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Motion of a Particle in One Dimension

Example 1.

Let us consider a spring at rest with a spring constant k. Let us load an object
with mass m, on the left end of the spring and load an object with mass m, on the
right end of the spring. Slightly stretch the two ends of the spring and then release
the external stretch at time t = 0. Discuss the motions of these two objects. Check
the potential energy and the kinetic energy of the system. Let us consider the
following two cases. Case 1: m; » m,. Case 2: m; = m, = m. Case 3: m; #m,

Case 1: m; » m,

For m, » m,, we can assume that the object with mass m, is at rest
(motionless). Let the displacement of the object with mass m, with respect to its
equilibrium position be x,. Hooke's law yields

my¥, = —kx, (2.1)
The solution of x,(t) can be written as
x,(t) = C; cos(wt) + C, sin(wt) (2.2)
where w = \[kk/m,. For x,(t = 0) = x, and x,(t = 0) = 0, it yields
%, (t) = x, cos(wt) (2.3)

The potential energy of this system is

1
V =5k (2.4)

The kinetic energy of this system is

1
T = Ema‘cf (2.5)

Multiplying x, to Equation (2.1), it yields
Lren=o (2.6)
dt( ) - :

Thus, the sum of the potential energy plus the kinetic energy is conserved (is constant
with time). This is true as long as the force is a conservative force.
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Case2:m; =m, =m

Let the displacement of the object with mass m, with respect to its equilibrium
position be x;. Let the displacement of the object with mass m, with respect to its
equilibrium position be x,. Hooke's law yields

myx%; = —k(x; —x3) (2.7)
myx¥, = —k(x, —x;1) (2.8)
For m; = m, = m, we can assume that x; = —x,, x; = —x,, and ¥; = —¥,. Ityields
mi, = —2kx, (2.9)
The solution of x,(t) can be written as
x,(t) = C; cos(wt) + C, sin(wt) (2.10)
where w = \/2k/m. For x,(t = 0) = x, and %,(t = 0) = 0, it yields
%, (t) = x, cos(wt) (2.11)

The potential energy of this system is
1
V= Ek(x2 —x,)% = 2kx3 (2.12)

The kinetic energy of this system is

1 1
T = Emlfcf + Emzy'cf = mx3 (2.13)

Multiplying x, to Equation (2.9), it yields
Lren=o (2.14)
dt( ) - )

Thus, the sum of the potential energy plus the kinetic energy is conserved (is constant
with time).

Case 3: m; #m,

Let the displacement of the object with mass m, with respect to its equilibrium
position be x;. Let the displacement of the object with mass m, with respect to its
equilibrium position be x,. Hooke's law yields



It yields
my¥; + my¥, =0
myx, + myx, =0
myx, + myx, =0

Thus, Equation (2.16) can be rewritten as

. m,
mzxz = _k (1 + m_1> xz

The solution of x,(t) can be written as
x,(t) = C; cos(wt) + C, sin(wt)

where

1 1 k +
“=J"(_+_)=JM
my mp mym;

For x,(t = 0) = x, and x,(t = 0) = 0, it yields
%, (t) = x, cos(wt)
and
m,
x () =— m—lxo cos(wt)
The potential energy of this system is
V= %k(x2 —x)% = %k (1 +%>2 x5

The kinetic energy of this system is

1 .2 1 .2 mz 1 =2
T = Emlxl +§m2X2 = (m_1+ 1)§m2x2

(2.15)

(2.16)

(2.17)
(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)



Multiplying (1 + ;ﬁ) %, to Equation (2.20), it yields
1

Larn=o (2.27)

Thus, the sum of the potential energy plus the kinetic energy is conserved (is constant
with time).

Example 2.

Let us consider a harmonic oscillation with velocity-dependent damping force term,
such that

mX = —kx — bx (2.28)

The solution of x(t) can be written as

x(t) = Z Ci exp(y;t) (2.29)

i=1,2

where y; # y,. Equation (2.29) yields

m [Z véc, exp(nt)l = —k [Z G, exp(nt)l ~b [Z e exp(nt)l

i=1,2 i=1,2 i=1,2

or
[Z (my? + by, + )G, exp(nt)l =0 (2.30)
i=1,2

For non-zero C; exp(y;t), it yields

my? +by; +k=0 (2.31)
or
2
el (i) _k (2.32)
2 2m 2m m

For b? — 4mk = 0, Equation (2.32) yields y, = y, = —b/2m. Thus, we need consider
another type of solutions for the second-order ODE. Let
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x(t) = (Cy + Dyt) exp(y1t) (2.33)
Substituting Equation (2.33) into Equation (2.28), it yields
(Cy + Dot) (myZ + by, + k) exp(y;t) + Dy(2my; + b) exp(y,t) =0 (2.34)
For b?2 — 4mk = 0, and y; = —b/2m. Thus, Equation (2.34) is true for all ¢, and D,.

Lety = b/2m and w, = \/k/m. For w, # y, Equation (2.32) can be rewritten

yi=-yz= /yz — w? (2.35)
2

For w, = v, Equation (2.33) can be rewritten as

as

x(t) = (Cy + Dyt) exp(—yt) (2.36)
Let us consider the following three cases:
Case A: w, >y, Case B: w, <y, and Case C: w, =.
Case A: w, > y (underdamping)
For w, > v, Equation (2.35) yields
=-vtiw (2.37)

where

It yields
x(t) = C; exp(—yt) [cos(wt) + i sin(wt)] + C; exp(—yt) [cos(wt) — i sin(w?)]
or
x(t) = exp(—yt) [D; cos(wt) + D, sin(wt)] (2.38)
For x(t = 0) = x, and %(t = 0) = 0, it yields D; = xo and D, = (y/w)x,. It yields
x(£) = exp(—yt) [x, cos(wt) +£ %o sin(wt)] (2.39)
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Case B: w, < y (overdamping)

For w, <y, Equation (2.35) yields

vi=-v (1 ¥ /1 - ‘“-f) (2.40)

14
or
14 14 277 rGyz
PPN SR PP S L Y
Y2 =Y 2772 14 V(zyz )
and

x(t) = Cy exp(—y t) + C, exp(—y,t) (2.41)

For x(t = 0) = x, and x(t = 0) = 0, Equation (2.41) yields
C+C, =x, (2.42)
—¥161 =726, =0 (2.43)

Solving Equations (2.42) and (2.43), it yields

Y2Xo
C,=—"— 2.44
! Y2—T"1 ( )
—Y1%o
C, = ——— 2.45
2 Y2—"1 ( )

Substituting Equations (2.44) and (2.45) into Equation (2.41), it yields

x(t) = x,

Y2 Y1 ]
exp(—y t) — exp(—y,t 2.46
” p(—y1t) a— p(—y,t) (2.46)

1 2 1

where the second term is a fast damping term. The first term becomes dominate at
yt > 1
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Case C: w, = y (critical damping)
For w, = v, the solution of x(t) is given by Equation (2.36), i.e.,
x(t) = (Cy + Dyt) exp(—yt)
For x(t = 0) = x, and x(t = 0) = 0, it yields
Co = X, (2.47)
Dy =yCy = yx, (2.48)
Thus, Equation (2.36) becomes
x(t) = xo(1 + yt) exp(—yt) (2.49)
For yt « 1, the initial solution is approximately equal to

x(t) = x(1 +yt)(1 —yt) = x,(1 — y?t?) (2.50)

In the critical damping event, the restoring force can help the oscillator back to
the equilibrium position faster than the oscillator in the overdamping event.

Results of the three cases are sketched in Figure 2-5 on page 50 in the textbook,
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Applications of Example 2. (RLC circuit & LC circuit)

If the oscillator in the example 2 is subject to an additional impressed force F(t), then
the equation of motion of the oscillator becomes

m¥ + bx + kx = F(t)
Now, let us consider an RLC circuit.
The potential jump across a resistor with resistance R is

dqQ
8Vq = IR = R—

The potential jump across an inductance with inductance L is

oV, —LdI—LdZQ
= "at ™~ " dt?

The potential jump across a capacitor with capacitance C is

Q
6VC —_ E
where Q is the charge, and I is the electric current. If we apply an electromotive

potential V (1), it yields

2
a9, Rd—Q+%=V(t)

Lozt R

The circuit equation is similar to the oscillator equation given above. We can use the
RLC circuit to study the motion of oscillator, or we can use the harmonic oscillator to
study the RLC circuit.

For R=0 and V(t > 0) =0, the circuit become an LC oscillator with oscillating
frequency 1/vLC.
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Summary

Sections 2-1, 2-2, 2-5, 2-7,2-8,2-9 #{5=27 |

Section 2-3 RABMEBHIKITTABEE - leEERNRE - EROIANBE=F
RBIRVIEEH B - MAMENR - XEFBRRMET - 2—UERYIE
BX AGEMNBREEE  AZZ2IBNER -

Section 2-4 REEEBRCE

Section 2-6 REEBCE - OJISH KIREE Kt HENWHEEGE -
RENENS : FADIE VHF radar oI AERRIE FROERIARIHIERE |

Section 2-10 sE 1 EMWEE  FFECE - BEHEEFHEE  ERL BE
FIgUEE R K AR -

Section 2-11 %32 FEAEIE 7 Fourier Transform FMeI HEBHEEEE
- SO MBEINMEG - TEHANE | HE+_ZHRE - —EEH Fourier
Transform - FEHAR - BLEBRERFT - A=FTHNE  FIUKAEFESE
E_ENREMIRIIGLERNHE - S_FRBRYIESH WKE &S

B#—X Fourier Transform !

Sections 2-4, 2-6, 2-10 B Y ZEARIRE - oK BEMEYEE ©
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