$A=$ SLS $^{-1}$

－如果矩陣A有n個eigenvalue and n 個 independent eigenvectors 則

$$
\begin{aligned}
& A\left[\begin{array}{ccc}
\uparrow & & \uparrow \\
\mathbf{x}_{1} & \ldots & \mathbf{x}_{n} \\
\downarrow & & \downarrow
\end{array}\right]=\left[\begin{array}{ccc}
\uparrow & & \uparrow \\
\lambda_{1} \mathbf{x}_{1} & \ldots & \lambda_{n} \mathbf{x}_{n} \\
\downarrow & & \downarrow
\end{array}\right]=\left[\begin{array}{ccc}
\uparrow & & \uparrow \\
\mathbf{x}_{1} & \ldots & \mathbf{x}_{n} \\
\downarrow & & \downarrow
\end{array}\right]\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & \lambda_{n}
\end{array}\right] \\
& \text { Let } S=\left[\begin{array}{ccc}
\uparrow & & \uparrow \\
\mathbf{x}_{1} & \ldots & \mathbf{x}_{n} \\
\downarrow & & \downarrow
\end{array}\right] \text { and } \Lambda=\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & \lambda_{n}
\end{array}\right] \Rightarrow A S=S \Lambda \Rightarrow A=S \Lambda S^{-1}
\end{aligned}
$$

Symmetric Real Matrices

- If a matrix A satisfies $A_{i j} \in R$ and $A_{i j}=A_{j i}$ or $A=A^{T}$ then A is a symmetric real matrix
- The eigenvalues of a symmetric real matrix are all real numbers.
- The eigenvectors of a symmetric real matrix that corresponding to different eigenvlaues are perpendicular to each other.
- One can always find a set of orthonormal eigenvectors to diagonalized the symmetric matrix.

Hermitian Matrices

- If a matrix A satisfies $A_{i j} \in C$ and $A_{i j}=\bar{A}_{j i}$ or $A=\bar{A}^{T}$ then A is a Hermitian matrix
- The eigenvalues of a Hermitian matrix are all real numbers.
- The eigenvectors of a Hermitian matrix that corresponding to different eigenvlaues are perpendicular to each other.
- One can always find a set of orthonormal eigenvectors to diagonalized the Hermitian matrix.

Proof:

The eigenvalues of a Hermitian matrix are all real numbers

(1) $A=\bar{A}^{T}$
(2) $A \mathbf{x}=\lambda \mathbf{x}$

Taking complex conjugate and transpose of equation (2), it yields
(3) $\overline{\mathbf{x}}^{T} \bar{A}^{T}=\bar{\lambda} \overline{\mathbf{x}}^{T}$

Substituting equation (1) into equation (3), it yields
(4) $\overline{\mathbf{x}}^{T} A=\overline{\overline{\mathbf{x}}} \overline{\mathbf{x}}^{T}$
$\overline{\mathbf{x}}^{T}(2) \Rightarrow$
(5) $\overline{\mathbf{x}}^{T} A \mathbf{x}=\lambda \overline{\mathbf{x}}^{T} \mathbf{x}$

Substituting equation (4) into equation (5), it yields
(6) $\bar{\lambda} \overline{\mathbf{x}}^{T} \mathbf{x}=\lambda \overline{\mathbf{x}}^{T} \mathbf{x}$

Since $\overline{\mathbf{x}}^{T} \mathbf{x}=\|\mathbf{x}\|^{2}>0$, equation (6) yields $\bar{\lambda}=\lambda$. That is $\lambda \in R$.

Proof:

The eigenvectors of a Hermitian matrix that corresponding to different eigenvlaues are perpendicular to each other

(1) $A=\bar{A}^{T}$
(2) $\lambda_{1} \neq \lambda_{2}$, and both of them are real numbers
(3) $A \mathbf{x}_{1}=\lambda_{1} \mathbf{x}_{1}$
(4) $A \mathbf{x}_{2}=\lambda_{2} \mathbf{x}_{2}$

Taking complex conjugate and transpose of equation (4), it yields
(5) $\overline{\mathbf{x}}_{2}^{T} \bar{A}^{T}=\lambda_{2} \overline{\mathbf{x}}_{2}^{T}$

Substituting equation (1) into equation (5), it yields
(6) $\overline{\mathbf{x}}_{2}^{T} A=\lambda_{\mathbf{2}} \overline{\mathbf{x}}_{2}^{T}$
$\overline{\mathbf{x}}_{2}^{T}(3) \Rightarrow$
(7) $\overline{\mathbf{x}}_{2}^{T} A \mathbf{x}_{1}=\lambda_{1} \overline{\mathbf{x}}_{2}^{T} \mathbf{x}_{1}$

Substituting equation (6) into equation (7), it yields
(8) $\lambda_{2} \overline{\mathbf{x}}_{2}^{T} \mathbf{x}_{1}=\lambda_{1} \overline{\mathbf{x}}_{2}^{T} \mathbf{x}_{1} \Rightarrow\left(\lambda_{2}-\lambda_{1}\right) \overline{\mathbf{x}}_{2}^{T} \mathbf{x}_{1}=0$

Since $\lambda_{2}-\lambda_{1} \neq 0$, equation (8) yields $\overline{\mathbf{x}}_{2}^{T} \mathbf{x}_{1}=0$. That is $\mathbf{x}_{2} \perp \mathbf{x}_{1}$

True or False?

If λ is an eigenvalue of matrix A, and β is an eigenvalue of matrix B, then $\lambda \beta$ is an eigenvalue of matrix $A B$. True or False?
If it is True, Prove it. If it is False, explain why.

If λ is an eigenvalue of matrix A, and β is an eigenvalue of matrix B, then $\lambda+\beta$ is an eigenvalue of matrix $A+B$. True or False?
If it is True, Prove it. If it is False, explain why.

