-consistently from steady-state Vlasov equations with

V = x(d/dx).

Let us consider the simplest example: ES nonlinear structure in unmagnetized plasma. For

1-D electrostatic nonlinear waves, Poisson equation can be written as

2
Cciz’x? = 8—12feaFadvx =-e(n;—n,) (2.88)
0 «a

where F,=F, (v x)= f f JfaWsvysv,x)dv dv. and f, is distribution function of the ath

species. Let F, satisfies electrostatic steady-state Vlasov equation, i.e.,

y oF _e_adCD(x) JoF,

e 0 (2.89)
dx m, dx Jv,
Solution of Eq. (2.89) is
F, = F,(* + 2220, (2.90)
m

o
where m,v? +2e,P(x)=constant is a characteristic curve of Eq. (2.89). Distribution

function F, which satisfies Eq. (2.89), keeps a constant value along a characteristic curve.
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For a given ®(x) profile, the characteristic curves in the phase space (x,v ) are well

determined.

Case 1 Case 2

() D(x)

***********  CEEEEE - > --)- ””f”f”f:mevxz—Ze(I)(x)
‘x\ I/  contours

Vx| % C Vy D\ ' constant

constant
MiVy2+2ed(X)
contours

constant

—— () = "o e eenn
—\/j —L contours

constant
mivX2+2e<I>(x)
contours

Figure 2.4 Sketches of ®(x) profiles and the corresponding characteristic curves

my_ +2e®(x) = constant and m,v> —2e®(x) = constant in phase space (v,.x). See text

for detail discussion.
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Figure 2.4 sketches examples of ®(x) profiles and the corresponding characteristic curves
my> +2e®(x) =constant and m, v —2e®d(x) = constant in phase space (v ,x). They are
three types of characteristic curves. Type-I characteristic curves (black curves) connect
upstream and downstream boundaries. These curves denote trajectory of transmitted
particles. Type-II characteristic curves (red curves) connect from one part of velocity space
back to another part of velocity space at the same boundary. These curves denote trajectory
of reflected particles. Type-III characteristic curves (blue curves) form an island in the

phase space. These curves denote trajectory of wave-trapped particles.

Let x — -0 denotes upstream boundary and x — +o0 denotes downstream boundary.
For one-dimensional steady-state structure with uniform boundary conditions, Poisson

equation yields zero charge density at both upstream and downstream boundaries. Namely
[F(x =+ )dv, = [F,(x =+, )dv, (2.91)
[F(x—=-0p)dv, = [F,(x ==, )dv, (2.92)
For one-dimensional steady-state Ampere’s law, Eq. (2.12) yields zero electric current
density. That is

fvxFl.(x,vx)dvx = fvxFe(x,vx)dvx (2.93)

It can be shown that particle flux is conserved along each characteristic curve. Thus, if
boundary distributions satisfy Eq. (2.93) then the entire system shall satisfy Eq. (2.93).

Thus, for kinetic jump conditions, we look for boundary conditions that satisfy Egs. (2.91),
(2.92), and satisfy

fvxFi(x — 40,y )dv, = vaFe(x — 40,y )dv, (2.94)
fvxFi(x — -0,y )dv, = vaFe(x — -0,y )dv, (2.95)
Egs. (2.90), (2.91), (2.92), (2.94), and (2.95), are kinetic jump conditions of ®, F, and F,.

It can be seen from Figure 2.4 that overshoot or undershoot structure on ®(x) profile can

affect solution of the jump conditions.

Since ion-electron temperature ratio, heat flux, and pressure anisotropy can be obtained from
F, and F,, jump conditions on these quantities become well determined. The assumption
of Maxwellian distributions at upstream and downstream boundaries, commonly used in fluid
jump conditions, can make one characteristic curve of F, with different F, values at two

ends of the curve.  Thus, to satisfy the assumption of Maxwellian distributions at upstream
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and downstream boundaries may require a highly time-dependent transition region.

Kinetic jump conditions given in Egs. (2.90), (2.91), (2.92), (2.94), and (2.95) are applicable
to electrostatic contact discontinuities and low Mach number ES shocks. For very high
Mach number shocks, turbulent structures in shock transition region usually show strong
time-dependent variations. For time-dependent turbulent transition region, particles’
trajectories may switch between the ones shown in Cases 1, 2, and 3. The final destination
of a particle will depend on the structure of ®(x,7) in the transition region when this particle
arrives the shock transition region. Thus, even if ®(x —-») and P(x — -x) are static,
we still cannot make a perfect prediction on particle trajectories nor distribution functions at

upstream and downstream boundaries.

Application of the kinetic jump condition discussed in this section is particularly useful when
we try to determine plasma jump condition of a contact discontinuity. It can be easily
shown from Figure 2.4 that if there is a potential jump across a CD, then ion-electron
temperature ratio at upstream boundary should not be the same as it at downstream boundary.
This result predicts that, for a given ion-electron temperature ratio on both upstream and
downstream boundaries, no steady contact discontinuity can be found in a full-particle-code

simulation.

Exercise 2.13
Read the following papers, which study CDs’ structures by means of plasma simulations.
Show that the initial conditions and boundary conditions used in their simulations do not

satisfy the kinetic jump condition of a steady-state contact discontinuity.

Wu, B. H,, J. K. Chao, W. H. Tsai, Y. Lin, and L. C. Lee, A hybrid simulation of contact
discontinuity, Geophys. Res. Lett., Vol. 21, No. 18, pp. 2059-2062, 1994.
Lapenta, G., and J. U. Brackbill, Contact discontinuities in collisionless plasmas: A
comparison of hybrid and kinetic simulations, Geophys. Res. Lett. Vol. 23, No. 14,
pp. 1713-1716, 1996.
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