

Linear Algebra Lecture 7b (Chap. 6) Eigenvalue and Eigenvector -- A General Discussion

Ling-Hsiao Lyu

Institute of Space Science, National Central University Chung-Li, Taiwan, R. O. C.

Objectives

- Examine the eigenvalues and eigenvectors of the following matrices
 - 1. Matrices with repeated eigenvalues
 - a) Projection matrix
 - b) Upper triangle matrix with repeated diagonal terms
 - 2. Antisymmetric (skew-symmetric) real matrices
 - 3. Symmetric real matrices
 - 4. Hermitian matrices
 - 5. Markov matrices
- Application to differential equations

Matrices with repeated eigenvalues (projection matrix)

- Example 1: Projection matrix
 - Let P be a projection matrix that project a vector to a space that was spanned by the three vectors \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 $\mathbf{a}_1 = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \end{bmatrix}$ $\mathbf{a}_2 = \begin{bmatrix} 3 \\ 4 \\ 0 \\ 0 \end{bmatrix}$ $\mathbf{a}_3 = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 0 \end{bmatrix}$

 What are the eigenvalues and the corresponding eigenvectors of P?

Matrices with repeated eigenvalues (projection matrix)

- 由 projection matrix 的特性可得:
- P should have the following eigenvalues

$$\lambda_1 = 0$$
, $\lambda_2 = \lambda_3 = \lambda_4 = 1$

• 由 a₁, a₂, a₃ 的特性可得:

The corresponding orthonormal
$$\mathbf{e}_1 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \quad \mathbf{e}_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \quad \mathbf{e}_3 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \quad \mathbf{e}_4 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$
 eigenvectors are

Matrices with repeated eigenvalues (projection matrix)

• The corresponding eigenvectors of $\lambda_2 = \lambda_3 = \lambda_4 = 1$ are not unique. Here are other choices

$$\mathbf{e}_{2} = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \\ 0 \end{bmatrix} \quad \mathbf{e}_{3} = \begin{bmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \\ 0 \end{bmatrix} \quad \mathbf{e}_{4} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \quad \text{or} \quad \mathbf{e}_{2} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \quad \mathbf{e}_{3} = \begin{bmatrix} 0 \\ 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{bmatrix} \quad \mathbf{e}_{4} = \begin{bmatrix} 0 \\ -1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{bmatrix}$$

Matrices with repeated eigenvalues (nondiagonalizable matrix)

- Example 2: Upper triangle matrix with repeated diagonal terms $_{A} = \begin{bmatrix} 3 & 1 \\ 0 & 3 \end{bmatrix}$
- Matrix A has repeated eigenvalues 3, 3
- Matrix A has only one eigenvector
 ¹
 ₀

Antisymmetric Real Matrices

• If a matrix A satisfies $A_{ij} = -A_{ji}$ and $A_{ij} \in R$ then A is an antisymmetric real matrix

Case 1
$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \det(A - \lambda I) = \det \begin{bmatrix} -\lambda & 1 \\ -1 & -\lambda \end{bmatrix} = \lambda^2 + 1 = 0 \Rightarrow \lambda = +i, \text{ or } -i$$
Case 2
$$A = \begin{bmatrix} 0 & -B_z & B_y \\ B_z & 0 & -B_x \\ -B_y & B_x & 0 \end{bmatrix} \det(A - \lambda I) = \det \begin{bmatrix} -\lambda & -B_z & B_y \\ B_z & -\lambda & -B_x \\ -B_y & B_x & -\lambda \end{bmatrix} = -\lambda^3 - \lambda(B_x^2 + B_y^2 + B_z^2) = 0$$

$$\Rightarrow \lambda = 0, \text{ or } \pm iB, \text{ where } B = \sqrt{B_x^2 + B_y^2 + B_z^2}. \text{ The corresponding eigen vector of } \lambda = 0 \text{ is } \begin{bmatrix} B_x \\ B_y \\ B_z \end{bmatrix}$$

Antisymmetric Real Matrices

- The eigenvalues of antisymmetric real matrices are real numbers or complex conjugate numbers.
- In Case 1, $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \Rightarrow \lambda = +i$, or $-i \Rightarrow ||\lambda|| = 1$
- The length of the eigenvalue of the orthogonal matrix $A^TA = I$ is always equal to 1.

Proof:
$$A\mathbf{x} = \lambda \mathbf{x} \Rightarrow \overline{\mathbf{x}}^T A^T = \overline{\lambda} \overline{\mathbf{x}}^T \Rightarrow \overline{\mathbf{x}}^T A^T A \mathbf{x} = \overline{\lambda} \overline{\mathbf{x}}^T \lambda \mathbf{x}$$

$$A^T A = I \Rightarrow \overline{\mathbf{x}}^T \mathbf{x} = \overline{\lambda} \lambda \overline{\mathbf{x}}^T \mathbf{x} \quad \text{Since } \overline{\mathbf{x}}^T \mathbf{x} = \|\mathbf{x}\|^2 > 0, \text{ it yields } \overline{\lambda} \lambda = \|\lambda\|^2 = 1$$

同理可證: The length of the eigenvalue of the Hermitian matrix $\overline{A}^T A = I$ is always equal to 1.

Real Matrices

• For all real matrices, the eigenvectors of the complex conjugate eigenvalues are complex conjugate to each other.

Proof: $A\mathbf{x} = \lambda \mathbf{x} \Rightarrow A\overline{\mathbf{x}} = \overline{\lambda}\overline{\mathbf{x}}$

Example 1: Rotation matrices

The eigenvalues and eigenvectors of the rotation matrix $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ are

$$\lambda_1 = \cos \theta + i \sin \theta, \ \mathbf{x}_1 = \begin{bmatrix} 1 \\ -i \end{bmatrix}, \text{ and } \lambda_2 = \overline{\lambda}_1 = \cos \theta - i \sin \theta, \quad \mathbf{x}_2 = \overline{\mathbf{x}}_1 = \begin{bmatrix} 1 \\ i \end{bmatrix}$$

Antisymmetric Real Matrices

Example 2: Antisymmetric Real Matrices

$$A = \begin{bmatrix} 0 & -B_z & B_y \\ B_z & 0 & -B_x \\ -B_y & B_x & 0 \end{bmatrix} \Rightarrow \lambda_1 = 0, \ \mathbf{x}_1 = \begin{bmatrix} B_x \\ B_y \\ B_z \end{bmatrix}, \text{ where } B = \sqrt{B_x^2 + B_y^2 + B_z^2}$$

$$\lambda_{2} = iB : \text{ If } (B_{x}, B_{y}) \neq (0,0) \text{ then } \mathbf{x}_{2} = \begin{bmatrix} -B_{x}B_{z} - iB_{y}B \\ -B_{y}B_{z} + iB_{x}B \\ B^{2} - B_{z}^{2} \end{bmatrix}. \text{ If } B_{x} = B_{y} = 0, \text{ then } \mathbf{x}_{2} = \begin{bmatrix} i \\ 1 \\ 0 \end{bmatrix}$$

and
$$\lambda_3 = \overline{\lambda}_2 = -iB$$
, $\mathbf{x}_3 = \overline{\mathbf{x}}_2$

A=SLS-1

 如果矩陣A有n個eigenvalue and n 個 independent eigenvectors 則

$$A\begin{bmatrix} \uparrow & & \uparrow \\ \mathbf{x}_{1} & \dots & \mathbf{x}_{n} \\ \downarrow & & \downarrow \end{bmatrix} = \begin{bmatrix} \uparrow & & \uparrow \\ \lambda_{1}\mathbf{x}_{1} & \dots & \lambda_{n}\mathbf{x}_{n} \\ \downarrow & & \downarrow \end{bmatrix} = \begin{bmatrix} \uparrow & & \uparrow \\ \mathbf{x}_{1} & \dots & \mathbf{x}_{n} \\ \downarrow & & \downarrow \end{bmatrix} \begin{bmatrix} \lambda_{1} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_{n} \end{bmatrix}$$

$$Let S = \begin{bmatrix} \uparrow & & \uparrow \\ \mathbf{x}_{1} & \dots & \mathbf{x}_{n} \\ \downarrow & & \downarrow \end{bmatrix} \text{ and } \Lambda = \begin{bmatrix} \lambda_{1} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_{n} \end{bmatrix} \Rightarrow AS = S\Lambda \Rightarrow A = S\Lambda S^{-1}$$

Symmetric Real Matrices

- If a matrix A satisfies $A_{ij} \in R$ and $A_{ij} = A_{ji}$ or $A = A^T$ then A is a symmetric real matrix
 - The eigenvalues of a symmetric real matrix are all real numbers.
 - The eigenvectors of a symmetric real matrix that corresponding to different eigenvlaues are perpendicular to each other.
 - One can always find a set of orthonormal eigenvectors to diagonalized the symmetric matrix.

Hermitian Matrices

- If a matrix A satisfies $A_{ij} \in C$ and $A_{ij} = \overline{A}_{ji}$ or $A = \overline{A}^T$ then A is a Hermitian matrix
 - The eigenvalues of a Hermitian matrix are all real numbers.
 - The eigenvectors of a Hermitian matrix that corresponding to different eigenvlaues are perpendicular to each other.
 - One can always find a set of orthonormal eigenvectors to diagonalized the Hermitian matrix.

Proof:

The eigenvalues of a Hermitian matrix are all real numbers

$$(1) \quad A = \overline{A}^T$$

(2)
$$A\mathbf{x} = \lambda \mathbf{x}$$

Taking complex conjugate and transpose of equation (2), it yields

(3)
$$\overline{\mathbf{x}}^T \overline{A}^T = \overline{\lambda} \overline{\mathbf{x}}^T$$

Substituting equation (1) into equation (3), it yields

$$(4) \quad \overline{\mathbf{x}}^T A = \overline{\lambda} \overline{\mathbf{x}}^T$$

$$\overline{\mathbf{x}}^T(2) \Longrightarrow$$

$$(5) \quad \overline{\mathbf{x}}^T A \mathbf{x} = \lambda \overline{\mathbf{x}}^T \mathbf{x}$$

Substituting equation (4) into equation (5), it yields

(6)
$$\overline{\lambda} \overline{\mathbf{x}}^T \mathbf{x} = \lambda \overline{\mathbf{x}}^T \mathbf{x}$$

Since $\overline{\mathbf{x}}^T \mathbf{x} = ||\mathbf{x}||^2 > 0$, equation (6) yields $\overline{\lambda} = \lambda$. That is $\lambda \in R$.

Proof:

The eigenvectors of a Hermitian matrix that corresponding to different eigenvlaues are perpendicular to each other

$$(1) \quad A = \overline{A}^T$$

(2) $\lambda_1 \neq \lambda_2$, and both of them are real numbers

$$(3) \quad A\mathbf{x}_1 = \lambda_1 \mathbf{x}_1$$

$$(4) \quad A\mathbf{x}_2 = \lambda_2 \mathbf{x}_2$$

Taking complex conjugate and transpose of equation (4), it yields

$$(5) \quad \overline{\mathbf{x}}_2^T \overline{A}^T = \lambda_2 \overline{\mathbf{x}}_2^T$$

Substituting equation (1) into equation (5), it yields

$$(6) \quad \overline{\mathbf{x}}_2^T A = \lambda_2 \overline{\mathbf{x}}_2^T$$

$$\overline{\mathbf{x}}_{2}^{T}(3) \Rightarrow$$

(7)
$$\overline{\mathbf{x}}_{2}^{T} A \mathbf{x}_{1} = \lambda_{1} \overline{\mathbf{x}}_{2}^{T} \mathbf{x}_{1}$$

Substituting equation (6) into equation (7), it yields

(8)
$$\lambda_2 \overline{\mathbf{x}}_2^T \mathbf{x}_1 = \lambda_1 \overline{\mathbf{x}}_2^T \mathbf{x}_1 \implies (\lambda_2 - \lambda_1) \overline{\mathbf{x}}_2^T \mathbf{x}_1 = 0$$

Since $\lambda_2 - \lambda_1 \neq 0$, equation (8) yields $\overline{\mathbf{x}}_2^T \mathbf{x}_1 = 0$. That is $\mathbf{x}_2 \perp \mathbf{x}_1$

Example of Hermitian Matrix

$$A = \begin{bmatrix} 1 & i \\ -i & 1 \end{bmatrix} \Rightarrow A = \overline{A}^T \Rightarrow A \text{ is a Hermitian matrix}$$

Find the eigenvalues and eigenvectors of *A*.

$$\det(A - \lambda I) = 0 \Rightarrow \det \begin{bmatrix} 1 - \lambda & i \\ -i & 1 - \lambda \end{bmatrix} = (1 - \lambda)^2 + 1 = 0 \Rightarrow \lambda = 0 \text{ or } \lambda = 2$$

Let
$$\lambda_1 = 0$$
, $(A - \lambda_1 I)\mathbf{x}_1 = \begin{bmatrix} 1 & i \\ -i & 1 \end{bmatrix} \mathbf{x}_1 = 0 \Rightarrow \mathbf{x}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} i \\ -1 \end{bmatrix}$ Please read the table: "Real versus Complex"

Let
$$\lambda_2 = 0$$
, $(A - \lambda_2 I)\mathbf{x}_2 = \begin{bmatrix} -1 & i \\ -i & -1 \end{bmatrix} \mathbf{x}_2 = 0 \Rightarrow \mathbf{x}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} i \\ 1 \end{bmatrix}$ on p. 491.

Let
$$\lambda_2 = 0$$
, $(A - \lambda_2 I)\mathbf{x}_2 = \begin{bmatrix} -i & -1 \end{bmatrix} \mathbf{x}_2 = 0 \Rightarrow \mathbf{x}_2 = \overline{\sqrt{2}} \begin{bmatrix} 1 \end{bmatrix}$

$$\Rightarrow S = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} i & i \\ -1 & 1 \end{bmatrix} \Rightarrow S^{-1} = \overline{S}^T = \frac{1}{\sqrt{2}} \begin{bmatrix} -i & -1 \\ -i & 1 \end{bmatrix} \quad (\Rightarrow S \text{ is an unitary matrix.})$$

If
$$A = S\Lambda S^{-1} \Rightarrow \Lambda = S^{-1}AS = \frac{1}{\sqrt{2}} \begin{bmatrix} -i & -1 \\ -i & 1 \end{bmatrix} \begin{bmatrix} 1 & i \\ -i & 1 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} i & i \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix}$$

Since
$$\lambda_1 \neq \lambda_2$$
, check if $\mathbf{x}_1 \perp \mathbf{x}_2$: $\overline{\mathbf{x}}_1^T \mathbf{x}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} -i & -1 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} i \\ 1 \end{bmatrix} = 0$

Markov Matrix

- Markov Matrix:
 - All elements are greater than or equal to zero and less than or equal to 1.
 - The sum of each column is equal to 1.
 - 1 is one of the eigenvalues of the Markov Matrix
- Examples: $A = \begin{bmatrix} 0.8 & 0.3 \\ 0.2 & 0.7 \end{bmatrix}$ $B = \begin{bmatrix} 0.1 & 0.6 & 0.3 \\ 0.8 & 0.4 & 0.1 \\ 0.1 & 0. & 0.6 \end{bmatrix}$

Markov Matrix

- Example:
- Mary and John play an unfair game. Mary will give John 20% of her money. John will give Marry 30% of his money. At beginning, John received 5000 dollars. Show that the final equilibrium state Mary will have 3000 dollars and John will have 2000 dollars.

Let
$$A = \begin{bmatrix} 0.8 & 0.3 \\ 0.2 & 0.7 \end{bmatrix}$$
, $\mathbf{u} = \begin{bmatrix} Mary's \ money \\ John's \ money \end{bmatrix} \Rightarrow \mathbf{u}_{n+1} = A\mathbf{u}_n$

For
$$\mathbf{u}_0 = \begin{bmatrix} 0 \\ 5000 \end{bmatrix} \Rightarrow \mathbf{u}_{n+1} = A^n \mathbf{u}_0 = S\Lambda^n S^{-1}$$
, where *A* has two eigen values: 1 and 0.5

Find
$$A^n = ?$$
, $\mathbf{u}_{n+1} = ?$, and $A^{\infty} = ?$, $\mathbf{u}_{\infty} = ?$

Eigen Mode Solutions of Differential Equations (Case 1)

Let
$$u_1 = c_1 e^{\gamma}$$
, $u_2 = c_2 e^{\gamma}$

$$\frac{du_1}{dt} = au_1 + bu_2 \Rightarrow \gamma u_1 = au_1 + bu_2$$

$$\frac{du_2}{dt} = cu_1 + du_2 \Rightarrow \gamma u_2 = cu_1 + du_2$$

$$\Rightarrow \qquad \gamma \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$
Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, $\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \Rightarrow A\mathbf{u} = \gamma \mathbf{u} \Rightarrow \det(A - \gamma I) = 0$

 \Rightarrow Solution $\gamma = \gamma_r + i\gamma_i$ is the eigenvalue of matrix A.

If $\gamma_r < 0$, then the magnitude of the corresponding eigenvector **u** decreases with time (damping).

If $\gamma_r > 0$, then the magnitude of the corresponding eigenvector **u** increases with time (unstable).

It $\gamma_r = 0$, then the magnitude of the corresponding eigenvector **u** is a stable solution.

Eigen Mode Solutions of Differential Equations (Case 2)

Solve
$$\frac{d^2y}{dt^2} + b\frac{dy}{dt} + ky = 0$$

Method 1:

Let
$$y = c_1 e^{\gamma} \Rightarrow \gamma^2 + b\gamma + k = 0$$
Method 2:

Method 2:

Let
$$u_1 = y$$
 and $u_2 = \frac{dy}{dt} \Rightarrow \frac{d}{dt} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -k & -b \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$

Let
$$u_1 = c_1 e^{\gamma t}$$
, $u_2 = c_2 e^{\gamma t} \Rightarrow \gamma \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -k & -b \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$

Let
$$A = \begin{bmatrix} 0 & 1 \\ -k & -b \end{bmatrix} \mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \Rightarrow A\mathbf{u} = \gamma \mathbf{u} \Rightarrow \det(A - \gamma I) = 0 \Rightarrow \det \begin{bmatrix} -\gamma & 1 \\ -k & -b - \gamma \end{bmatrix} = \begin{bmatrix} \gamma^2 + b\gamma + k = 0 \\ -k & -b - \gamma \end{bmatrix}$$

 \Rightarrow Solution $\gamma = \gamma_r + i\gamma_i$ is the eigenvalue of matrix A.

Eigen Mode Solutions of Differential (Case 3)

Equations
For $\mathbf{B}_0 = B_0 \hat{\mathbf{z}}$, $\mathbf{k} = k(\hat{\mathbf{x}}\sin\theta + \hat{\mathbf{z}}\cos\theta)$, where θ is the angle between \mathbf{B}_0 and \mathbf{k} .

The dispersion relation of the MHD wave mode is

The dispersion relation of the WHD wave mode is
$$\begin{bmatrix} \frac{\omega^2}{k^2} - (C_{A0}^2 + C_{S0}^2 \sin^2 \theta) & 0 & -C_{S0}^2 \cos \theta \sin \theta \\ 0 & \frac{\omega^2}{k^2} - C_{A0}^2 \cos^2 \theta & 0 \\ -C_{S0}^2 \cos \theta \sin \theta & 0 & \frac{\omega^2}{k^2} - C_{S0}^2 \cos^2 \theta \end{bmatrix} \begin{bmatrix} \tilde{V}_{1x} \\ \tilde{V}_{1y} \\ \tilde{V}_{1z} \end{bmatrix} = 0 \quad \text{where } C_{A0}^2 = \frac{B_0^2}{\mu \rho_0}, \ C_{S0}^2 = \frac{\gamma p_0}{\rho_0}$$

$$\operatorname{Let} A = \begin{bmatrix} C_{A0}^2 + C_{S0}^2 \sin^2 \theta & 0 & C_{S0}^2 \cos \theta \sin \theta \\ 0 & C_{A0}^2 \cos^2 \theta & 0 \\ C_{S0}^2 \cos \theta \sin \theta & 0 & C_{S0}^2 \cos^2 \theta \end{bmatrix} \mathbf{u} = \begin{bmatrix} \tilde{V}_{1x} \\ \tilde{V}_{1y} \\ \tilde{V}_{1z} \end{bmatrix} \Rightarrow A\mathbf{u} = \frac{\omega^2}{k^2} \mathbf{u} \Rightarrow \det(A - \frac{\omega^2}{k^2} I) = 0$$

 \Rightarrow The eigenvalues $\frac{\omega^2}{l^2}$ are the fast - mode, Alfven - mode, slow - mode wave phase speeds.

The corresponding eigenvectors (which perpendicular to each other) are the eigen modes of the MHD plasma.

How to obtain the dispersion relation of the MHD wave modes

$$\frac{\omega^{2}}{k^{2}}\tilde{\mathbf{V}}_{1} = C_{A0}^{2}(\hat{\mathbf{B}}_{0} \times)(\hat{\mathbf{k}} \times)(\hat{\mathbf{k}} \times)(\hat{\mathbf{B}}_{0} \times) \cdot \tilde{\mathbf{V}}_{1} + C_{S0}^{2}(\hat{\mathbf{k}}\hat{\mathbf{k}}) \cdot \tilde{\mathbf{V}}_{1}$$
where $(\hat{\mathbf{B}}_{0} \times)(\hat{\mathbf{k}} \times)(\hat{\mathbf{k}} \times)(\hat{\mathbf{k}} \times)(\hat{\mathbf{B}}_{0} \times) =$

$$\begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & -\cos\theta & 0 \\ +\cos\theta & 0 & -\sin\theta \\ 0 & +\sin\theta & 0 \end{bmatrix} \begin{bmatrix} 0 & -\cos\theta & 0 \\ +\cos\theta & 0 & -\sin\theta \\ 0 & +\sin\theta & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} -\cos\theta & 0 & \sin\theta \\ 0 & -\cos\theta & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} -\cos\theta & 0 & 0 \\ 0 & -\cos\theta & 0 \\ \sin\theta & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos^{2}\theta & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\hat{\mathbf{k}}\hat{\mathbf{k}} = \begin{bmatrix} \sin\theta \\ 0 \\ \cos\theta \end{bmatrix} [\sin\theta & 0 & \cos\theta] = \begin{bmatrix} \sin^{2}\theta & 0 & \cos\theta\sin\theta \\ 0 & 0 & 0 \\ \cos\theta\sin\theta & 0 & \cos^{2}\theta \end{bmatrix}$$

$$\Rightarrow \frac{\omega^{2}}{k^{2}}\tilde{\mathbf{V}}_{1} = \begin{bmatrix} C_{A0}^{2} + C_{S0}^{2}\sin^{2}\theta & 0 & C_{S0}^{2}\cos\theta\sin\theta \\ 0 & 0 & C_{S0}^{2}\cos^{2}\theta & 0 \\ C_{S0}^{2}\cos\theta\sin\theta & 0 & C_{S0}^{2}\cos^{2}\theta \end{bmatrix} \tilde{\mathbf{V}}_{1}$$

True or False?

If λ is an eigenvalue of matrix A, and β is an eigenvalue of matrix B, then $\lambda\beta$ is an eigenvalue of matrix AB. True or False? If it is True, Prove it. If it is False, explain why.

If λ is an eigenvalue of matrix A, and β is an eigenvalue of matrix B, then $\lambda + \beta$ is an eigenvalue of matrix A + B. True or False? If it is True, Prove it. If it is False, explain why.

Conditions for common eigenvectors and orthogonal matrix S

Matrix A and matrix B have the same eigenvectors if and only if AB = BA

Let *A* be a symmetric matrix $(A = A^T)$, then $AA^T = A^TA$. Let *A* be an asymmetric matrix $(A = -A^T)$, then $AA^T = A^TA$.

A real matrix has perpendicular eigenvectors if and only if $AA^{T} = A^{T}A$