A=SLS⁻¹

 如果矩陣A有n個eigenvalue and n 個 independent eigenvectors 則

$$A\begin{bmatrix}\uparrow\uparrow&\uparrow\\\mathbf{x}_{1}&\ldots&\mathbf{x}_{n}\\\downarrow&\downarrow&\downarrow\end{bmatrix} = \begin{bmatrix}\uparrow\uparrow&\uparrow\\\lambda_{1}\mathbf{x}_{1}&\ldots&\lambda_{n}\mathbf{x}_{n}\\\downarrow&\downarrow&\downarrow\end{bmatrix} = \begin{bmatrix}\uparrow\uparrow&\uparrow\\\mathbf{x}_{1}&\ldots&\mathbf{x}_{n}\\\downarrow&\downarrow&\downarrow\end{bmatrix} \begin{bmatrix}\lambda_{1}&0&0\\0&\ddots&0\\0&0&\lambda_{n}\end{bmatrix}$$
$$Let S = \begin{bmatrix}\uparrow\uparrow&\uparrow\\\mathbf{x}_{1}&\ldots&\mathbf{x}_{n}\\\downarrow&\downarrow&\downarrow\end{bmatrix} and \Lambda = \begin{bmatrix}\lambda_{1}&0&0\\0&\ddots&0\\0&0&\lambda_{n}\end{bmatrix} \Rightarrow AS = S\Lambda \Rightarrow A = S\Lambda S^{-1}$$

11

Symmetric Real Matrices

- If a matrix A satisfies $A_{ij} \in R$ and $A_{ij} = A_{ji}$ or $A = A^T$ then A is a symmetric real matrix
 - The eigenvalues of a symmetric real matrix are all real numbers.
 - The eigenvectors of a symmetric real matrix that corresponding to different eigenvlaues are perpendicular to each other.
 - One can always find a set of orthonormal eigenvectors to diagonalized the symmetric matrix.

Hermitian Matrices

- If a matrix A satisfies $A_{ij} \in C$ and $A_{ij} = \overline{A}_{ji}$ or $A = \overline{A}^T$ then A is a Hermitian matrix
 - The eigenvalues of a Hermitian matrix are all real numbers.
 - The eigenvectors of a Hermitian matrix that corresponding to different eigenvlaues are perpendicular to each other.
 - One can always find a set of orthonormal eigenvectors to diagonalized the Hermitian matrix.

Proof:

The eigenvalues of a Hermitian matrix are all real numbers

(1)
$$A = \overline{A}^T$$

(2)
$$A\mathbf{x} = \lambda \mathbf{x}$$

Taking complex conjugate and transpose of equation (2), it yields

$$(3) \quad \overline{\mathbf{x}}^T \overline{A}^T = \overline{\lambda} \overline{\mathbf{x}}^T$$

Substituting equation (1) into equation (3), it yields

$$(4) \quad \overline{\mathbf{x}}^T A = \overline{\lambda} \overline{\mathbf{x}}^T$$

 $\overline{\mathbf{x}}^{T}(2) \Rightarrow$

(5)
$$\overline{\mathbf{x}}^T A \mathbf{x} = \lambda \overline{\mathbf{x}}^T \mathbf{x}$$

Substituting equation (4) into equation (5), it yields

(6)
$$\overline{\lambda}\overline{\mathbf{x}}^T\mathbf{x} = \lambda\overline{\mathbf{x}}^T\mathbf{x}$$

Since $\overline{\mathbf{x}}^T \mathbf{x} = \|\mathbf{x}\|^2 > 0$, equation (6) yields $\overline{\lambda} = \lambda$. That is $\lambda \in R$.

Proof:

The eigenvectors of a Hermitian matrix that corresponding to different eigenvlaues are perpendicular to each other

- (1) $A = \overline{A}^T$
- (2) $\lambda_1 \neq \lambda_2$, and both of them are real numbers
- $(3) \quad A\mathbf{x}_1 = \lambda_1 \mathbf{x}_1$
- $(4) \quad A\mathbf{x}_2 = \lambda_2 \mathbf{x}_2$

Taking complex conjugate and transpose of equation (4), it yields

(5)
$$\overline{\mathbf{x}}_2^T \overline{A}^T = \lambda_2 \overline{\mathbf{x}}_2^T$$

Substituting equation (1) into equation (5), it yields

$$(6) \quad \overline{\mathbf{x}}_2^T A = \lambda_2 \overline{\mathbf{x}}_2^T$$

 $\overline{\mathbf{x}}_{2}^{T}(3) \Rightarrow$

(7) $\overline{\mathbf{x}}_{2}^{T}A\mathbf{x}_{1} = \lambda_{1}\overline{\mathbf{x}}_{2}^{T}\mathbf{x}_{1}$

Substituting equation (6) into equation (7), it yields

(8)
$$\lambda_2 \overline{\mathbf{x}}_2^T \mathbf{x}_1 = \lambda_1 \overline{\mathbf{x}}_2^T \mathbf{x}_1 \implies (\lambda_2 - \lambda_1) \overline{\mathbf{x}}_2^T \mathbf{x}_1 = 0$$

Since $\lambda_2 - \lambda_1 \neq 0$, equation (8) yields $\overline{\mathbf{x}}_2^T \mathbf{x}_1 = 0$. That is $\mathbf{x}_2 \perp \mathbf{x}_1$

15

True or False?

If λ is an eigenvalue of matrix *A*, and β is an eigenvalue of matrix *B*, then $\lambda\beta$ is an eigenvalue of matrix *AB*. True or False? If it is True, Prove it. If it is False, explain why.

If λ is an eigenvalue of matrix *A*, and β is an eigenvalue of matrix *B*, then $\lambda + \beta$ is an eigenvalue of matrix A + B. True or False? If it is True, Prove it. If it is False, explain why.