
Motions in a Rotating System
PART A

Ling-Hsiao Lyu
Department of Space Science and Engineering

National Central University

1



Symon (1960): 
Chapter 7: Moving Coordinate Systems

Part 1:
7-1 Moving origin of coordinates
7-2 Rotating coordinate systems

7-3 Laws of motion on the rotating earth
7-4 The Foucault pendulum

7-5 Laimor's theorem (不重要，很少應⽤用，所以不教）
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Moving Origin of Coordinates
Fictitious Force

考慮⼀一個慣性系統原點為 𝑂 ，以及⼀一個沿著⼀一個平⾯面平⾏行行移動的系統原點為 𝑂∗ 。

若若 𝑂∗ 相對 𝑂 的位置向量量為 ℎ(= 𝑂𝑂∗)，則以 𝑂 為原點的參參考座標系，以及以 𝑂∗ 為

原點的參參考座標系中的觀測者，看到⼀一個質量量為 𝑚 的質點 𝐴 的位置速度、加速度、

與感受到的⼒力力，有何差異異？
[慣性系統 (inertial frame) 參參考座標系(frame of reference 或 reference frame)]

其中 −𝑚�⃗�* 就是所謂的假⼒力力 Fictitious Force。如果 �⃗�* = 0 則平移系 𝑂∗ 也是⼀一個
慣性系。
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Reference frame 慣性系 𝑂 平移系 𝑂∗

Position vector 𝑟 (= ℎ + 𝑟∗)
(𝑂𝐴 = 𝑂𝑂∗ + 𝑂∗𝐴)

𝑟∗(= 𝑟 − ℎ)
(𝑂∗𝐴 = 𝑂𝐴 − 𝑂𝑂∗)

Velocity
�⃗� =

𝑑𝑟
𝑑𝑡 �⃗�∗ =

𝑑𝑟∗

𝑑𝑡 =
𝑑𝑟
𝑑𝑡 −

𝑑ℎ
𝑑𝑡 = �⃗� − �⃗�*

Acceleration
�⃗� =

𝑑3𝑟
𝑑𝑡3 �⃗�∗ =

𝑑3𝑟∗

𝑑𝑡3 =
𝑑3𝑟
𝑑𝑡3 −

𝑑3ℎ
𝑑𝑡3 = �⃗� − �⃗�*

Force �⃗� = 𝑚�⃗� �⃗�∗ = 𝑚�⃗�∗ = �⃗� − 𝑚�⃗�*

𝑂
𝑂∗

𝐴

𝑟
𝑟∗

ℎ

請問：如果你體重過重，擔⼼心逃⽣生繩斷裂，該如何利利⽤用逃⽣生繩下降到地⾯面逃⽣生呢？



Rotating Coordinate Systems 原點位置重疊
考慮兩兩個參參考座標系 frames of reference。
⼀一個是慣性系 𝑂 ，有三個⽅方向不變的基底向量量{ 5𝑥, 5𝑦, �̂�} 。

⼀一個是旋轉系 𝑂∗ ，有三個⽅方向⼀一直在改變的基底向量量{ 5𝑥∗, 5𝑦∗, �̂�∗} 
在此，先假設這兩兩個系統的原點位置⼀一直重疊著。
若若 𝑂∗ 以通過原點的⼀一個軸旋轉著，其旋轉⾓角速度為 𝜔 。
則基底向量量 5𝑥∗, 5𝑦∗, �̂�∗ 都將繞著此旋轉軸以⾓角速度 𝜔 打轉。

由上表可知，慣性系 𝑂 與旋轉系 𝑂∗ 的原點相同，所以 𝑟 𝑡 = 𝑟∗ 𝑡 。但是因為
旋轉系 𝑂∗ 的觀測者沒有考慮⾃自⼰己的基底座標隨時間在打轉，所以 �⃗� 𝑡 ≠ �⃗�∗ 𝑡
且 �⃗� 𝑡 ≠ �⃗�∗ 𝑡 。學習⽬目的：設法找出 �⃗� 𝑡 , �⃗�∗ 𝑡 , �⃗� 𝑡 , �⃗�∗ 𝑡 之間的關係。 4

慣性系 𝑂 的觀測者描述 旋轉系 𝑂∗ 的觀測者描述

𝑟(𝑡) = 𝑥(𝑡)5𝑥 + 𝑦(𝑡) 5𝑦 + 𝑧(𝑡)�̂� 𝑟∗(𝑡) = 𝑥∗ 𝑡 5𝑥∗(𝑡) + 𝑦∗ 𝑡 5𝑦∗(𝑡) + 𝑧∗ 𝑡 �̂�∗(𝑡)

�⃗� =
𝑑𝑥 𝑡
𝑑𝑡

5𝑥 +
𝑑𝑦 𝑡
𝑑𝑡

5𝑦 +
𝑑𝑧 𝑡
𝑑𝑡

�̂�
�⃗�∗ = 𝑣=∗ 𝑡 5𝑥∗(𝑡) + 𝑣>∗ 𝑡 5𝑦∗(𝑡) + 𝑣?∗ 𝑡 �̂�∗(𝑡)

=
𝑑𝑥∗ 𝑡
𝑑𝑡 5𝑥∗(𝑡) +

𝑑𝑦∗ 𝑡
𝑑𝑡 5𝑦∗(𝑡) +

𝑑𝑧∗ 𝑡
𝑑𝑡 �̂�∗(𝑡)

�⃗� =
𝑑3𝑥 𝑡
𝑑𝑡3 5𝑥 +

𝑑3𝑦 𝑡
𝑑𝑡3 5𝑦 +

𝑑3𝑧 𝑡
𝑑𝑡3 �̂�

�⃗�∗ = 𝑎=∗ 𝑡 5𝑥∗(𝑡) + 𝑎>∗ 𝑡 5𝑦∗(𝑡) + 𝑎?∗ 𝑡 �̂�∗(𝑡)

=
𝑑3𝑥∗ 𝑡
𝑑𝑡3

5𝑥∗(𝑡) +
𝑑3𝑦∗ 𝑡
𝑑𝑡3

5𝑦∗(𝑡) +
𝑑3𝑧∗ 𝑡
𝑑𝑡3

�̂�∗(𝑡)



Rotating Coordinate Systems 之基底向量量
5𝑥∗, 5𝑦∗, �̂�∗對時間的微分

現在先考慮⼀一個通過原點的向量量 𝐵 繞著此旋轉軸以⾓角速度 𝜔 打轉

相對慣性系 𝑂中的觀測者，向量量 𝐵 對時間的微分值，由課本 Fig. 7-3 幾何證明 。證明

過程，很像球⾯面座標中 因為 𝜙 隨時間改變，導致 �̂� 隨時間改變。球⾯面座標中，微分結

果的⽅方向沿著 B𝜙 ⽅方向。在 Fig. 7-3 中 𝐵 對時間微分的⽅方向沿著 𝜔×𝐵 的⽅方向。剛好微

分的⼤大⼩小也是 𝜔𝐵 sin 𝜃 。因此可知，相對慣性系 𝑂中的觀測者， 𝐵 對時間的微分 就

是等於𝜔×𝐵 。

𝑑𝐵
𝑑𝑡

= lim
JK→M

𝐵 𝑡 + Δ𝑡 − 𝐵(𝑡)
Δ𝑡

= 𝜔×𝐵

相對旋轉系 𝑂∗中的觀測者， 𝐵 對時間的微分卻是零：

𝑑∗𝐵
𝑑𝑡

= 0

同理理可證，相對 慣性系 𝑂 中的觀測者，

基底向量量 5𝑥∗, 5𝑦∗, �̂�∗對時間微分的⽅方向，分別為

𝑑 5𝑥∗

𝑑𝑡
= 𝜔×5𝑥∗

𝑑 5𝑦∗

𝑑𝑡
= 𝜔×5𝑦∗

𝑑�̂�∗

𝑑𝑡
= 𝜔×�̂�∗

相對 旋轉系 𝑂∗ 中的觀測者， 基底向量量 5𝑥∗, 5𝑦∗, �̂�∗對時間微分都是零。

𝑑∗ 5𝑥∗

𝑑𝑡
=
𝑑∗ 5𝑦∗

𝑑𝑡
=
𝑑∗�̂�∗

𝑑𝑡
= 0 5



Rotating Coordinate Systems 原點位置重疊

已知
𝑑 5𝑥∗

𝑑𝑡 = 𝜔×5𝑥∗
𝑑 5𝑦∗

𝑑𝑡 = 𝜔×5𝑦∗
𝑑�̂�∗

𝑑𝑡 = 𝜔×�̂�∗

請設法找出 �⃗� 𝑡 , �⃗�∗ 𝑡 , �⃗� 𝑡 , �⃗�∗ 𝑡 之間的關係。

�⃗� 𝑡 =
𝑑𝑟(𝑡)
𝑑𝑡 =

𝑑𝑟∗ 𝑡
𝑑𝑡

=
𝑑𝑥∗ 𝑡
𝑑𝑡 5𝑥∗ 𝑡 +

𝑑𝑦∗ 𝑡
𝑑𝑡 5𝑦∗ 𝑡 +

𝑑𝑧∗ 𝑡
𝑑𝑡 �̂�∗ 𝑡 + 𝑥∗ 𝑡

𝑑 5𝑥∗ 𝑡
𝑑𝑡 + 𝑦∗ 𝑡

𝑑 5𝑦∗ 𝑡
𝑑𝑡 + 𝑧∗ 𝑡

𝑑�̂�∗ 𝑡
𝑑𝑡

= �⃗�∗ 𝑡 + 𝑥∗ 𝑡 𝜔×5𝑥∗ + 𝑦∗ 𝑡 𝜔×5𝑦∗ + 𝑧∗ 𝑡 𝜔×�̂�∗

= �⃗�∗ 𝑡 + 𝜔×𝑟∗ = �⃗�∗ 𝑡 + 𝜔×𝑟

6

慣性系 𝑂 的觀測者描述 旋轉系 𝑂∗ 的觀測者描述

𝑟(𝑡) = 𝑥(𝑡)5𝑥 + 𝑦(𝑡) 5𝑦 + 𝑧(𝑡)�̂� 𝑟∗(𝑡) = 𝑥∗ 𝑡 5𝑥∗(𝑡) + 𝑦∗ 𝑡 5𝑦∗(𝑡) + 𝑧∗ 𝑡 �̂�∗(𝑡)

�⃗�(𝑡) =
𝑑𝑥 𝑡
𝑑𝑡 5𝑥 +

𝑑𝑦 𝑡
𝑑𝑡 5𝑦 +

𝑑𝑧 𝑡
𝑑𝑡 �̂�

�⃗�∗(𝑡) = 𝑣=∗ 𝑡 5𝑥∗(𝑡) + 𝑣>∗ 𝑡 5𝑦∗(𝑡) + 𝑣?∗ 𝑡 �̂�∗(𝑡)

=
𝑑𝑥∗ 𝑡
𝑑𝑡 5𝑥∗(𝑡) +

𝑑𝑦∗ 𝑡
𝑑𝑡 5𝑦∗(𝑡) +

𝑑𝑧∗ 𝑡
𝑑𝑡 �̂�∗(𝑡)

�⃗�(𝑡) =
𝑑3𝑥 𝑡
𝑑𝑡3

5𝑥 +
𝑑3𝑦 𝑡
𝑑𝑡3

5𝑦 +
𝑑3𝑧 𝑡
𝑑𝑡3

�̂�
�⃗�∗(𝑡) = 𝑎=∗ 𝑡 5𝑥∗(𝑡) + 𝑎>∗ 𝑡 5𝑦∗(𝑡) + 𝑎?∗ 𝑡 �̂�∗(𝑡)

=
𝑑3𝑥∗ 𝑡
𝑑𝑡3 5𝑥∗(𝑡) +

𝑑3𝑦∗ 𝑡
𝑑𝑡3 5𝑦∗(𝑡) +

𝑑3𝑧∗ 𝑡
𝑑𝑡3 �̂�∗(𝑡)



Rotating Coordinate Systems 原點位置重疊

�⃗� 𝑡 =
𝑑�⃗� 𝑡
𝑑𝑡 =

𝑑
𝑑𝑡 �⃗�

∗ 𝑡 + 𝜔×𝑟 =
𝑑�⃗�∗ 𝑡
𝑑𝑡 +

𝑑𝜔
𝑑𝑡 ×𝑟 + 𝜔×

𝑑𝑟 𝑡
𝑑𝑡

其中

𝑑�⃗�∗ 𝑡
𝑑𝑡

=
𝑑
𝑑𝑡

𝑑𝑥∗ 𝑡
𝑑𝑡

5𝑥∗(𝑡) +
𝑑𝑦∗ 𝑡
𝑑𝑡

5𝑦∗(𝑡) +
𝑑𝑧∗ 𝑡
𝑑𝑡

�̂�∗(𝑡)

=
𝑑3𝑥∗ 𝑡
𝑑𝑡3 5𝑥∗(𝑡) +

𝑑3𝑦∗ 𝑡
𝑑𝑡3 5𝑦∗(𝑡) +

𝑑3𝑧∗ 𝑡
𝑑𝑡3 �̂�∗(𝑡)

+
𝑑𝑥∗ 𝑡
𝑑𝑡

𝑑 5𝑥∗ 𝑡
𝑑𝑡 +

𝑑𝑦∗ 𝑡
𝑑𝑡

𝑑 5𝑦∗ 𝑡
𝑑𝑡 +

𝑑𝑧∗ 𝑡
𝑑𝑡

𝑑�̂�∗ 𝑡
𝑑𝑡

= �⃗�∗ 𝑡 + 𝑣=∗ 𝑡 𝜔×5𝑥∗ + 𝑣>∗ 𝑡 𝜔×5𝑦∗ + 𝑣?∗ 𝑡 𝜔×�̂�∗

= �⃗�∗ 𝑡 + 𝜔×�⃗�∗

and
𝑑𝑟 𝑡
𝑑𝑡 = �⃗� 𝑡 = �⃗�∗ 𝑡 + 𝜔×𝑟

Thus

�⃗� 𝑡 = �⃗�∗ 𝑡 + 𝜔×�⃗�∗ +
𝑑𝜔
𝑑𝑡 ×𝑟 + 𝜔× �⃗�∗ 𝑡 + 𝜔×𝑟

= �⃗�∗ 𝑡 + 2𝜔×�⃗�∗ + 𝜔× 𝜔×𝑟 +
𝑑𝜔
𝑑𝑡

×𝑟 7



已知：慣性系 𝑂 的觀測者描述 已知：旋轉系 𝑂∗ 的觀測者描述

𝑟(𝑡) = 𝑥(𝑡)5𝑥 + 𝑦(𝑡) 5𝑦 + 𝑧(𝑡)�̂� 𝑟∗(𝑡) = 𝑥∗ 𝑡 5𝑥∗(𝑡) + 𝑦∗ 𝑡 5𝑦∗(𝑡) + 𝑧∗ 𝑡 �̂�∗(𝑡)

�⃗�(𝑡) =
𝑑𝑥 𝑡
𝑑𝑡 5𝑥 +

𝑑𝑦 𝑡
𝑑𝑡 5𝑦 +

𝑑𝑧 𝑡
𝑑𝑡 �̂�

�⃗�∗(𝑡) = 𝑣=∗ 𝑡 5𝑥∗(𝑡) + 𝑣>∗ 𝑡 5𝑦∗(𝑡) + 𝑣?∗ 𝑡 �̂�∗(𝑡)

=
𝑑𝑥∗ 𝑡
𝑑𝑡 5𝑥∗(𝑡) +

𝑑𝑦∗ 𝑡
𝑑𝑡 5𝑦∗(𝑡) +

𝑑𝑧∗ 𝑡
𝑑𝑡 �̂�∗(𝑡)

�⃗�(𝑡) =
𝑑3𝑥 𝑡
𝑑𝑡3

5𝑥 +
𝑑3𝑦 𝑡
𝑑𝑡3

5𝑦 +
𝑑3𝑧 𝑡
𝑑𝑡3

�̂�
�⃗�∗(𝑡) = 𝑎=∗ 𝑡 5𝑥∗(𝑡) + 𝑎>∗ 𝑡 5𝑦∗(𝑡) + 𝑎?∗ 𝑡 �̂�∗(𝑡)

=
𝑑3𝑥∗ 𝑡
𝑑𝑡3 5𝑥∗(𝑡) +

𝑑3𝑦∗ 𝑡
𝑑𝑡3 5𝑦∗(𝑡) +

𝑑3𝑧∗ 𝑡
𝑑𝑡3 �̂�∗(𝑡)

求出 �⃗� 𝑡 , �⃗�∗ 𝑡 , �⃗� 𝑡 , �⃗�∗ 𝑡 之間的關係 求出 �⃗� 𝑡 , �⃗�∗ 𝑡 , �⃗� 𝑡 , �⃗�∗ 𝑡 之間的關係

�⃗�(𝑡) = �⃗�∗ 𝑡 + 𝜔×𝑟 �⃗�∗ 𝑡 = �⃗� 𝑡 − 𝜔×𝑟

�⃗� 𝑡 = �⃗�∗ 𝑡 + 2𝜔×�⃗�∗ + 𝜔× 𝜔×𝑟 +
𝑑𝜔
𝑑𝑡 ×𝑟 �⃗�∗ 𝑡 = �⃗� 𝑡 − 2𝜔×�⃗�∗ − 𝜔× 𝜔×𝑟 −

𝑑𝜔
𝑑𝑡 ×𝑟

�⃗� 𝑡 = 𝑚�⃗� 𝑡 𝑚�⃗�∗ 𝑡

= �⃗� 𝑡 − 2𝑚𝜔×�⃗�∗ − 𝑚𝜔× 𝜔×𝑟 −𝑚
𝑑𝜔
𝑑𝑡

×𝑟

= 真實⼒力力＋
科⽒氏⼒力力
Coriolis
force

+
離⼼心⼒力力

Centrifugal
force

＋另⼀一種假⼒力力

總結 Rotating Coordinate Systems原點位置重疊
已知

𝑑 5𝑥∗

𝑑𝑡 = 𝜔×5𝑥∗
𝑑 5𝑦∗

𝑑𝑡 = 𝜔×5𝑦∗
𝑑�̂�∗

𝑑𝑡 = 𝜔×�̂�∗

8



Rotating Coordinate Systems 原點位置不重疊

9

278 MOVING COORDINATE SYSTEMS [CHAP. 7

is at rest, and use the laws of diffusion to study the diffusion of cream
toward the axis under the action of the centrifugal force field, than to try

to study the motion from the point of view of a fixed observer watching
the whirling liquid.

We can treat coordinate systems in simultaneous translation and rota-

tion relative to each other by using Eq. (7-1) to represent the relation be-

tween the coordinate vectors r and r* relative to origins 0, 0* not neces-

sarily coincident. In the derivation of Eqs. (7-32), no assumption was
made about the origin of the starred coordinates, and therefore Eqs. (7-22)

and (7-23) may still be used to express the time derivatives of any vector

with respect to the unstarred coordinate system in terms of its time de-

rivatives with respect to the starred system. Replacing dt*/dt, d2t*/dt in

Eqs. (7-5) and (7-6) by their expressions in terms of the starred deriva-

tives relative to the starred system as given by Eqs. (7-33) and (7-34),

we obtain for the position, velocity, and acceleration of a point with re-

spect to coordinate systems in relative translation and rotation

:

r = r* + h, (7-38)

7-3 Laws of motion on the rotating earth. We write the equation of

motion, relative to a coordinate system fixed in space, for a particle of

mass ra subject to a gravitational force rag and any other nongravitational

forces F:

m^p=F + rag. (7-41)

Now if we refer the motion of the particle to a coordinate system at rest

relative to the earth, which rotates with constant angular velocity u, and
if we measure the position vector r from the center of the earth, we have,

by Eq. (7-34)

:

d*2
r d*i= ra -jTg- + raw X (« X r) + 2mu X -3-

»

(7-42)

which can be rearranged in the form

d*2
r d*rm— = F + ra[g - » X (w X r)] - 2ra« X ~- • (7-43)

𝑟∗ = 𝑟 − ℎ
𝑑∗𝑟∗

𝑑𝑡
=
𝑑𝑟
𝑑𝑡
− 𝜔×𝑟∗ −

𝑑ℎ
𝑑𝑡

�⃗�∗ = �⃗� − 𝜔×𝑟∗ − �⃗�*
𝑑∗3𝑟∗

𝑑𝑡3
=
𝑑3𝑟
𝑑𝑡3

− 𝜔× 𝜔×𝑟∗ − 2𝜔×
𝑑∗𝑟∗

𝑑𝑡
−
𝑑𝜔
𝑑𝑡

×𝑟∗ −
𝑑3ℎ
𝑑𝑡3

�⃗�∗ = �⃗� − −𝜔× 𝜔×𝑟∗ − 2𝜔×�⃗�∗ −
𝑑𝜔
𝑑𝑡

×𝑟∗ − �⃗�*



278 MOVING COORDINATE SYSTEMS [CHAP. 7

is at rest, and use the laws of diffusion to study the diffusion of cream
toward the axis under the action of the centrifugal force field, than to try

to study the motion from the point of view of a fixed observer watching
the whirling liquid.

We can treat coordinate systems in simultaneous translation and rota-

tion relative to each other by using Eq. (7-1) to represent the relation be-

tween the coordinate vectors r and r* relative to origins 0, 0* not neces-

sarily coincident. In the derivation of Eqs. (7-32), no assumption was
made about the origin of the starred coordinates, and therefore Eqs. (7-22)

and (7-23) may still be used to express the time derivatives of any vector

with respect to the unstarred coordinate system in terms of its time de-

rivatives with respect to the starred system. Replacing dt*/dt, d2t*/dt in

Eqs. (7-5) and (7-6) by their expressions in terms of the starred deriva-

tives relative to the starred system as given by Eqs. (7-33) and (7-34),

we obtain for the position, velocity, and acceleration of a point with re-

spect to coordinate systems in relative translation and rotation

:

r = r* + h, (7-38)

7-3 Laws of motion on the rotating earth. We write the equation of

motion, relative to a coordinate system fixed in space, for a particle of

mass ra subject to a gravitational force rag and any other nongravitational

forces F:

m^p=F + rag. (7-41)

Now if we refer the motion of the particle to a coordinate system at rest

relative to the earth, which rotates with constant angular velocity u, and
if we measure the position vector r from the center of the earth, we have,

by Eq. (7-34)

:

d*2
r d*i= ra -jTg- + raw X (« X r) + 2mu X -3-

»

(7-42)

which can be rearranged in the form

d*2
r d*rm— = F + ra[g - » X (w X r)] - 2ra« X ~- • (7-43)

10
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This equation has the same form as Newton's equation of motion. We
have combined the gravitational and centrifugal force terms because both
are proportional to the mass of the particle and both depend only on the

position of the particle; in their mechanical effects these two forces are

indistinguishable. We may define the effective gravitational acceleration

ge at any point on the earth's surface by:

g.(r) = g(r) - co X (co X r). (7-44)

The gravitational force which we measure experimentally on a body of

mass m at restf on the earth's surface is mge . Since —w X (co X r) points

radially outward from the earth's axis, ge at every point north of the
equator will point slightly to the south of the earth's center, as can be
seen from Fig. 7-5. A body released near the earth's surface will begin
to fall in the direction of ge , the direction determined by a plumb line is

that of ge , and a liquid will come to equilibrium with its surface perpen-
dicular to ge - This is why the earth has settled into equilibrium in the
form of an oblate ellipsoid, flattened at the poles. The degree of flattening

is just such as to make the earth's surface at every point perpendicular to

ge (ignoring local irregularities).

Equation (7-43) can now be written

d*2
r d*T

(7-45)

The velocity and acceleration which appear in this equation are unaffected
if we relocate our origin of coordinates at any convenient point at the sur-

face of the earth; hence this equation applies to the motion of a particle of

mass m at the surface of the earth relative to a local coordinate system at
rest on the earth's surface. The only unfamiliar term is the coriolis force

« x (w x r)

Fig. 7-5. Effective acceleration of gravity on the rotating earth.

t A body in motion is subject also to the coriolis force.

11
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地球⾃自轉的離⼼心加速度
，通常已經被納入
「有效的重⼒力力加速度」
中
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which acts on a moving particle. The reader can convince himself by a

few calculations that this force is comparatively small at ordinary veloci-

ties d*i/dt. It will be instructive to try working out the direction of the

coriolis force for various directions of motion at various places on the

earth's surface. The coriolis force is of major importance in the motion
of large air masses, and is responsible for the fact that in the northern

hemisphere tornados and cyclones circle in the direction south to east to

north to west. In the northern hemisphere, the coriolis force acts to de-

flect a moving object toward the right. As the winds blow toward a low
pressure area, they are deflected to the right, so that they circle the low
pressure area in a counterclockwise direction. An air mass circling in this

way will have a low pressure on its left, and a higher pressure on its right.

This is just what is needed to balance the coriolis force urging it to the

right. An air mass can move steadily in one direction only if there is a

high pressure to the right of it to balance the coriolis force. Conversely,

a pressure gradient over the surface of the earth tends to develop winds

moving at right angles to it. The prevailing westerly winds in the northern

temperate zone indicate that the atmospheric pressure toward the equator

is greater than toward the poles, at least near the earth's surface. The
easterly trade winds in the equatorial zone are due to the fact that any air

mass moving toward the equator will acquire a velocity toward the west

due to the coriolis force acting on it. The trade winds are maintained by
high pressure areas on either side of the equatorial zone.

7-4 The Foucault pendulum. An interesting application of the theory

of rotating coordinate systems is the problem of the Foucault pendulum.

The Foucault pendulum has a bob hanging from a string arranged to swing

freely in any vertical plane. The pendulum is started swinging in a defi-

nite vertical plane and it is observed that the plane of swinging gradually

precesses about the vertical axis during a period of several hours. The
bob must be made heavy, the string very long, and the support nearly

frictionless, in order that the pendulum can continue to swing freely for

long periods of time. If we choose the origin of coordinates directly below

the point of support, at the point of equilibrium of the pendulum bob of

mass m, then the vector r will be nearly horizontal, for small amplitudes of

oscillation of the pendulum. In the northern hemisphere, a points in the

general direction indicated in Fig. 7-6, relative to the vertical. Writing t

for the tension in the string, we have as the equation of motion of the bob,

according to Eq. (7—15)

:

d* 2
i d*im -^p- = r + mge — 2mu X -^- • (7-46)

If the coriolis force were not present, this would be the equation for a

13
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Exercise

1. 請分析地表赤道地區的觀測者，觀測以下質量為m的衛星所
受到的柯氏力Coriolis force 與離心力 Centrifugal force 的
方向與大小

a) 在慣性座標系的觀測者看此衛星，以24小時的週期，
繞行地球赤道一圈

b) 在慣性座標系的觀測者看此衛星，以12 小時的週期，繞行
地球赤道一圈

c) 在慣性座標系的觀測者看此衛星，以48 小時的週期，繞行
地球赤道一圈

2. 請分析地表赤道地區的觀測者，觀測觀測無窮遠恆星所受
到的柯氏力Coriolis force 與離心力 Centrifugal force 的
方向與大小

14
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which acts on a moving particle. The reader can convince himself by a

few calculations that this force is comparatively small at ordinary veloci-

ties d*i/dt. It will be instructive to try working out the direction of the

coriolis force for various directions of motion at various places on the

earth's surface. The coriolis force is of major importance in the motion
of large air masses, and is responsible for the fact that in the northern

hemisphere tornados and cyclones circle in the direction south to east to

north to west. In the northern hemisphere, the coriolis force acts to de-

flect a moving object toward the right. As the winds blow toward a low
pressure area, they are deflected to the right, so that they circle the low
pressure area in a counterclockwise direction. An air mass circling in this

way will have a low pressure on its left, and a higher pressure on its right.

This is just what is needed to balance the coriolis force urging it to the

right. An air mass can move steadily in one direction only if there is a

high pressure to the right of it to balance the coriolis force. Conversely,

a pressure gradient over the surface of the earth tends to develop winds

moving at right angles to it. The prevailing westerly winds in the northern

temperate zone indicate that the atmospheric pressure toward the equator

is greater than toward the poles, at least near the earth's surface. The
easterly trade winds in the equatorial zone are due to the fact that any air

mass moving toward the equator will acquire a velocity toward the west

due to the coriolis force acting on it. The trade winds are maintained by
high pressure areas on either side of the equatorial zone.

7-4 The Foucault pendulum. An interesting application of the theory

of rotating coordinate systems is the problem of the Foucault pendulum.

The Foucault pendulum has a bob hanging from a string arranged to swing

freely in any vertical plane. The pendulum is started swinging in a defi-

nite vertical plane and it is observed that the plane of swinging gradually

precesses about the vertical axis during a period of several hours. The
bob must be made heavy, the string very long, and the support nearly

frictionless, in order that the pendulum can continue to swing freely for

long periods of time. If we choose the origin of coordinates directly below

the point of support, at the point of equilibrium of the pendulum bob of

mass m, then the vector r will be nearly horizontal, for small amplitudes of

oscillation of the pendulum. In the northern hemisphere, a points in the

general direction indicated in Fig. 7-6, relative to the vertical. Writing t

for the tension in the string, we have as the equation of motion of the bob,

according to Eq. (7—15)

:

d* 2
i d*im -^p- = r + mge — 2mu X -^- • (7-46)

If the coriolis force were not present, this would be the equation for a

佛科擺 Foucault pendulum 的擺⾯面進動問題
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mge

simple pendulum on a nonrotating
earth. The coriolis force is very
small, less than 0.1% of the gravita-

tional force if the velocity is 5 mi/hr
or less, and its vertical component is

therefore negligible in comparison
with the gravitational force. (It is

the vertical force which determines
the magnitude of the tension in the
string.) However, the horizontal

component of the coriolis force is

perpendicular to the velocity d*r/dt,

and as there are no other forces in

this direction when the pendulum
swings to and fro, it can change the
nature of the motion. Any force with a horizontal component perpendic-
ular to d*r/dt will make it impossible for the pendulum to continue to
swing in a fixed vertical plane. In order to solve the problem including
the coriolis term, we use the experimental result as a clue, and try to find

a new coordinate system rotating about the vertical axis through the
point of support at such an angular velocity that in this system the
coriolis terms, or at least their horizontal components, are missing. Let
us introduce a new coordinate system rotating about the vertical axis

with constant angular velocity kQ, where k is a vertical unit vector. We
shall call this precessing coordinate system the primed coordinate system,
and denote the time derivative with respect to this system by d'/dt.

Then we shall have, by Eqs. (7-33) and (7-34)

:

Fig. 7-6. The Foucault pendulum.

d<2 dl2

Equation (7-46) becomes

d'
2
Tm

~M2 = T + m&°

d*I d'T
, n. ^

J*2_ j/2_
= ^ + a2kx(kxr)+2!lkx

dt
'

(7-47)

(7-48)

2m« X t^ + Qk X i)

m£2
2k X (k X r) — 2mGk X ^f

d't

dt

r + mge — 2mO&> x (k x r) — mfi2k X (k X r)

d't
2m(w + kfi) X

dt (7-49)
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找⼀一個旋轉系，
讓擺錘的⽔水平受
⼒力力為零，則此旋
轉系的旋轉⾓角速
度，就是「佛科
擺」擺⾯面的進動
⾓角速度。
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We expand the triple products by means of Eq. (3-35)

:

d'
2
r 2i,

m-375- = t + mge — m(2fiwr + fi k-r)k
<8a

+ m(2fik-w + fi
2
)r - 2m(« + kO) X ^ • (7-50)

Every vector on the right side of Eq. (7-50) lies in the vertical plane con-

taining the pendulum, except the last term. Since, for small oscillations,

d'r/dt is practically horizontal, we can make the last term lie in this vertical

plane also by making (« + kfi) horizontal. We therefore require that

k-(w + kSi) = 0. (7-51)

This determines :

U = —w cos 0, (7-52)

where w is the angular velocity of the rotating earth, fi is the angular

velocity of the precessing coordinate system relative to the earth, and 6 is

the angle between the vertical and the earth's axis, as indicated in Fig. 7-6.

The vertical is along the direction of —

g

e , and since this is very nearly the

same as the direction of —g (see Fig. 7-5), 6 will be practically equal to the

colatitude, that is, the angle between r and w in Fig. 7-5. For small oscilla-

tions, if fi is determined by Eq. (7-52), the cross product in the last term

of Eq. (7-50) is vertical. Since all terms on the right of Eq. (7-50) now
lie in a vertical plane containing the pendulum, the acceleration d'

2r/dt2

of the bob in the precessing system is always toward the vertical axis, and

if the pendulum is initially swinging to and fro, it will continue to swing

to and fro in the same vertical plane in the precessing coordinate system.

Relative to the earth, the plane of the motion precesses with angular

velocity Q of magnitude and sense given by Eq. (7-52). In the northern

hemisphere, the precession is clockwise looking down.

Since the last three terms on the right in Eq. (7-50) are much smaller

than the first two, the actual motion in the precessing coordinate system

is practically the same as for a pendulum on a nonrotating earth. Even at

large amplitudes, where the velocity d'r/dt has a vertical component, care-

ful study will show that the last term in Eq. (7-50), when Q. is chosen

according to Eq. (7-52), does not cause any additional precession relative

to the precessing coordinate system, but merely causes the bob to swing in

an arc which passes slightly east of the vertical through the point of sup-

port. At the equator, Q. is zero, and the Foucault pendulum does not pre-

cess; by thinking about it a moment, perhaps you can see physically why
this is so. At the north or south pole, £2 = ±w, and the pendulum merely

swings in a fixed vertical plane in space while the earth turns beneath it.

7-5] lamor's theorem 283

Note that we have been able to give a fairly complete discussion of the
Foucault pendulum, by using Coriolis' theorem twice, without actually
solving the equations of motion at all.

7-5 Laimor's theorem. The coriolis force in Eq. (7-37) is of the same
form as the magnetic force acting on a charged particle (Eq. 3-281), in
that both are given by the cross product of the velocity of the particle
with a vector representing a force field. Indeed, in the general theory of
relativity, the coriolis forces on a particle in a rotating system can be re-
garded as due to the relative motion of other masses in the universe in a
way somewhat analogous to the magnetic force acting on a charged par-
ticle which is due to the relative motion of other charges. The similarity
in form of the two forces suggests that the effect of a magnetic field on a
system of charged particles may be canceled by introducing a suitable
rotating coordinate system. This idea leads to Larmor's theorem, which
we state first, and then prove:

Larmor's theorem. If a system of charged particles, all having the same
ratio q/m of charge to mass, acted on by their mutual (central) forces, and
by a central force toward a common center, is subject in addition to a weak
uniform magneticfield B, its possible motions will be the same as the motions
it could perform without the magnetic field, superposed upon a slow pre-
cession of the entire system about the center of force with angular velocity

- = ~ db B (7"53)

The definition of a weak magnetic field will appear as the proof is de-
veloped. We shall assume that all the particles have the same charge q
and the same mass m, although it will be apparent that the only thing that
needs to be assumed is that the ratio q/m is constant. Practically the
only important applications of Larmor's theorem are to the behavior of
an atom in a magnetic field. The particles here are electrons of mass m,
charge q = —e, acted upon by their mutual electrostatic repulsions and
by the electrostatic attraction of the nucleus.

Let the central force acting on the fcth particle be ¥%, and let the sum of
the forces due to the other particles be F\. Then the equations of motion
of the system of particles, in the absence of a magnetic field, are

m^i = Fc
k + Ft, k = 1, . . . , N, (7-54)

where N is the total number of particles. The force F% depends only on
the distance of particle fc from the center of force, which we shall take as
origin, and the forces F^ depend only on the distances of the particles from
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