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[11 Kelvin-Helmholtz (K-H) instability triggered by a jet flow along a
magnetohydrodynamic (MHD) tangential discontinuity (TD) is studied by means of the two-
dimensional MHD simulations. In addition to the vortex structures and the undulant surface
waves, we also found fast-mode and slow-mode Mach-cone-like plane waves at the
saturation stage of the jet-flow-associated K-H instabilities. Fast-mode Mach-cone-like
plane waves are launched in pairs from the ridges of the surface waves when the fast-mode
Mach numbers of the surface waves on both sides of the jet flow are greater than one.
Slow-mode Mach-cone-like plane waves are found for the first time in a limited
range of Mgy ,, 0o, and 3y, where Mg, is the slow-mode Mach number of the surface
disturbances observed in the ambient plasma rest frame, 6, is the angle between the
surface wave propagation direction and the direction of the ambient magnetic field, and
B is the plasma 3 of the ambient plasma. The flaring angle of the fast-mode
Mach-cone-like plane wave is less than or equal to 90°, but the flaring angle of the
slow-mode Mach-cone-like plane wave is greater than or equal to 90°. A theoretical
model is proposed to explain the formation and the characteristics of the slow-mode
Mach-cone-like plane waves. The flaring angles of the slow-mode Mach-cone-like plane
waves measured from the simulation results are in good agreement with the flaring
angles predicted by the theoretical model. Applications of our results to the observations

in the space plasma are discussed.
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1. Introduction

[2] Kelvin-Helmholtz (K-H) instability, also-called veloc-
ity shear instability, is triggered by velocity shear. Simu-
lations of the K-H instability in the space plasma have been
studied extensively in the past 20 years [e.g., Miura, 1982,
1984, 1987, 1990, 1992, 1995, 1997, 1999; Wu, 1986;
Manuel and Samson, 1993; Thomas and Winske, 1993;
Otto and Fairfield, 2000; Lai and Lyu, 2006]. Most of the
simulation results showed the vortex structures and eddies.
Miura [1984] found development of slow rarefaction layers
near the eddies when the velocity shear is parallel to the
ambient magnetic field. In the simulations of the K-H
instability at the flank magnetopause, Miura [1992]
obtained a weak parallel shock in the magnetosheath when
the interplanetary magnetic field is sunward or antisunward.

[3] Lai and Lyu [2006] obtained the fast-mode nonlinear
plane waves at the saturation stage of the K-H instability
when the fast-mode Mach number of the surface wave is
greater than one. Lai and Lyu [2006] proposed a theoretical
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model based on the formation of the magnetosonic Mach
cone to explain the formation of the fast-mode nonlinear
plane wave. According to their model, the fast-mode plane
waves are generated by the constructive interferences of the
fast-mode waves, which are emitted from the ridges of the
surface waves and expand based on their group velocities.
The flaring angles of the fast-mode plane waves measured
from their simulation results are in good agreement with the
Mach angles predicted by the theoretical model. Their
simulation results and theoretical model of the supermag-
netosonic K-H instabilities can explain the sunward steep-
ened wavy structures at the flank magnetopause observed
by Chen and Kivelson [1993] and Chen et al. [1993] under
the fast solar wind condition.

[4] Since the theoretical model of the magnetosonic Mach
cone proposed by Lai and Lyu [2006] can successfully
explain the formation of the fast-mode plane waves, we
expect that a similar theoretical model should be able to
explain the formation of the slow-mode plane wave if we
could find one from the simulation of K-H instability.
According to the group-velocity Friedrichs diagram, the
distribution of the slow-mode group velocity is nearly
magnetic field-aligned, which is quite different from the
distribution of the fast-mode group velocity. Thus, we
expect that the spatial distribution of the slow-mode
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Mach-cone-like plane wave should be very different from
the spatial distribution of the fast-mode Mach-cone-like
plane wave. In this study, we will extend the theoretical
model proposed by Lai and Lyu [2006] to examine the
slow-mode Mach-cone-like plane waves found in the sim-
ulations of jet-flow-associated K-H instability.

[5] The jet-flow-associated K-H instabilities are
expected to take place near the localized high-speed
flows, since the localized high-speed flow is accompanied
by the strong velocity shear. In Earth’s magnetosphere,
the localized high-speed plasma flows have been ob-
served at the dayside magnetopause [e.g., Paschmann et
al., 1979]. In addition to the dayside magnetopause, the
high-speed flows have also been observed in the plasma
sheet. After the first systematical study of the high-speed
flows in the plasma sheet during plasma sheet expansion
by Lui et al. [1977], the high-speed plasma flows in the
plasma sheet have been studied extensively in the past
20 years [e.g., Huang and Frank, 1986; Baumjohann et
al., 1990; Nakamura et al., 1991, 2001; Angelopoulos et
al., 1992; 1994, 1996, 1999; Slavin et al., 1997; Cao
et al., 2006]. The observations showed that most of the
high-speed flows in the plasma sheet are bursty, earth-
ward, and spatially localized.

[6] The jet-flow-associated K-H instabilities have been
studied from a number of numerical simulations. Yoon et al.
[1996] have investigated the K-H instability in a dawn-dusk
localized plasma flow in the near-Earth current sheet region
by means of the Hall- magnetohydrodynamic theory and
simulation. They found pairs of compressional perturbations
propagating away from the plasma flow along the north and
south directions in the magnetotail. A kinetic simulation of
the K-H instability in a finite sized jet has been carried out
by Thomas [1995]. He obtained irregular vortex-type sur-
face waves when the jet is submagnetosonic. The jet-flow-
associated K-H instability has also been studied by means of
the hydrodynamic simulation [e.g., Norman et al., 1982;
Bodo et al., 1994, 1995; Marti et al., 2004] and the
magnetohydrodynamic (MHD) simulation [e.g., Baty and
Keppens, 2002, 2006]. Shock-like structures are found on
two sides of the jet flows when the neutral jet flow is
supersonic or the MHD jet flow is super-Alfvénic.

[7] In this paper, we study the jet-flow-associated K-H
instability at an MHD tangential discontinuity (TD) by
means of the two-dimensional MHD simulations. The
simulation model and the initial conditions are given in
section 2. Both fast-mode nonlinear plane waves and
slow-mode nonlinear plane waves are found in the
simulations of jet-flow-associated K-H instability, which
will be presented in section 3. The theoretical models that
explain the formation of these nonlinear plane waves will
be given in section 4. We summarize our results in
section 5. The applications and the limitations of our
results are discussed in section 6.

2. Simulation Model

[8] The jet-flow-associated Kelvin-Helmholtz instability
is studied by means of the two-dimensional MHD simu-
lations at a tangential discontinuity (TD). The simulation
code is written based on the second-order Lax-Wendroff
scheme. The basic equations used in the simulation are the
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ideal MHD equations, which can be written in the following
form.

0
7p+v.

LV (pV) =0 (1)

0 BB B?
el . Vo —— — ) = 2
5 (pV)+V (pV /1/0) + V(p + 2#0) 0 (2)

o(1 , 3p B

2 2p
(L5 By BBV
{<2pV+2+ﬂo)V Ho }70 ®)
%—?:VX(VXB) (4)
V-B=0 (5)

where B, p, V, and p are the magnetic field, the plasma mass
density, the plasma bulk velocity, and the plasma thermal
pressure, respectively. The MHD Ohm’s law E+V x B=0
has been used to eliminate the electric field in the Faraday’s
law (equation (4)) and in the energy equation (equation (3)).
[9] In our two-dimensional simulations, all the physical
quantities are assumed to be uniform in the z direction, i.e.,
V = x(0/0x) + y(0/dy), where the x direction is the normal
direction of the TD, and the y direction is the surface wave
propagation direction. The plane of the TD is located at x = 0.
[10] For a TD, the normal component of the background
magnetic field is equal to zero, i.e., By, = 0. A hyperbolic
tangent function is used to set up the transition of the
background equilibrium states across the TD. That is,

_ Aoz +Ao1 Aoz — Aot

R tanh(wi/s) (6)

where Ay(x) denotes the equilibrium state Bo,(x), Bo-(x), or
po(x), and w is the width of the transition layer of the TD.
We choose w to be the normalization length in our
simulations. Variables with subscripts “1” and “2” denote
the equilibrium states at x < 0 and x >> 0, respectively. The
jet flow is also located at x = 0 with a width w;. The
direction of the jet flow is along the y direction.
The background equilibrium velocity field Vy(x) is given by
VO(x) = VOy(x)y

where V, is the speed of the jet flow at x = 0. In order to
keep the jet-flow-associated surface disturbances propagat-
ing at a relatively constant speed, we choose the width of
the jet flow, w;, to be at least three times wider than the
width of the transition layer, w. For convenience, we shall
call the uniform medium on the left-hand side and right-

Ao (X)
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Figure 1. A sketch of the spatial profiles of the back-
ground equilibrium states used in this study. The thick curve
denotes the profile of 4y(x), which can be By, (x), Bo-(x), or
po(x). The thin curve denotes the profile of Vy,(x). The
vertical dashed line indicates the location of x = 0.

hand side of the jet flow the region 1 and region 2,
respectively. Namely, the region 1 is approximately the
region with x < —(w; + w)/2 and the region 2 is
approximately the region with x > +(w; + w)/2.

[11] Figure 1 is a sketch of the profiles of the background
equilibrium states. The thick curve denotes the profile of
Ao(x). The thin curve denotes the profile of Vy,(x). The
vertical dashed line indicates the location of x = 0

[12] Since the total pressure, i.e., the sum of the thermal
pressure and the magnetic pressure, is uniform across the
TD, we choose the initial background thermal pressure po(x)
to be

Polx) = por + B /209 — [BS,(0) + BL()| /200 (8)

The simulation is performed in a simulation box L, x L, =
100w x 50w. The grid size is chosen to be A, = A, = 0.25w.
A uniform boundary condition (0/0x = 0) is imposed at x =
+50w. A periodic boundary condition is imposed at y =
£25w. An initial velocity perturbation, ov = év,X + 0wy,
which satisfies V - v = 0, is applied to the transition layer
of the TD at ¢ = 0, where 6v, and 6v, are chosen to be

Sva(r,y) = —§vosech( /3> sm(27?}) )

6v}(xy)76voz3isech< /3>tanh( /3) (22) (10)

[13] As we can see, the initial perturbation is periodic
along the y direction but localized in the x direction around
x = 0. The wavelength of the periodic perturbation is A,. The
peak amplitude of the initial velocity perturbation is 6vy. We
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choose A, = L,/4 = 12.5w and évy = 0.001 Vjy in all the
simulation cases presented in section 3.

3. Simulation Results

[14] Twenty of our simulation results are listed in Table 1
and Table 2. Table 1 shows the equilibrium states and the
simulation results. The normalization constants V,, B,, pq,
and p, sat1sfy the following relations V, = B,/,/H,yp, and
Pa = B22419. The angles 0y, and 6y, listed in Table 1 are
the angles between the y axis and the background mag-
netic field By; and B, respectively. The values of 3, and
By, listed in Table 1 are defined by poi/(B31/2110) and poo/
(B52/2110), respectively. The phase velocity of the surface
waves is Uy, where U, can be measured from the
simulation results. The relative speeds U, — Vo, and
Uy, — Voo listed in Table 2 are the phase speeds of the
surface wave observed in the region 1 and region 2 plasma
rest frames, respectively.

[15] Before we introduce the Mach numbers to be used
in this study, we shall first introduce three MHD wave
modes that propagate along the y direction. The phase
speeds of the three wave modes are the slow-mode wave
speed Cgyg,, the intermediate-mode wave speed Cp,, and
the fast-mode wave speed Cpy,. Their magnitude can be
determined by

1 2
C§L0y =3 {C/Zw + Cgo - \/(Cio + Cfvo) _4C310C§0 cos? 90}

(11)

C120y = (By cos 90)2/,“0%’0 (12)

1
Clszy ) {Cjo +Cs + \/(Cﬁo + C§0)2*4C§0C§0 cos? 00}
(13)
where C5o = Bi/t10po, Cso = Ypo/po, and v = 5/3. The Csy

and C,, are the sound speed and the Alfvén speed of the
equilibrium state, respectively.

[16] The Mach numbers of the surface wave listed in
Table 2 are defined by

M§L0y1 = (Usy - VOyl)z/C_%wyl (14)
M_Sz'LOy2 = (Usy - V0y2)2/ C_%L()yz (15)
M120y1 = (Usy - VOyl)z/Cfoyl (16)
M120y2 = (Usy - V0y2)2/ C120y2 (17)
Méoy1 = (Usy - VOyl)z/C§0y1 (18)
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Table 1. Background Equilibrium Fields and Simulation Results
Background Equilibrium Fields Simulation Results
o Tw o sw Bu Ba
Case p, po Vo pa_ Ba  Be B0 Oy W  PBoi Por  Type

1 1 1 25 2 150 140 9° 9° 40 0.89 1.17 V

2 1 1 25 2 080 060 0° 0° 4.0 3.13 633 S
3 1 1 50 2 150 140 0° 0° 4.0 0.89 1.17 S+FP
4 1 1 33 2 150 140 0° 0° 40 0.89 1.17 S+SP

5 1 1 25 2 080 060 0° 180° 4.0 3.13 633 S
6 1 1 50 2 150 1.40 90° 90° 4.0 0.89 1.17 S+ FP
7 1 1 50 2 150 1.40 0° 180° 4.0 0.89 1.17 S+ FP
8 1 1 50 2 150 1.40 20° 20° 4.0 0.89 1.17 S+FP
9 1 1 34 2 150 140 20° 20° 4.0 0.89 1.17 S+SP
100 1 1 30 2 080 1.25 0° 180° 0.5 3.13 0.69 S +SP
1 1 1 25 2 091 083 0° 0° 4.0 240 3.80 S+SP
12 1 1 23 2 091 083 20° 20° 4.0 240 3.80 S+ SP
13 1 1 31 2 150 1.40 0° 0° 40 0.89 1.17 S+SP
14 1 1 35 2 150 1.40 0° 0° 4.0 0.89 1.17 S+SP
15 1 1 22 2 091 083 0° 0° 4.0 240 3.80 S+SP
16 1 1 24 2 091 083 0° 0° 4.0 240 3.80 S+SP
17 1 1 32 2 150 1.40 20° 20° 4.0 0.89 1.17 S+ SP
18 1 1 3.0 2 150 1.40 20° 20° 4.0 0.89 1.17 S+ SP
19 1 1 20 2 091 083 20° 20° 4.0 2.40 3.80 S+ SP
20 1 1 235 2 091 083 20° 20° 4.0 240 3.80 S+ SP

MF%OyZ = (USy - VOyZ)Z/Cg“Oﬂ (19)
The Mach numbers Mg;o,1 2, Mioy12, and Mg, » are the
slow-mode Mach numbers, the intermediate-mode Mach
numbers, and the fast-mode Mach numbers of the surface
wave observed in regions 1 and 2, respectively.

[17] Figure 2 shows the gray-level plots of the normalized
plasma density p/p, of Case 1 at # = 87.57, and the movie of
the normalized magnetic field strength B/B, at t = 0 ~
2007,, where 7, = w/V, is the normalization timescale
(auxiliary material).! Case 1 is characterized by 6y =
002 = 900, MFOyl = 04545, and MFOyZ = 0.4568. The
other parameters of Case 1 are listed in Tables 1 and 2.
Since the ambient magnetic fields on both sides of the
TD are perpendicular to the simulation plane, there is no
magnetic tension force in this two-dimensional simula-
tion. The initial perturbations are amplified by the K-H
instability. It can be seen from the movie that the
perturbations grow into pairs of vortex structures with
opposite vorticities at the saturation stage. The vortex
structure is denoted by ‘V’ in Table 1. The vortex
structures will not merge into a single big vortex, as
has been shown in previous studies [e.g., Miura, 1999].
This is because voticities of the vortex pairs obtained by
Miura [1999] are in the same direction, but the vorticities
of the vortex pairs found in the present simulation results
are in the opposite directions.

[18] Figure 3 shows the gray-level plots of the normalized
plasma density p/p, and the normalized magnetic field
strength B/B,, of Case 2 at ¢ = 507,. Case 2 is characterized
by 901 = 902 = 00, MFOyl = 08908, MFOyZ = 08343, MOyl =
1.4375, and M;,, = 1.9167. The ambient magnetic fields on
both sides of the TD are parallel to the shear flow. Since the
magnetic tension force prevents the initial perturbations
from growing into the vortex structures, the perturbations

'Auxiliary materials are available in the HTML. doi:10.1029/
2007JA012790.
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grow into S-shaped undulant surface waves at the saturation
stage. The propagation direction of the S-shaped surface
waves is along the +y direction with respect to the plasmas
in region 1 and region 2, but along the —y direction with
respect to the jet flow. The S-shaped surface wave is
denoted by “S” in Table 1. The S-shaped surface waves
can also be found when 6y, = 0° and 6y, = 180° (e.g.,
Case 5).

[19] Figure 4 shows the gray-level plots of the normalized
plasma density p/p, and the normalized magnetic field
strength B/B,, of Case 3 at ¢ = 307,. Case 3 is characterized
by 0()1 = 902 = OO, MFOyl =1.6667 and MFOy2 =1.7857. The
velocity shear of the jet flow is much higher than the fast-
mode speed of the background plasma. The initial pertur-
bations are unstable to the K-H instability. They grow into
the S-shaped surface waves, which propagate along the +y
direction in the region 1 and region 2 plasma rest frames but
along the —y direction in the jet flow rest frame. Since we
choose the wavelength of the initial perturbations to be one
fourth of the system length along the y direction (A, = L,/4),
four pairs of the nonlinear plane waves are developed from
the ridges of the S-shaped surface waves. The phase
relations between the density perturbation dp and the
magnetic field strength perturbation 6B can help us to
determine the wave mode of the plane waves.

[20] Figure 5 shows the cross section of the plasma
density and the magnetic field strength of Case 3 at three
fixed locations x = —6.0w (region 1) (Figure 5a), x = 0
(Figure 5b), and x = 6.0w (region 2) (Figure 5c) along the y
direction at # = 307,. The thin curves are the spatial profiles
of p/p,. The thick curves are the spatial profiles of B/B,,. The
two arrows in Figures 5a and Sc indicate the directions of
the background plasma flows observed in the surface-wave
rest frame. We can see steepening of the nonlinear waves on
the upstream side in both Figure 5a and Figure 5c. The
perturbations of the plasma density and the magnetic field
strength are in-phase in both region 1 and region 2. Thus,
the plane waves are the fast-mode plane waves. This type of
simulation results, which consist of the S-shaped surface
waves and the fast-mode nonlinear plane waves, is denoted
by “S + FP” in Table 1. The fast-mode nonlinear plane
waves can also be found at other 6, and (3, as long as the
fast-mode Mach number of the surface wave (Mpo,) is
greater than one (e.g., Cases 6—8 as listed in Tables 1 and 2).

[21] Figure 6 shows the gray-level plots of the normalized
plasma density p/p, and the normalized magnetic field
strength B/B, of Case 4 at t = 1007,. Case 4 is characterized
by 901 = 902 = 00, MSLOyl = 08521, and MSLOyZ = 0.7963.
Note that both Mg, and Mg, are less than one. The
initial perturbations grow into the S-shaped surface waves,
which propagate along the +y direction with respect to the
plasmas in region 1 and region 2 but along the —y direction
with respect to the jet flow. Four pairs of nonlinear plane
waves are developed from the ridges of the S-shaped
surface waves.

[22] Figure 7 shows the cross section of the plasma
density and the magnetic field strength of Case 4 at three
different locations x = —6.0w (region 1) (Figure 7a), x = 0
(Figure 7b), and x = 6.0w (region 2) (Figure 7c) along the y
direction at t = 1007,. The thin curves are the spatial
profiles of p/p, and the thick curves are the spatial profiles
of (B/B,) — ¢, where the offset constant ¢ is chosen such
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Table 2. Mach Numbers Obtained From Simulation Results

T, U Vo U T
Case 7, 7, 7, Msy0,1 M0, Mio,1 Mio.o Mo Mo
1 0.90 0.90 0.90 o0 o0 o0 [e'S) 0.4545 0.4568
2 1.15 1.15 1.15 1.4375 1.9167 1.4375 1.9167 0.8908 0.8343
3 2.50 2.50 2.50 1.9365 1.8098 1.6667 1.7857 1.6667 1.7857
4 1.10 1.10 1.10 0.8521 0.7963 0.7333 0.7857 0.7333 0.7857
5 1.15 1.15 1.15 1.4375 1.9167 1.4375 1.9167 0.8908 0.8343
6 2.60 2.60 2.60 00 00 00 00 1.3138 1.3219
7 2.50 2.50 2.50 1.9365 1.8098 1.6667 1.7857 1.6667 1.7857
8 2.60 2.60 2.60 2.3400 2.3052 1.8446 1.9763 1.5876 1.6136
9 1.10 1.10 1.10 0.9900 0.9753 0.7804 0.8361 0.6717 0.6827
10 0.90 0.90 0.90 1.1250 0.9498 1.1250 0.7200 0.6971 0.7200
11 0.77 0.77 0.77 0.8434 0.9244 0.8434 0.9244 0.5964 0.5766
12 0.75 0.75 0.75 0.9160 0.9898 0.8742 0.9581 0.6717 0.6827
13 0.95 0.95 0.95 0.7746 0.7239 0.6333 0.6786 0.6333 0.6786
14 1.23 1.23 1.23 0.9527 0.8904 0.8200 0.8786 0.8200 0.8786
15 0.83 0.83 0.83 0.9090 0.9964 0.9090 0.9964 0.6429 0.6216
16 0.75 0.75 0.75 0.8215 0.9003 0.8215 0.9003 0.5809 0.5617
17 1.00 1.00 1.00 0.9000 0.8866 0.7095 0.7601 0.6106 0.6206
18 0.95 0.95 0.95 0.8551 0.8423 0.6740 0.7221 0.5801 0.5890
19 0.74 0.74 0.74 0.9037 0.9766 0.8625 0.9453 0.5471 0.5365
20 0.71 0.71 0.71 0.8610 0.9304 0.8217 0.9006 0.5218 0.5111

that the thin curve and the thick curve can be plotted in the
same scale. The two arrows in Figures 7a and 7c indicate
the directions of the background plasma flows observed in
the surface-wave rest frame. We can see steepening of the
density profiles on the upstream side in both Figure 7a and
Figure 7c. The perturbations of the plasma density and the
magnetic field strength are out-of-phase in both region 1
and region 2. Thus, the plane waves are the slow-mode
plane waves. This type of simulation results, which consist

of the S-shaped surface waves and the slow-mode nonlinear
plane waves, is denoted by “S + SP” in Table 1. The slow-
mode nonlinear plane waves can also be found in Cases 9—
20 as listed in Tables 1 and 2.

[23] Unlike the fast-mode nonlinear plane wave, the slow-
mode nonlinear plane wave can only be found in a limited
range of Mg, Bo, and 0p. The two-dimensional distribu-
tion of the slow-mode plane waves shown in Figure 6 is also
different from the spatial distribution of the fast-mode plane

plp t=87 .51
25 a a
1
0.9
yiw
0.8
0.7
25 - 06
50 0 50
B/B, xw t=87 51
25 a 16
1.4
y‘fw 1.2
1
25
50 0 50
xw

Figure 2. Gray-level plots of (top) the plasma density p/p, of Case 1 at ¢ = 87.57, and (bottom) the still
of Animation S1 in the auxiliary material of the normalized magnetic field strength B/B, at =0 ~ 2007,,.
Case 1 is characterized by 0y, = 6o = 90°, M,y = 0.4545, and M, = 0.4568. The initial perturbations
are unstable to the K-H instability. It can be seen from Animation S1 in the auxiliary material that the
perturbations grow into pairs of vortex structures with opposite vorticities at the saturation stage. The

vortex structure is denoted by “V” in Table 1.

50f 16



A06217

plp,

25

LAI AND LYU: JET-FLOW-ASSOCIATED K-H INSTABILITY

A06217

t=501
a

Figure 3. Gray-level plots of p/p, and B/B, obtained at the nonlinear stage of Case 2 at # = 507,. Case 2
is characterized by 901 = 002 = 00, Mp()yl < 1, MF0y2 < 1, M]Oyl > 1, and M10y2 > 1. The initial pelturbations
are unstable to the K-H instability. They grow into S-shaped undulate surface waves at the saturation
stage. The propagation direction of the S-shaped surface waves is along the +y direction with respect to
the plasmas in region 1 and region 2 but along the —y direction with respect to the jet flow. The S-shaped

surface wave is denoted by “S” in Table 1.

waves shown in Figure 4. In the next section, we will
discuss the mechanisms that could lead to the formation of
the fast-mode plane waves and the slow-mode plane waves
found in our simulations.

4. Formation of the Nonlinear Plane Waves

[24] The theoretical model of the magnetosonic Mach
cone proposed by Lai and Lyu [2006] has successfully
explained the formation of the fast-mode plane waves. We
expect that a similar theoretical model should be able to
explain the formation of the slow-mode plane wave found
in this study.

[25] We will briefly review the fast-mode nonlinear plane
wave in section 4.1. We will then propose a theoretical
model, similar to the one proposed by Lai and Lyu [2006],
to explain the formation of the slow-mode nonlinear plane
wave in section 4.2.

4.1. Formation of the Fast-Mode Nonlinear Plane
Waves

[26] The simulation results of Lai and Lyu [2006] found
that the fast-mode plane waves are launched from the ridges
of the surface waves when Mpg, > 1. The strong Mach
number dependence has provided useful information that
helps them to identify the cause of the nonlinear fast-mode
plane waves in their simulation. They proposed that the
formation of these nonlinear waves should be similar to the
formation of the sonic Mach cone in the gasdynamics. In
their study, they use free-hand sketches to illustrate the
formation of the sonic/magnetosonic Mach cone.

[27] After some lengthy derivations, they showed that the
flaring angle « of the fast-mode solitary wave is a function
of the fast-mode Mach number Mp,, the plasma beta 3,
and the angle 6y, which is the acute angle between the
ambient magnetic field and the y axis. The flaring angle of
the fast-mode solitary wave is given by

il (v580/2) + 1 (780/2) cos? by
a = sin e~ .
Mg, (CFOy/ CAO) Mﬁoy (C}Oy / Cjo)

[28] In this section, we use a simulation event as an
example to demonstrate the constructive interference pro-
cess intuitively. We calculate the wavefronts of the waves
emitted from a moving point source by assuming that the
wavefronts expand based on the fast-mode group velocity.
We then show the flaring angle of the constructive interfer-
ence layer is the same as the flaring angle of the nonlinear
waves obtained in the simulation.

[29] Figure 8 shows an example of the formation of the
fast-mode Mach-cone-like nonlinear waves. We choose the
region 2 equilibrium state of Case 3 as an example to
compute the propagation and the constructive interference
of the fast-mode waves emitted from a moving point source
numerically. Points Sy ~ Sg denote the locations of the point
source at ¢ =ty ~ ty + 6At, respectively. The propagation
speed of the point source relative to the background
medium is (Uy, — Vy,), which is equal to the phase speed
of the surface wave observed in the region 2 plasma rest
frame of Case 3. The propagation speed of the point source
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Figure 4. Gray-level plots of p/p, and B/B, obtained at the nonlinear stage of Case 3 at # = 307,. Case 3
is characterized by 6y, = 0y, = 0°, M, > 1, and Mg, > 1. The initial perturbations are unstable to the
K-H instability. They grow into the S-shaped surface waves. These S-shaped surface waves propagate
along the +y direction in the region 1 and region 2 plasma rest frames but along the —y direction in the
jet-flow plasma rest frame. Four pairs of nonlinear plane waves are developed from the ridges of the S-
shaped surface waves. It will be shown in Figure 5 that these nonlinear waves are fast-mode waves. This
type of simulation results, which consist of the S-shaped surface waves and the fast-mode nonlinear plane

waves, is denoted by “S + FP” in Table 1.

is greater than the fast-mode speed in the y direction. We
compute the location of the wavefront of the fast-mode
wave emitted from the moving point source by assuming
that the wavefront expands based on fast-mode group
velocity. The five dashed ellipses are the computed wave-
front locations of the fast-mode wave emitted from point S
at the consecutive time interval ¢ = 1, + At ~ t, + 5At. The
point source continuously emits fast-mode waves as it
travels from point Sy to point Ss. At ¢ = ¢, + 6A¢, the point
source reaches to the point S¢. At the same time, the fast-
mode waves emitted from the point source, at t = ¢, ~ f, +
S5At, will expand to different sizes as shown by the solid
ellipses. The constructive interferences of these fast-mode
waves can result in a pair of magnetosonic Mach-cone-like
plane waves as denoted by the thick lines. As we can see,
the fast-mode Mach-cone-like plane wave is tangent to the
largest solid ellipse at point g. The flaring angle « is defined
by the angle between the line SyS¢ and the thick line Sgg.
The flaring angle « is also-called the Mach angle of the
magnetosonic Mach-cone-like plane wave. The thin arrow
(V,) indicates the direction of the phase velocity of the
magnetosonic Mach-cone-like plane wave. The dashed
arrow (V) indicates the direction of the corresponding
group velocity of the fast-mode wave. For comparison,
we put the gray-level plot of the plasma density of Case 3
on the right-hand side of this wave interference plot. As we
can see, the flaring angle of the fast-mode Mach-cone-like
plane wave obtained from the simulation is in good agree-

ment with the flaring angle « obtained from this construc-
tive interference calculation.

4.2. Formation of the Slow-Mode Nonlinear Plane
Waves

[30] It has been discussed in our previous paper [Lai and
Lyu, 2006] that the phase velocity and the group velocity of
the ordinary sound waves are isotropic and identical to each
other in a uniform natural gas medium, therefore there is no
difference to use either the phase velocity or the group
velocity in determining the Mach cone angle in natural
gasdynamics [e.g., Landau and Lifshitz, 1987, chap. 9]. In
the MHD plasma, the group velocity and the phase velocity
are in general not isotropic and not identical to each other.
Because the local phase velocity is perpendicular to the line
tangent to the point on the wavefront, but the local group
velocity is along the line connected to the point source and
the point on the wavefront [e.g., Landau and Lifshitz, 1987,
chap. 8], the propagation direction of the wavefront emitted
from a point source should not be parallel to the phase
velocity unless the shape of the wavefront is a circle, i.e.,
unless the wave propagation is isotropic. Thus, we should
use the group velocity, not the phase velocity, to determine
the Mach cone angle of the MHD waves.

[31] In subsection 4.1, we have shown that the fast-mode
wave emitted from a point disturbance will expand based on
the group velocity of the fast-mode wave, which is consis-
tent with the discussion given in chapter 8 of Landau and
Lifshitz [1987]. Thus, we expect that the slow-mode waves
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Figure 5. Spatial profiles of the plasma density (the thin curves) and the magnetic field strength (the
thick curves) of Case 3 along the y direction at three different locations (a) x = —6.0w (region 1), (b) x =
0, and (c) x = 6.0w (region 2) at ¢ = 307,. The variations of the plasma density and the magnetic strength
are in-phase in both region 1 and region 2. Thus, the nonlinear plane waves are fast-mode waves. The two
arrows shown in Figures 5a and 5c indicate the directions of the background plasma flows observed in
the surface-wave rest frame. We can see steepening of the nonlinear waves on the upstream sides in both

Figures 5a and 5Sc.

emitted from a point disturbance should also expand based
on the group velocity of the slow-mode wave. We will first
review the group velocity distribution of the slow-mode
waves. We will then use the equilibrium state of region 2 of
Case 4 as an example to compute the wave emitted from a
moving point source based on the slow-mode group veloc-
ity. A derivation of the analytical form of the flaring angle
of the slow-mode Mach-cone-like plane wave will be
carried out afterward.

[32] Figure 9 shows the Friedrichs diagrams of the slow-
mode group velocity, where (Vg),8, = Vg -+ (Bo/By), and
(Vy) LBOZ = Vz, —( Vg)//Boz. Figure 9 shows slow-mode group
velocities obtained under the conditions C%,/C%o = 0.5 (Bo=
0.6) (Figure 9a), C3,/C5o = 1.0 (8o = 1.2) (Figure 9b), and
C30/C% = 2.0 (8o = 2.4) (Figure 9¢), where 3, = po/(B¥/
241p). It can be shown that C2o/Coo = v0Bo/2. According to
Figure 9, the group velocity of the slow-mode waves has the
largest perpendicular component to the background mag-
netic field when Gy =1.2 or C%, = C%. As a result, the slow-
mode plane waves at 3y =~ 1.2 will expand far away from
the point source much faster than the slow-mode waves in
the cases with By > 1.2 and 5y < 1.2. Thus, qualitatively,
we can expect that the constructive interference of slow-
mode waves can easily take place in the simulation when
ﬁo ~ 1.2.

[33] Figure 10 shows an example of the formation of the
slow-mode Mach-cone-like nonlinear waves. We choose the
region 2 equilibrium state of Case 4 as an example to

compute the propagation and the constructive interference
of the slow-mode waves emitted from a moving point
source numerically. Points Sy—Ss denote the locations of
the point source at ¢t = t, ~ #, + 6At, respectively. The
propagation speed of the point source with respect to the
background medium is (Uy, — Vo,), which is equal to
the phase speed of the surface wave observed in the
region 2 plasma rest frame of Case 4. The propagation
speed of the point source is less than the slow-mode speed
in the y direction. We compute the location of the wavefront
of the slow-mode wave emitted from the moving point
source by assuming that the wavefront expands based on
slow-mode group velocity. The five dashed triangle-like
curves are the computed wavefront locations of the slow-
mode wave emitted from point S, at the consecutive time
interval ¢ = ¢, + At ~ t, + 5At. The point source
continuously emits slow-mode waves as it travels from
point Sy to point S¢. At ¢ =t + 6At, the point source
reaches to the point Sgs. At the same time, the slow-mode
waves emitted from the point source, at ¢t = f, ~ f, + SAt,
will expand to different locations as shown by the solid
triangle-like curves. The constructive interferences of these
slow-mode waves can result in a pair of slow-mode Mach-
cone-like plane waves as denoted by the thick lines. As we
can see, the slow-mode Mach-cone-like plane wave is
tangent to the largest solid triangle-like curve at point g.
The flaring angle « is defined by the angle between the line
SoS6 and the thick line Sgg. The flaring angle is greater than
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Figure 6. Gray-level plots of p/p, and B/B,, obtained at the nonlinear stage of Case 4 at t = 1007,. Case
4 is characterized by 6y; = 0> = 0°, Ms;0,1 = 0.8521, and Mgy, = 0.7963. The initial perturbations are
unstable to the K-H instability. They grow into the S-shaped surface waves. The S-shaped surface waves
propagate along the +y direction in the region 1 and region 2 plasma rest frames but along the —y
direction in the jet-flow plasma rest frame. Four pairs of nonlinear plane waves are developed from the
ridges of the S-shaped surface waves. It will be shown in Figure 7 that these nonlinear waves are slow-
mode waves. This type of simulation results, which consist of the S-shaped surface waves and the slow-
mode nonlinear plane waves, is denoted by “S + SP” in Table 1.

90°. The thin arrow (Vp) indicates the direction of the phase
velocity of the slow-mode Mach-cone-like plane wave. The
dashed arrow (V,) indicates the direction of the
corresponding group velocity of the slow-mode wave. For
comparison, we put the gray-level plot of the plasma density
of Case 4 on the left-hand side of this wave-interference
plot. As we can see, the flaring angle of the slow-mode
Mach-cone-like plane wave obtained from the simulation is
in good agreement with the flaring angle « obtained from
this constructive interference calculation. Note that the
slow-mode waves that propagate nearly parallel to the —y
direction will not result in constructive interferences. Thus,
only the slow-mode waves that propagate nearly parallel to
the +y direction are shown in Figure 10.

[34] It can be seen from our simulation results that the
extensions of the nonlinear waves extended continuously
away from the tips of the nonlinear plane waves and form a
curved wavefront, which is associated with the arc gh
shown in Figure 10. Similar structures are commonly found
in the fast-mode Mach-cone-like nonlinear plane waves,
which have been discussed in Figure 14 of Lai and Lyu
[2006]. Note that the absence of curved extension occurs
when the constructive interference takes place along the top
curve 'l (i.e., if the point g is located between points /’ and
h). The Mach angles found in these cases are nearly 90° (not
shown).

[35] From Figure 10, we can conclude that the construc-
tive interferences of the slow-mode waves cannot be found
when the speed of the point source is greater than the slow-

mode speed or less than the minimum of the slow-mode
group velocity.

[36] In the two-dimensional simulation, the ridge of the
surface wave is a line-type disturbance, which is along the z
direction. On the basis of a sketch of three-dimension
distribution of the surface wave and the fast-mode Mach-
cone-like plane wave, Lai and Lyu [2006] obtained the
theoretical solution of the Mach angle as a function of [,
0o, and Mpy,. The flaring angles of the fast-mode Mach-
cone-like plane waves measured form their simulation
results are in good agreements with the Mach angles
predicted by the theoretical model. Similarly, we will derive
the theoretical flaring angles of the slow-mode Mach-cone-
like plane waves below.

[37] Figure 11 shows how to determine the flaring angle
« of the slow-mode Mach-cone-like plane wave for any
given Mg, o,, B39, and 0. In our two-dimensional simulation,
the slow-mode Mach-cone-like plane wave is generated by
a line-type disturbance, extended along the z direction.
Figure 11a shows a line-type disturbance that moves from
ss* to bb* toward the —y direction with respect to the
uniform plasma in region 1 and produces a slow-mode half
plane nonlinear wave in region 1. Figure 11b shows a line-
type disturbance that moves from ss* to bb* toward the +y
direction with respect to the uniform plasma in region 2 and
produces a slow-mode half plane nonlinear wave in region 2.
We assume that the undulant surface wave is confined
inside the pink layer. The line-type disturbance moves at a
speed Uy, — Vo, = Mgz0,Cspo, relative to the uniform
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Figure 7. Spatial profiles of the plasma density and the magnetic field strength of Case 4 along the y
direction at three different locations (a) x = —6.0w (region 1), (b) x = 0, and (c) x = 6.0w (region 2) at t =
1007,. The thin curves are the spatial profiles of p/p, and the thick curves are the spatial profiles of (B/B,)
— ¢, where the offset constant ¢, is chosen such that the thin curve and the thick curve can be plotted in
the same scale. The variations of the plasma density and the magnetic strength are out-of-phase in both
region 1 and region 2. Thus, the nonlinear plane waves are slow-mode waves. The two arrows shown in
Figures 7a and 7c indicate the directions of the background plasma flows observed in the surface-wave
rest frame. We can see steepening of the density profiles on the upstream side in both Figures 7a and 7c.

plasma outside the pink layer. The blue plane contains the
slow-mode half plane wave. The blue plane and the outer
boundary of the pink layer intersect at bb*. Point a is the
intersection of the line »b* and the magnetic field line that

y

passing through point s. Following the same arguments as
discussed in Figure 8 and Figure 10 of Lai and Lyu [2006],
wehavesb{ Us,—V o, ) AEM 7.0, Cs1.0yA15gCrs104,ACos104, AL
CSLo%At, and s¢ = Cyy0,,At where Cgy 0, is the phase speed

Figure 8. An example to show the formation of the fast-mode Mach-cone-like nonlinear waves. In this
example, we choose the region 2 equilibrium state of Case 3 to compute the wavefront locations of the
fast-mode waves emitted from a moving point source. See the text for the discussion in detail.
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Figure 9. The Friedrichs diagrams of the slow-mode group velocity obtained at (a) Cgy*/C4o> = 0.5
(Bo = 0.6), (b) Cso°/Cao” = 1.0 (By = 1.2), and (c) Cso*/C1o° = 2.0 (B = 2.4), where (Vg)m, = Vg - (Bo/
Bo), (Ve)1B = V> — (Vohim,» Bo = po/(Bo*/2410), Cao” = Bo’ptopo, Cso” = ¥po/po. and v = 5/3. The Cso
and C o are the sound speed and the Alfvén speed of the equilibrium state, respectively. It can be shown
that Cso*/C40> = 70¢/2. When [, = 1.2, the slow-mode group velocity has the largest perpendicular
component to the background magnetic field.

<>

[

ol t=t,+6At

Figure 10. An example to show the formation of the slow-mode Mach-cone-like nonlinear waves. In
this example, we choose the region 2 equilibrium state of Case 4 to compute the wavefront locations of
the slow-mode waves emitted from a moving point source. See the text for the discussion in detail.
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X
Figure 11. Sketches to show how to determine the flaring angle « of the slow-mode Mach-cone-like
plane wave, which is generated by a line-type disturbance. The line-type disturbance moves toward (a)
the —y direction with respect to the uniform plasma in region 1 (x < —(w; +w)/2) and (b) the +y direction
with respect to the uniform plasma in region 2 (x > (w; + w)/2). See the text for the discussion in detail.
of the slow-mode plane wave that propagates along the where
plane wave normal direction (m), CSL0,¢,g is the speed of the
. . i . Caon
corresponding group velocity of the slow-mode wave with sin(r — a) = sc 'SL0y (23)

phase velocity n Cg;o,, and Cg;, defined by equation (11)
is the phase speed of the slow-mode wave that propagates
along the surface wave direction (y). Namely,

! 2
Corop = 5 {Cio +C — \/(CEIO + C5o) —4C3C5p cos? 1/’}

(20)
2
1 dCg,,
— |l .
Csroy, = J Csiop + <2CSL0“ dy @

Note that, for the MHD waves, the phase speed w/k = F(0) is
not a function of wave number k. Thus, the group velocity,
V, = dw/dk, and the phase velocity, V,, = ey(w/k), satisfy the
following relationship:

ow 1 0w w w
(Vg_vp) V), = [(ekﬁ—key%%) _ek%:| 'ek;:()-

Therefore, we can conclude that the vector gc is always
perpendicular to the wave normal vector sc. The surface of
the tetrahedron sabc consists of four right triangles, where
three of them yield sc/sa = cos i, sc/sb = sin(m — «), and
sb/sa = cos . Since sc/sa = (sc/sb) - (sb/sa), it yields

cos ) = cos b sin(m — ) (22)

sb Mspo,Csroy

and Cgzoy and Cgyg, are given in equations (20) and (11),
respectively.

[38] Substituting equation (22) into equation (20) then
substituting the resulting equation and the equation (11) into
the equation (23), it yields

2 2 2 2
Cso + Cip — 2M;,Cyp, sin” (7 — @)

= \/ (C2) + C2)*—4C2,C2, cos? Oy sin® (7w — @) (24)
Since the right-hand side of the equation (24) must be equal
to or greater than zero, the left-hand side of equation (24)
yields the following condition:

C§0 + Cio - ZMS%LOyCéLOy sin’ (r—a)=>0 (25)
Solving equation (24) for sin*(7m — a), it yields
C:, +C? c2,C? 20

sin? ( — a) = -0 + 40 _ Z5040 C(;S 0 (26)
Mg0,Croy Ms10,Csi0y

[39] For 0 < (C3o + C0)Ms10,Cs10, — Cs0Cio cos” by <
$20yCiozoy» €quation (26) yields

o=TmT— Sin_l \/C§0 + Cj() _ Cé()cfl() cos? 00 (27)

2 2 4 4
MSLOyCSLOy MSLOyCSLOy
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Only the solutions, which satisfy both the condition (25)
and equation (27%, will be considered as proper solutions.

[40] For Czy/C%o = v50/2, equation (27) can be rewritten
as

2 1 2 20,
amrsinct [ OB R/t
MSLO)/(CSLOy/ CAO) MéL()y (CgLO}v/ Cjo)
(28)

where

C§L0v 1 e B0 ’
) 2
2 =5 1+ 5 (1 + 5 ) 273, cos? Oy (29)

Likewise, condition (25) can be rewritten as

2
Csroy
2
Cio

By

5 +1-— 2M§L0y

sin? (m—a) >0 (30)

As we can see that the flaring angle « given in equation (28)
is a function of Mg, ,, 0o, and (3,. We also found that for a
given set of Mg, and 6y the solutions of equation (28)
obtained at C3y/C5o = € and at C3/C5 = 1/€ are always
identical to each other.

[41] Figure 12 shows the theoretical solutions of the
flaring angles « as a function of Mg, B9, and 6, where
Figure 12a is for 6, = 0° and Figure 12b is for 6, = 20°. The
three curves in Figures 12a and 12b are the theoretical
solutions obtained at §, = 2.4 (dashed curve), G, = 0.89
(thin curve), and By = 1.17 (thick curve). Solutions shown in
Figure 12 satisfy equation (28) and condition (30). The
symbols shown in Figure 12 are the flaring angles of the
nonlinear plane waves measured from our simulation results
with the corresponding 3, Mgz, and 6. The open square
is for By = 2.4. The solid circle is for Gy = 0.89. The open
circle is for 5y = 1.17. The flaring angles measured from our
simulation results are in good agreements with the predicted
flaring angles obtained from equation (28) and condition
(30).

[42] The theoretical results shown in Figure 12 indicate
that the theoretical solutions cannot be found when the
slow-mode Mach numbers of the surface waves are greater
than one or much less than one. The solution space in Mg,
actually depends on 6, and [3y. As we can see, for 5 = 0°
and (3 =~ 1.2, the slow-mode plane wave can be found in a
wide range of Mg, (,, much wider than the solution space at
0o = 20° and 3y > 1.2 or 3y < 1.2. Indeed, we found that
the slow-mode nonlinear plane waves can be easily formed
in our simulations with 3y ~ 1.2 and 6, ~ 0° or 6, ~ 180°,
even with slightly perturbations on the surface wave speed.

5. Summary

[43] In our two-dimensional MHD simulation of the jet-
flow-associated K-H instability, four types of nonlinear
waves are found at the saturation stage. The first type of
the nonlinear waves is characterized by vortex structures
with opposite vorticities generated in pairs. It occurs when
the fast-mode Mach numbers of the surface waves (Mpo,)
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on both sides of the jet flow are less than one and the
intermediate-mode Mach numbers of the surface waves
(Myo,) on both sides of the jet flow are greater than one,
and when the magnetic fields on both sides of the TD are
nearly perpendicular to the surface wave propagation
direction.

[44] The second type is the S-shaped surface wave. It
occurs when the fast-mode Mach numbers of the surface
waves (Mpg,) on both sides of the jet flow are less than
one and the intermediate-mode Mach numbers of the
surface waves (Mjy,) on both sides of the jet flow are
greater than one, and when the magnetic fields on both
sides of the TD are nearly parallel to the surface wave
propagation direction.

[45] The third type of the nonlinear waves is character-
ized by fast-mode nonlinear plane waves, which are
launched from the ridges of the S-shaped surface waves in
pairs. It occurs when the fast-mode Mach numbers of the
surface waves (Mpy,) on both sides of the jet flow are equal
to or greater than one. The distributions of the fast-mode
plane waves are similar to the nonlinear structures obtained
in the laboratory experiment of jet flow by Papamoschou
and Roshko [1988]. Our results are also similar to the
shock-like structures obtained in previous MHD simulation
studies of jet flow in the stellar medium [e.g., Baty and
Keppens, 2002, 2006].

[46] The fourth type of the nonlinear waves is character-
ized by the slow-mode nonlinear plane waves, which are
launched from the ridges of the S-shaped surface waves in
pairs. To our knowledge, this is the first report of slow-
mode nonlinear solitary waves found in the simulations of
the K-H instability. The slow-mode plane waves can be
found in a limited range of Mg;,, 3o, and . No slow-mode
plane wave can be found when the slow-mode Mach
number of the surface wave (Mgyo,) is greater than one.

[47] A theoretical model, which is a simplified linear
wave interference model, has been proposed in section 4
to explain the formation of the nonlinear plane waves found
in this simulation study. Namely, fast-mode waves and
slow-mode waves will be emitted from the ridges of the
surface perturbations and expand based on their group
velocities. According to our model, the fast-mode plane
waves and the slow-mode plane waves are generated by the
constructive interferences of the fast-mode waves and the
slow-mode waves, respectively, under the proper conditions
of Mro,, Mgz, Bo, and 6. Since the distribution of the
slow-mode group velocity is quite different from the distri-
bution of the fast-mode group velocity, the geometry of the
fast-mode nonlinear plane waves and slow-mode nonlinear
plane waves also looks very different from each other. The
A-shaped fast-mode Mach-cone-like plane waves can be
found when Mpg, > 1. The V-shaped slow-mode Mach-
cone-like plane waves can be found in a limited range of
Msro, Bo, and 0. The flaring angle is less than or equal to
90° for the fast-mode Mach-cone-like nonlinear waves. The
flaring angle is greater than or equal to 90° for the slow-
mode Mach-cone-like nonlinear waves.

[48] The flaring angle of the slow-mode plane wave is
derived analytically as a function of Mg, B¢, and 6. The
flaring angles of the slow-mode plane waves measured from
our simulation results are in good agreements with the
theoretical solutions. No solution can be found when the
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Figure 12. Plots of the flaring angles predicted by the theoretical model and measured from the
simulation results. The theoretical solution of the flaring angle « obtained from equations (28)—(30) is a
function of Mg;,, Bo, and . We plot the flaring angle « as a function of Mg, ,, at given (3, and 0,
where (a) 6y = 0° and (b) 8y = 20°. The three curves in Figures 12a and 12b are the theoretical solutions
obtained at 3y = 2.4 (dashed curve), Gy = 0.89 (thin curve), and 3y = 1.17 (thick curve). The symbols
shown in this figure are the flaring angles of the slow-mode nonlinear plane waves measured from our
simulation results with the corresponding 3, Mg;0,, and 8, where the open squares are for 3, = 2.4, the
solid circles are for 3, = 0.89, and the open circles are for 3y = 1.17. The flaring angles measured from
our simulation results are in good agreement with the predicted flaring angles obtained from equation

(28) and condition (30).

slow-mode Mach numbers of the surface waves are greater
than one (Mg, > 1). According to the solution space at
different (3, the slow-mode plane waves should be easily
found in the cases with 8y ~ 1.2 and 6, ~ 0° or 6, ~ 180°.
The solution space of the flaring angle « obtained from
equation (28) and condition (30) can provide a good
explanation to the reason why the slow-mode plane waves
in our simulation can only be found in a limited range of
Msro, Bo, and 0.

6. Discussions

[49] The possible applications of our results to the space
observations are discussed below. According to our simu-
lation results, we propose that the slow-mode Mach-cone-
like nonlinear waves and the fast-mode Mach-cone-like
nonlinear waves are likely found near the fast-flow regions
observed at the dayside magnetopause or in the magnetotail.
The nonlinear Mach-cone-like plane waves should also be
found near the boundaries of the fast solar wind and the
slow solar wind, which is also called the corotating inter-
action regions (CIRs). But we also expect that a nonuniform
magnetic field or nonuniform plasma density in region 1 or
region 2 can lead to wave mode conversion in these regions.
The wave mode conversion in a nonuniform medium can
excite new wave modes and redirect the wave energy to
different directions. The reflection of the nonlinear Mach-

cone-like plane waves from the nearby boundary can lead to
another kind of turbulent structure.

[s0] Figure 13 shows two examples of the refraction of
the fast-mode Mach-cone-like plane waves when the waves
expand into a non-uniform background medium. Figure 13a
shows that the fast-mode Mach-cone-like plane waves
expand into a dense medium at x > 20w. As we can see,
the refraction angle of the nonlinear plane waves is smaller
than the incident angle. The plane waves are partially
reflected by the dense medium. Figure 13b shows that the
fast-mode Mach-cone-like plane waves expand into a rare-
fied medium at x > 10w. As we can see, the refraction angle
of the nonlinear plane waves is nearly 90°. Note that the
coexistence of incident and reflected waves has also been
shown in previous simulations of KH instability for super
magnetosonic shear flows [e.g., Miura, 1990, 1992]. Al-
though the reflection of the incident wave in the previous
studies is due to the existence of a numerical boundary, the
interference of the incident and reflected waves are similar
to the one shown in Figure 13a.

[5s1] Since the eigenvectors of the three MHD wave
modes change their directions with changing directions of
the background magnetic field, wave mode conversions are
expected to take place if there was a gradual change on the
magnetic field direction in region 1 or region 2. The wave
mode conversion is an interesting research topic, but it is
beyond the scope of this study. Nevertheless, we could
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Figure 13. Two examples to show the refraction of the fast-mode Mach-cone-like plane waves when
the waves expand into a non-uniform background medium. The arrows indicate the background flow
distributions observed in the simulation rest frame. (a) The fast-mode Mach-cone-like plane waves
expand into a dense medium at x > 20w. As we can see, the refraction angle of the nonlinear plane waves
is smaller than the incident angle. The plane waves are partially reflected by the dense medium. (b) The
fast-mode Mach-cone-like plane waves expand into a rarefied medium at x > 10w. As we can see, the
refraction angle of the nonlinear plane waves is nearly 90°.

expect that the nonlinear Mach-cone-like plane waves,
generated by the velocity shear instability in the solar wind
or at the magnetopause, should directly or indirectly con-
tribute to the turbulent structures observed in the solar wind
and in the magnetosheath.

[52] The limitations of our simulation and theoretical
results are discussed below. The Mach numbers of the
surface disturbances can be greater than 1 or less than 1,
but the Mach numbers of the Mach-cone-like plane waves
are always equal to one. Therefore, these Mach-cone-like
plane waves are weak nonlinear solitary waves. This may be
the reason why the theoretical model based on the construc-
tive interference of linear waves can successfully explain
the flaring angles of these weak nonlinear solitary waves.
Since the superposition assumption is not applicable to a
highly nonlinear event, the simple theoretical model pro-
posed in this paper might not be able to explain the
distribution and evolution of the shock waves, if we could
find one in the future study.

[53] Owing to lack of effective dissipation in our simu-
lation, we cannot reproduce the shock wave structures as
have been reported in previous simulation studies [e.g.,
Miura, 1982, 1984]. We do not want to use the MHD model
to simulate the formation of shock waves because we
believe that only the kinetic simulations can properly
simulate the anomalous dissipation process associated with
the shock formations in the collisionless space plasma.

[s4] Dispersion effect due to finite-ion-inertial-length
effect is not included in this study. The dispersion effect

can lead to formation of whistler waves and kinetic Alfvén
waves. It can also lead to formation of six types of solitary
waves as have been obtained by Lyu and Kan [1989]. The
magnetic field profile of the solitary waves obtained in the
present study are linearly polarized, which are different
from the magnetic field polarizations found in the two-fluid
solitary waves analysis by Lyu and Kan [1989]. The
magnetic field profile across the two-fluid solitary wave is
either left-hand polarized or right-hand polarized. In order
to obtain the solitary waves as discussed by Lyu and Kan
[1989], the finite-ion-inertial-length effect should be includ-
ed in the simulation.
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