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Objectives

- Examine the the eigenvalues and eigenvectors of
the following matrices

1. Matrices with repeated eigenvalues
a) Projection matrix
b) Upper triangle matrix with repeated diagonal terms

2. Antisymmetric (skew-symmetric) real matrices
3. Symmetric real matrices

4. Hermitian matrices

5. Markov matrices

- Application to differential equations



Matrices with repeated
eigenvalues (projection matrix)

- Example 1: Projection matrix

— Let P be a projection matrix that
project a vector to a space that
was spanned by the three [ 1

vectors a, a, a, a, = g a, =

0

— What are the eigenvalues and
the corresponding eigenvectors
of P?
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Matrices with repeated

eigenvalues (projection matrix)

projection matrix BJ%F4%E A 15

» P should have the following eigenvalues
A4=0, A=A =4, =I

a, a, a, BFRFERI 15

T

orthonormal e, =
eigenvectors are
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Matrices with repeated
eigenvalues (projection matrix)

» The corresponding eigenvectors of 4, =1,=4,=1
are not unique. Here are other choices

/A2 142 0 ] 0 0

1/42 1/42 0 0 1/42 —1/A2
62: 0 e3= 0 64_1 or 6220 e3=1/ﬁ e4= 1/’\/5

0 0 0 0] 0 | 0




Matrices with repeated
eigenvalues (nondiagonalizable matrix)

- Example 2: Upper triangle matrix with

repeated diagonal terms A=[ 301 }
0 3

- Matrix A has repeated eigenvalues 3, 3
- Matrix A has only one eigenvector [ ! ]



Antisymmetric Real
Matrices

* |f a matrix A satisfies 4,=-4, and 4;¢R
then A is an antisymmetric real matrix

Case 1 _
A= L (1) det(A — Al) = det A =A+1=0=>A=+i, or —i
Case 2 0 -B B, | | -2 -B. B, |
A= B, 0 =B, det(A—Al)=detl B, —-A -B, |=-A"-A(B;+B,+B)=0
-B, B, 0 -B, B, -1

= 1=0, or *iB, where B= \/ B; + B} + B?. The corresponding eigen vector of A =0 is

!\1m %m




Antisymmetric Real
Matrices

« The eigenvalues of antisymmetric real matrices
are real numbers or complex conjugate numbers.

* InCase 1, ,_ _01 (1) } = A=+i, or —i =>||]A=1
* The length of the eigenvalue of the orthogonal

matrix A"A=1 Is always equal to 1.
Proof: Ax=Ax=X A" =AX’ = X' AT Ax = AX" Ax

ATA=I=X"x=2Ax"x Since X"x =|[x|" >0, it yields A=A =1

FII2TR[E5: The length of the eigenvalue of the Hermitian matrix A" A =1
is always equal to 1.



Real Matrices

» For all real matrices, the eigenvectors of the
complex conjugate eigenvalues are complex
conjugate to each other.

Proof: Ax=ix= Ax=1x

Example 1: Rotation matrices

: : : : cosf —sin
The eigenvalues and eigenvectors of the rotation matrix A = [ S 5 are

sin@ cos@

l
9

/11=COSG+Z.SiIl9,X1=|: 1 :|,and/12=)_,1=0089—isin9, X2=§1=|: 1
—1



Antisymmetric Real

Matrices

Example 2: Antisymmetric Real Matrices

=1=0,x,=| B ,WhereB=\/Bf+By2+BZ2

0 -B. B, B,
A=| B. 0 -B i
-B, 0 B.
~B,B.—iBB |
A, =iB: If (B,,B))# (0,0) thenx, =| —B B +iB.B
B’-B’

and A, = A, =—iB, X, =X,

IfB,=B =0, thenx, =

10
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Symmetric Real Matrices

- If a matrix A satisfies 4,e R and 4,=4; or A=A
then A is a symmetric real matrix

— The eigenvalues of a symmetric real matrix are all real
numbers.

— The eigenvectors of a symmetric real matrix that
corresponding to different eigenvlaues are
perpendicular to each other.

— One can always find a set of orthonormal eigenvectors
to diagonalized the symmetric matrix.
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Hermitian Matrices

- If a matrix A satisfies 4,e ¢ and 4,=4; or A=A"
then A is a Hermitian matrix

— The eigenvalues of a Hermitian matrix are all real
numbers.

— The eigenvectors of a Hermitian matrix that
corresponding to different eigenvlaues are
perpendicular to each other.

— One can always find a set of orthonormal eigenvectors
to diagonalized the Hermitian matrix.

13



Proof:

The eigenvalues of a Hermitian matrix are ali

real numbers
1) A=A"
(2) Ax=Ax
Taking complex conjugate and transpose of equation (2), it yields
(3) xX'A"=2x"
Substituting equation (1) into equation (3), it yields
4) x"A=2x"
X (2)=
(5) X' Ax=AX'x
Substituting equation (4) into equation (5), it yields
6) AX'x=AX"x
Since X' x = HXH2 >0, equation (6) yields A = A. Thatis A€ R.

14



Proof:
The eigenvectors of a Hermitian matrix that
corresponding to different eigenviaues are
perpendicular to each other

1 A=A"

(2) A, #A,, and both of them are real numbers

(3) Ax, =Ax,

(4) Ax,=A1x,

Taking complex conjugate and transpose of equation (4), it yields
(5) X,A"=1X]

Substituting equation (1) into equation (5), it yields

6) XA=A4X,

X,(3)=

(7) %A%, = A%X;x,

Substituting equation (6) into equation (7), it yields

®) AXx,=AXx, = (4 -21)X,x,=0

Since A, — A, #0, equation (8) yields X,x, =0. That is x, L x, 15



Example of Hermitian Matrix

A=[ 1, i}=>A=ZT:>AisaHermitianmatrix
—l1

Find the eigenvalues and eigenvectors of A.

1-A i

det(A—Al)=0 = det
et( ) =>e[ {3

}=(1—}L)2+1=0:>l=00r),=2

I i

1 :|X1=O=>X1=

LetA =0, (A= AT) [ [ ; } Please read the table:
SL2G =W —AMDX =

1 “Real versus Complex”
. } on p. 491.

-1 1]
Let A, =0, (A—lzl)x2=|: P :|X2=0=>X2=ﬁ|: 1
=

1 i 1 4 =7 1 —i -1 : : .
= 5= = — ST =85 =— = S 1S an unitary matrix.
= X2]\/§[—11} Bl -1 Y e

_ _ 1| - -1 1 i ] 0 0
IfA=SAS" = A=5"AS=— — —
ﬁ[—il“—il}ﬁ —11}[02}

1 [ .
Since A, # A,, check ifx, L x,: X/x,=—| —i -1 ]ﬁ i}:O 16




Markov Matrix

 Markov Matrix:

— All elements are greater than or equal to
zero and less than or equal to 1.

— The sum of each column is equal to 1.
— 1 I1s one of the eigenvalues of the Markov

Matrix - .

| 0.1 0.6 0.3
Examples: A=[ g-i 8'3} B=| 0.8 04 0.1
Sl 01 0. 06

17



Markov Matrix

Example:

Mary and John play an unfair game. Mary will give John 20% of
her money. John will give Marry 30% of his money. At
beginning, John received 5000 dollars. Show that the final
equilibrium state Mary will have 3000 dollars and John will have

2000 dollars.

Mary's mone
LetA= 0.8 0.3 , u= " d =u,, =Au
0.2 0.7 John's money

Foru, = v =u_ =A"u, =SA"S", where A has two eigen values: 1 and 0.5
0 5000 n+l 0

FindA"=?, u_  =? andA”=?, u_=?

n+l1

18



Eigen Mode Solutions of
Differential Equations (cuc 1

n 1

Letu, =ce”, u,=c,e
du, B
E—aul+bu2:>j/ul—aul+bu2 . y{ul}z[a b}{ul}
du, u,| ¢ djlu,

E=0u1+du2:>}/u2=cul+du2

a b u,
Let A= u= = Au=mu=det(A—y)=0
c d u,

=> Solution Y=y, + iy, is the eigenvalue of matrix A.

If y <O, then the magnitude of the corresponding eigenvector u decreases with time (damping).
If y. >0, then the magnitude of the corresponding eigenvector u increases with time (unstable).

It y. =0, then the magnitude of the corresponding eigenvector u is a stable solution.

19



Eigen Mode Solutions of
Differential Equations (a2

y . dy
Solve +b—+ky=0
dr* dt ky

Method 1:
Lety=c,e" =>[q/2+by+k=o }
Method 2 :

d dlu O 1 |lu
Letu, =yandu, = j); = E{ul}z{—k —b}{ul}
2 2

u 0 1 {u
Letu =ce”, u,=ce’ = y{ l}z[ }{ 1}
u,| | =k -bllu,

0 1 u, —Y 1
LetAz{ ; }u:[ }:>Au=w:>det(A—ﬂ):O:>de{ o Hy%bﬁk:o }

u,

=> Solution Y=y, + iy, is the eigenvalue of matrix A.

20



Eigen Mode Solutions of Differential
Equations

For B, = Bz, k = k(Xsin6+ zcos6), where 0 is the angle between B, and k.

The dispersion relation of the MHD wave mode is

2

0 .

o (C;o+C:,ysin” 0)
0
—C;,cosBsin0

_Cjo +C;,sin’ O
LetA= 0
| C;,cos0sin6

2

0 —C;,cos0sin0 |- _

Vi

w—z—Cz cos’ 6 0 V

g2 A0S g

2

0 %—C§000s29 -

0 C;,cosOsin ] _171x_
C:,cos’ 0 0 Lu= \71y
0 Ciocos’0 | |V,

(Case 3)
X Bz ,}p
,|=0 where C3y=—2, C5, =2
HPq Po
2 2

:Auz%u:det(A—%l)zo

= The eigenvalues % are the fast - mode, Alfven - mode, slow - mode wave phase speeds.

The corresponding eigenvectors (which perpendicular to each other)

are the eigen modes of the MHD plasma.
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How to obtain the dispersion relation of
the MHD wave modes

2
o ~ A ~ ~ A ~ AN~
~7 V1= Clo B9 (0B V; +Cfy (k) - V,

where (B,x)(kx)(kx)(B,X) =

0O -1 0 0 —cos6 0 0 —cos6 0 0O -1 0
1 0 Of+cosf 0 —sin@ | |+cos6O 0 —sm@||1 0 O
0 0 Off O +sin 6 O JL O +sin6 0O J|0O 0 O
[ —cosO 0 sin@|[-cos@ 0 ol [1 0 0
=l 0 —cos® O 0 —cos@® 0|=|0 cos’@ O
0 0 0 || sin@ 0 0] [0 0 0]
[ sin@ | | sin’6 0 cosBsind)]
kk=| 0 |[sind 0 cosf]= 0 0 0
cosf | cosOsinf 0 cos’ 0 )
e _Cjo +C;,sin’ 0 0 C:o cosOsin@ )
= —V, = 0 C:,cos’ 0 0 V,
| C;,cos0sin6 0 Csycos’0 |
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True or False?

If A is an eigenvalue of matrix A, and f is an eigenvalue of matrix B,
then AfB is an eigenvalue of matrix AB. True or False?

If 1t 1s True, Prove it. If it 1s False, explain why.
If A is an eigenvalue of matrix A, and  is an eigenvalue of matrix B,

then A+ [ is an eigenvalue of matrix A+ B. True or False?

If it is True, Prove it. If it 1s False, explain why.
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Conditions for common eigenvectors
and orthogonal matrix S

Matrix A and matrix B have the same eigenvectors
if and only if AB=BA

Let A be a symmetric matrix (A=A"), then AA" = A" A.
Let A be an asymmetric matrix (A=—A"), then AA" = A" A.

A real matrix has perpendicular eigenvectors if and only if AA" = A" A
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