Lecture 9 Linear Waves in the lon-Electron Two-Fluid
Plasma
Key points e Electron-time-scale linear waves in an
unmagnetized plasma
o Langmuir waves
o Cut-off frequency, resonant frequency
Electron time-scale linear waves in a
magnetized plasma
o Mobility tensor
o L-mode, R-mode
o 0O-mode, X-mode, Z-mode
e |on-time-scale linear waves
o lon acoustic waves
o Whistler waves, Chorus waves



9.0. Review of fluid equations of the ath species discussed in
Lecture 1

on .
at“ +V-(,V,)=0 (1.14)
amanal_/)a &5 - 3 S S o (1.15)
T (ManaVy Vi + By) = eang(E + V,xB) -
3 (1 3
E(Emanava T Epa)
, ; . (1.16)
+V - [(EmanaVaz + Ep“) I_/)a + ﬁa : I7a + (,7“] = eanaE : I_/)a

- -

It can be shown that, for isotropic pressure (ﬁa = Tpa), Egs.
(1.14)~(1.16) can be written in the following form.



Eq. (1.14) yields

o - ﬁ
(& +V, - \7) ng =—-n,V-V, (1.18)

Eq. (1.15) —mal_/; Eq. (1.14) yields
Jd o

nama(a + 1, - \7)17“ =—-Vp, + e(,(na(l:?> + Vaxﬁ) (1.19)
Eq. (1.16)—V, -Eq. (1.19)—(1/2)m V.2 Eq. (1.14) yields

3/0 5 R R
E(%‘I_Va'v)pa:_Epav'va_v'qa (9.0.1)
For adiabatic process (V - g, = 0), the above energy equation of
the ath species (9.0.1) is reduced to

Jd o 5 ,
(E_l_ V, \7) Dy = —gpaV -V, (9.0.2)



Substituting Eqg. (1.18) into Eq. (9.0.2) to eliminate V - I_/;, it yields
(a +V \7) _ 2P (a
gt eV ) Pa T35 \Gt

Eqg. (1.20) can be rewritten in “a constant of equation of state”

Jd _
(% +V, - \7) In (p,n,"®) =0 (9.0.3)

Fory, = 5/3,itimpliesVV - g, = 0. Thus, it is called the adiabatic
equation of state.
For isothermal process, where V - g, # 0, we have y, = 1.
Multiplying Eq. (9.0.3) by p,,, it yields
Jd - YaPa (O =
—+V-|7) = ( +V-\7)
(Get Ve 7)pa = (Gt B 7

—

= —YaPoV - Vg

+V, - \7) Ny (1.20)

(9.0.4)



9.1. The ion-electron two-fluid equations and Maxwell equations

The continuity equations of the electrons and ions

Jd - R
(a+l/e-\7)ne =-n,V- -V, (9.1)
Jd - R
(% + Vi . V) n; = —niV . Vi (92)
The momentum equations of the electrons and ions
a — — - — -
Mmen, (ﬁ‘l've ' V)Ve = —Vp, —en.(E + V. XB) (9.3)

l

o~
o~

a — - — —
m;n; (a + V- \7) .= —Vp; + en;(E + V;XB) (9.4)



The energy equations (the equations of the state) of the electrons
and ions

0 Jda 5
( +V V)p )/epe( +Ve-|7)ne=—yepe\7-Ve (9.5)

dt n, \0t
9 _Vipi (0 | o ,

Where 1 <y, <5/3. For electron-time-scale phenomena we can
assume that y, = 5/3, and ions are not moves in the electrons’
time scale. For ion-time-scale phenomena we can assume that
Y. = 1,v; = 5/3,n, = n;, and ignore the electrons’ inertial term,

because in the ion time scale, O[mene (6[7;/615)] G4 O(enel_/; XB).



The Maxwell equations in the ion-electron two-fluid plasma
e(ni R ne)

V.E = (9.7)
€o
V-B = (9.8)
, 0B

VXE = — — (9.9)

ot .

. . . 1 0E

VXB = uge(n;V; — n,V,) + —— (9.10)

c? Ot



Review: How to linearize the equations

Step 1: SERG P A BB AT AR + B
AR L) = Ag(R) + A, (%, 1)
Step 2: B FERRIMERIED - WIKEBERE FEREHE -
Step 3: B ER + BEIRRRMEE S IET
Step 4: 15 Step 3 G RA A Step 2 AR - BSEFEAZREZEI
Step 5: H0(A4,/4,) = 0(e) < 1073 » AHESRE/NR 0(€?),
HISEAR4IE - ROl BRI ERVIBEIRR FIET -
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EmENERE  URE=SH2HE—(EHE - MBofte

— (& A= E BV 185 (unstable equmbrlum) k7 MRBE=%5

aZEPEEI N - AliiE=%EEE—EiZENFERk

(stable equilibrium) = A8 - dNRE— *ﬁ%)@ Kinetic effect BI| =
SREZ[E M - )RBSEEIRBY local minimum 28RS

7 BefRie 2 RN AR ERNIEE &8 (stable equilibrium) -
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9.2. Uniform background equilibrium

For simplicity, we assume that the background equilibrium is
uniform. Namely, A(x,t) = Ay + 4,(X, t)

Let us examine the equilibrium equations
(V)eo ‘ V)neo = —NgoV - Veo 0=0
(‘71'0 ' V)nio = NV - I71'0 0=0
MeNgg (V)eo ' V)V)eo
= —VPeo — eneo(Eo + I_/)eOXE)O)
m;injo (17)1'0 ‘ ‘7)‘7)1'0
= —Vpio + enio(ﬁo + I7;'0)(]-[_3)0)

O — _eneo(ﬁo + I_/)BOXE)O)

0 — +eni0(EO + IZOXE)O)
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(I_/)eo ' V)ln (peone_(;/e) =0 0=0

(Vio - V)In (pionyg) = 0 0=0
R e\N:An — N e\Nn;n — N
V-E, = (Mio ~ Teo) o = o ~ Meo)
EO EO
VXE, =0 0=0

VXBy = poe(nioVig — NegVeo) 0= lfloe(niol_/)io — neO‘_/)eO)
where

e(nio — neo)
0=
€o

it yields
11



Substituting Eg.(9.11) into
0 = puoe(mioVio — NeoVeo)

it yields
0 = puogenyg(Vig — Vo)
That is,
I_/)io — ‘780 — ]7 (912)

Substituting Eq. (9.12) into the equilibrium momentum equations,
it yields

0 = E, + VyxB, (9.13)
We can choose a moving frame such that VO = 0, it yields EO =0

12



9.3. Linearized governing equations
Let us assume the background medium is uniform. We choose a

—

moving frame such that I_/)eo = Vo = 0. Linearizing the two-fluid
equations (9.1)~(9.6), it yields

anel/at — —TLOV ‘ ]731 (914)
meno(a]_/)el/at) = —VPe1 — eno(ﬁ1 + [7e1><§0) (9.16)
mino(ﬁl_/il/é‘t) = —Vp;; + eno(ﬁ1 + [7;1X§0) (9.17)

ODe1 VePeo ONe =
— = — V.-V 9.18
at no (’)t ( VePeo el) ( )

Opi1 YiPio ONiq —
p— —_— — . . V . . .1
at nO at ( ylplo Vll) (9 9)
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Linearizing the Maxwell equations, (9.7)~(9.10), in the ion-electron
two-fluid plasma, it yields

VXB,

v El _ e(nj; — Ngq)
€o
V-B, =0
, 0B,
VXEl = —F .
R 1 6E1
= toeny(Vip — el) +— -2 9t

(9.20)
(9.21)

(9.22)

(9.23)
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9.4. Fourier transform of the governing equations from the (¢, x)
domain to the (w, k) domain

Let us consider a one-dimensional problem (V = Xd/0dx), and a
uniform background magnetic field lying on the x- y plane, that is

EO = By(X cos @ + ysin 8), where 0 is the angle between the
wave normal direction k and the ambient magnetic field direction.
Applying the plane wave assumption
A1(t,x; 0) = Re{A,(w, k; 9)e'kx~»0) ]
to the linearized equations (9.14)~(9.23) it yields
—lwhe; = =N (1K) Ve1x (9.24)
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MmN (—iw)V,y = —2(ik)Pey — eng <E1 + VBIXB())
mino(—iw)l_/)u = —x(ik)p;; + enO(E1 + V11XBO)

_iwpel — _Vepeo(lk)velx

—iwPy = —YiPio ((k)Vi1x

e(ﬁil _ ﬁel)
€o

ikélx — 0

lkElx —_

ikXXE, = iwB,
o =~ = la) :>
tkXXBy = poeng(Vip — el)

(9.26)
(9.27)
(9.28)
(9.29)

(9.30)

(9.31)
(9.32)

(9.33)
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We have discussed in Lecture 7 that waves consist of both
electromagnetic component and electrostatic component can be
obtained by curl of the Faraday’s Law. Curl of Eq.(9.32) yields

kXX (kaxEl) = (kXX (la)Bl)

= LW | Hp€Ny (Vil - Vel) 2 E1]

C
That is
w? = 3 = =

If we can obtain I_/;-l and 1761 as function of El, then we can obtain

an equation of El from equation (9.34).

17



Substituting Egs. (9.28) and (9.29) into Egs. (9.26) and (9.27)
respectively, and multiplying the resulting equations by

iw/k*myn,, where @ = i or e, it yields

w? = YePeo = lw e = = =
72 Vet = g 2 Ve~ (Bt VexBo) (939
e e
w* = ViDio = lw e =
7 Vi = 28R Vi + g (B + VaxBy)  (9.36)
0

Egs. (9.35) and (9.36) can be rewrltten in the following forms

Me_ I_/)el — El (9 37)
M'-V,=E (9.38)
Exercise 9.1:

Find the inverse of the mobility tensors M, 1 and M;*

18



Egs. (9.37) and (9.38) yields

~

V,,=M,-E, (9.39)

V. =M, E (9.40)
Substituting Egs. (9.39) and (9.40) into Eq. (9.34) to eliminate the

— —

Vi1 and V,, it yields

~

w* = = 3 ~
[(— - k2> 1+ k2%% + iougen, (Ml- -~ Me)] CE, =0 (9.41)

2
Let
= c’k*\z3 c*k* _ iweny = =
D=(1-—7 )T+ 22+ (Mi—Me) (9.42)
Eq. (9.41) can be rewritten as
(w%/c®)D - E; =0 (9.43)

19



Exercise 9.2: Find the wave dielectric tensor 5((0, k;8)

For El # 0, Eq. (9.43) implies det (1_5) = (0. The eigen-mode
solutions w(k; 8) are also called the dispersion relations of the
lon-electron two-fluid plasma. Examples of the two-fluid
dispersion relations of are given in Figures 9.1 and 9.2, where

Wyy = +J WEe + 2% is the upper hybrid frequency and w;y =
\/{2.12; is the lower hybrid frequency.

There are the six propagating wave modes in the ion-electron
two-fluid plasma, where the high frequency waves, the ion
acoustic waves, and the very low frequency MHD waves can be
obtained from a set of simplified equations. We will discuss the
high frequency waves and the ion acoustic waves in this Lecture,
and discuss the MHD waves in Lecture 10.
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et

Fast-mode A-mode
Alfven-mjode

Figure 9.1. A
sketch of the
dispersion
relation of five
parallel
propagating
wave modes in
the ion-electron
two-fluid plasma.
Langmuir wave
does not includ
in this plot.
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Fast-mode

Figure 9.2. A
sketch of the
dispersion
relation of
four
perpendicular
propagating
wave modes
in the ion-
electron two-
fluid plasma.
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9.5. High-frequency waves in an un-magnetized plasma (§0 = 0)

To study waves with frequency equal or higher than the electrons’
characteristic frequencies, we can assume that ions will not

respond to the waves. Namely, n;; =0, p;; =0, I_/;-l = 0. For un-

magnetized plasma §O = 0, the governing equations in the (k, w)
domain can be obtained from Egs. (9.24)~(9.33), i.e.,

—lWNe = _no(ik)velx (9.44)
MmNy (—iw)V,, = —%(ik)Bsy — engk, (9.45)
—lwPe1 = —VePeo (1K) Ve1x (9.46)

23



e(_ﬁel)
€o
ikélx — O

ikglx —_

ikXXE, = iwB;
oA = l(l) —>
IkXXBy = poengy(— e1)

Substituting (9.46) into (9.45) to ellmlnate De1 and then
substituting the resulting equation into equation (9.50) to

(9.47)

(9.48)
(9.49)

(9.50)

ellmmate Vel, and substituting (9.49) into (9.50) to eliminate Bl, it

yleldsD E1 = 0.i.e,,

24



where
2
Dy =1 - 2 wpe(;
w? — CSyk?
h h . c?k?  Wieo
yy _ zZZ

w? w?
2 _ 2 2 _
where wy.o = nge/me€ey and C5y = YePeo/MoMe.
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For Ey, # 0, but Ey,, = Ey, = 0, ityields D,, = 0. i.e.,

W? = W5e0 + Cook? (9.51)
Eq. (9.51) is the Langmuir wave dispersion relation. Since E‘lx #* 0
implies fi,; # 0 and V,,, # 0, the Langmuir wave is an

electrostatic wave, a compressional wave, and a longitudinal
wave.

For E1, = 0, but (Eyy, E1,) # (0,0), ityields D,, = D,, = 0. i.e,,
w? = W50 + c*k? (9.52)

Eq. (9.52) is the light wave dispersion relation. Since E;,, = 0

implies fi,; = 0 and V;,, = 0, the light wave is an electromagnetic

incompressible pure transverse wave with a cut-off frequency at

26



Figure 9.3 is a sketch of the (a) Langmuir wave and (b) light waves
propagating in an un-magnetized plasma. The wave frequency at
k = 0 is the cut-off frequency. Both of the wave modes have a
cut-off frequency at w = w,.. The waves can only propagate at

the frequency w > w,.. No wave can propagate at frequency
below the cut-off frequency. Itis because that, for w < w,,, we
have k? < 0, which implies that the wave amplitude will decrease
exponentially and become a non-propagating wave.

27



>kC/(ope

-

Ye

Figure 9.3. A Sketch of the (a) Langmuir wave and (b) light
waves propagating in an un-magnetized plasma.
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9.6. High-frequency waves in a magnetized plasma (B, > 0)

To study waves with frequency equal or higher than the electrons’
characteristic frequencies, we can assume that ions will not
respond to the waves. i.e,, n;; =0, p;; =0, 171'1 = 0. Thus, the
wave dielectric tensor can be rewritten as

= c’k*\z c*k* __ iweny =3
D(w,k;0)=1{1-— 1+ XX — M,

w? w? w?€g
or
21,2 21,2 2
D(w,k;0)=|1-— — |1+ —FXX —iw p2 M,
W W w* e

29



9.6.1. Parallel propagating high-frequency waves (E) | §0)

To study waves with frequency equal or higher than the electrons’
characteristic frequencies, we can assume that ions will not

respond to the waves. i.e., n;; =0, p;; =0, ‘71'1 = 0.

For parallel propagating waves, let k= Xk, §0 = XB,. The
governing equations in the (k, w) domain can be obtained from
Egs. (9.24)~(9.33), i.e,,

—lwN, = —MNy (ik)velx (9.53)

meno(_i(l))l_/)el —_ _f(lk)ﬁel - eno(ﬁl + 1791 X.'SC\B()) (954)
—1lWPe1 = —VePeo (1K) Ve1x (9.55)
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e(_ﬁel)
€o
ikélx — O

ikglx —_

ikXXE, = iwB;
oA = l(l) —>
IkXXBy = poengy(— e1)

Substituting (9.55) into (9.54) to ellmlnate De1 and then
substituting the resulting equation into equation (9.59) to

(9.56)

(9.57)
(9.58)

(9.59)

ellmmate Vel, and substituting (9.58) into (9.59) to eliminate Bl, it

yleldsD E1 = 0.i.e,,
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_Dl O 0 | -Elx-
O D2 lD6 . Ely —_ O
| O _lD6 D3 _ -Elz-

where
2
D . 1 _ a)peo
1 — C2 >
el
c?k? W30
D2:D3_1_ 2_ 2_!22
0 0 50
2
D — (Upeo {2eo
6 —N% w
e0

2
where wpeo = ngye /meeo, CZ) = VePeo/NgM,, and
A, =eBy/m,.



For Ey, # 0, but £y, = Ey, = 0, ityields D, = 0. i.e,,

w? = w5e0 + Cook?
This is the dispersion relation of the Langmuir wave, which is the
same Langmuir wave obtained in un-magnetized plasma. Since
E,, # 0 implies i,; # 0 and V;,, # 0, the Langmuir wave is an
electrostatic compressional longitudinal wave.

For E;, = 0, but (Ely,Elz) # (0,0), it yields
D (D

_i12)6 D;] — Dz2 — D62 = (Dy + Dg)(D; — Dg) = 0

Namely, we have dispersion relation of two modes. One is for

D, + D, = 0, the other is for D, — D, = 0. Since E;,, = 0 implies

fi,; = 0 and V;,, = 0, both wave-mode are electromagnetic

incompressible transverse waves.

det
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For D, + D, = 0, it yields

c?k? W30
1—-——— =0
w?  wlw+N,)
or
w? = c?k? + w? v (9.60)
Pe0 ) 4+ N, '
Since

D, 1D6 Ely] 0
— D T
LWg Elz
D, + D, = 0 yields Ely = lElZ. It can be shown that the wave
electric field is left-hand polarized w.r.t. the ambient magnetic

field (§0 = XB,). Thus, Eq. (9.60) is the dispersion relation of the
L-mode wave.
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At k = 0, Eq. (9.60) yields

2 2 —
W cut—off + -Qeowcut—off — Wpeo = 0

The positive solution of w yi—_ff IS
1
Weyut—off = E(_Qeo + \/'ng + 4(‘);60)
Thus, the cut-off frequency of the L-mode is
1
Wcyt-offL—mode — WL = 2 (=2 + \/ng + 40)}%60)

For w39 » 22, the cut-off frequency of the L-mode is
approximately

e e0
W; = Wpep — (1-— )
which is slightly less than the cut-off frequency of the EM wave

propagating in the un-magnetized plasma.
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For D, — D, = 0, it yields

c?k? W30
1——— =0
w?  wlw-—10N,)
or
w? = c?k? + w2 v (9.61)
PO w — e .
Since

D, 1D6 Ely] 0
— D _
LWg Elz
D, — D, = 0 vyields Ely lElZ It can be shown that the wave
electric field is right-hand polarized w.r.t. the ambient magnetic

field (§0 = XB,). Thus, Eq. (9.61) is the dispersion relation of the
R-mode wave.
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At k = 0, Eq. (9.61) yields

2 2 —_
Weut—off — -Qeowcut—off — Wpeo = 0

The positive solution of w yi—_ff IS
1
Weyt—off = E (2 + \/'ng + 4('0}%60)
Thus, the cut-off frequency of the R-mode is
1
Wcyt-off R—mode — WR = E(Qeo + \/ng + 40)}360)

For w39 > 25, the cut-off frequency of the R-mode is
approximately

() ()

e0 (1+ e0 )

2 4a)peo
which is slightly greater than the cut-off frequency of the EM wave
propagating in the un-magnetized plasma.

WR = Wpeo +

37



Dispersion relations of the parallel propagating high-frequency
waves are sketched in Figure 9.4.

-t

Ye

- kc/wpe

Figure 9.4. A Sketch of the dispersion relations of the parallel

plasma.

propagating high-frequency waves in the ion-electron two-fluid
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9.6.2. Faraday rotation and it applications

Figure 9.4(b) shows the dispersion relation of the R-mode and L-
mode, where
R-mode dispersion relation

W
2 21,2 2
w* =ck 4+ w
pel W — -Qeo
L-mode dispersion relation
W
2 21,2 2
w*=ck 4+ w

It can be shown that for a given w the R-mode has smaller wave
number k, that is the L-mode wave has a shorter wavelength.
Thus, at a distance from the source region the received L-mode
phase will be ahead of the R-mode. Thus, the polarization plane

39



of the EM wave will rotate left-handed w.r.t. the ambient
magnetic field. The left-hand rotation of the polarization plane is
called the “Faraday rotation.”

Application:

Scientists estimate the line-of-sight magnetic field strength on the
solar surface or on the surface of a distant star based on the
strength of the observed Zeeman effect.

Scientists estimate the direction of the line-of-sight magnetic field
on the solar surface or the surface of a distant star based on the

theory of Faraday rotation. TR LCER M A M8 5 [o) he BB HY 56
MPTUIEIR SRR E ERE - AOREFCARMC M0 e -
—LREREFRBEMZ SO -
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9.6.3. Perpendicular propagating waves (I_{) 1 §0)

To study waves with frequency equal or higher than the electrons’
characteristic frequencies, we can assume that ions will not

respond to the waves. i.e., n;; =0, p;; =0, ‘71'1 = 0.

Let k = Rk, §O = yB,. The governing equations in the (k, w)
domain can be obtained from Egs. (9.24)~(9.33), i.e.,

—iwﬁel — —Ny (ik)velx (9.62)

meno(_iw)v)m = —X(ik)Pe1 — eno(E1 + I7e1><57Bo) (9.63)
—1lWPe1 = —VePeo (1K) Ve1x (9.64)
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e(_ﬁel)
€o
ikélx — O

ikglx —_

ikXXE, = iwB;
oA = l(l) —>
IkXXBy = poengy(— e1)

Substituting (9.64) into (9.63) to ellmlnate De1 and then
substituting the resulting equation into equation (9.68) to

(9.65)

(9.66)
(9.67)

(9.68)

ellmmate Vel, and substituting (9.67) into (9.68) to eliminate Bl, it

yleldsD E1 = 0.i.e,,

42



where

D . 1 _ a)peo
1= 2 _ 21,2 _ N2
W Ciok 0%,
21,2 2
DZ — 1 — ) — >
[0)) w
21,2 2 2 2 1,2
3 = _ _
2
a)peO QeO
D5 —
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For Ey, # 0, but E;,, = Ey, = 0, ityields D, = 0. i.e

W? = Wgeo + c°k?
This dispersion relation is the same as the electromagnetic waves
obtained in the un-magnetized plasma wave. Thus, it is called the
ordinary wave mode. Or simply, the O-mode wave. Since Elx =0
implies fi,; = 0 and V/;,, = 0, the O-mode wave is an
electromagnetic, incompressible, pure transverse wave.

For E1,, = 0, but (E1, E1,) # (0,0), it yields
D, —iD
det [iDls : 5] DDy — D? = 0
This dispersion relation has two wave modes solutions, both of

them are hybrid waves, which consist of electromagnetic and
electrostatic wave components.
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Dispersion relations of the perpendicular propagating high-
frequency waves are sketched in Figure 9.5.

Figure 9.5. A Sketch of the dispersion relations of the
perpendicular propagating high-frequency waves in the ion-
electron two-fluid plasma.
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It can be shown that the cut-off frequency of the right-hand
polarized X-mode wave is the same as the cut-off frequency of the
parallel propagating R-mode wave, wp, which indeed is also the
cut-off frequency of the all high-frequency right-hand polarized
waves that propagating oblique to the ambient magnetic field.

Likewise, the cut-off frequency of the left-hand polarized Z-mode
wave is the same as the cut-off frequency of the parallel
propagating L-mode wave, w;, which indeed is also the cut-off
frequency of the all high-frequency left-hand polarized waves that
propagating oblique to the ambient magnetic field.
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9.7.

Linear wave solutions in an un-magnetized plasma (B, = 0)

—iwfley = —No(ik)Veix
—iwflyy = —ng(ik)Vigy
meno(—iw)?m = —X(ik)Per — en0?1
mng(=iw)Viy = —2(ik)pix + enoky

—lWPe, = _yepeo(ik)velx
—iwPi; = —ViPio ((k)Vi1x
ikEy, = e(fiyy — ieq) /€

(9.69)
(9.70)
(9.71)
(9.72)
(9.73)
(9.74)
(9.75)
(9.76)
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ik#XE, = iwB, (9.77)
A = = l(,l) —>
lkxXBl — Hoeno(Vil 81) —_— (978)

For un-magnetized plasma §0 = 0, and for k = Xk, the governing

equations in the (k, w) domain can be obtained from Egs.
(9.24)~(9.33), i.e.,

If we wish to obtain the electrostatic wave, we can take the inner
product (ixk/m,) -Eq. (9.71), which yields

no(_lw)(lk)velx — (kzpel enoikglx)/me (9.79)
Substituting Eq. (9.73) into Eq. (9.79) to eliminate p,4, substituting

Eq. (9.75) into Eq. (9.79) to eliminate ikﬁlx, and then substituting
Eq. (9.69) into the resulting equation to eliminate ikV,,,, it yields
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2

. D N~ YeDeo . e Ny  _ ~
(_w))(lw)nel = k* TZQTeLO Ngp — m.eq (nil — nel) (9.80)

Let C,o, = \/yepeo/meno and wyeo = \/eZnO/meEO, Eqg. (9.80) can
be rewritten as
(w? = k?C)Tigq + wzzoeo(ﬁu —flg1) =0 (9.81)

Likewise, the inner product (ixk/m;) - Eq. (9.72) yields
no(—iw) (k) Vi1, = (k*Piy + engikE;,)/m; (9.82)
Substituting Eq. (9.74) into Eq. (9.82) to eliminate p;;, substituting

Eq. (9.75) into Eq. (9.82) to eliminate ikE,,, and then substituting
Eq. (9.70) into the resulting equation to eliminate ikVilx, it yields
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2
ylplO ~ + e nO
1
m;ng, i meé€y

(—iw)(iw)fy; = k? (i; — Tipy) (9.83)

Let C;y = \/yipio/mino and wy;p = \/ezno/mieo, Eqg. (9.83) can
be rewritten as
(w? — szizo)ﬁil — (ngoio(ﬁil —flgy) =0 (9.84)

Eqg. (9.81) and Eq. (9.84) can be rewritten in the following matrix

form
1—a nel] .
[ A b] [nll (9.85)
where
q = (Uzzoeo
B szezo
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2
wpiO

For [7i,4,7;1] # [0,0], it yields
1—a a | __
det | b 1-— b] =0

h =

l.e.,
(1—-a)(1—-b)—ab=1—a—-b=0
Thus, we obtain the linear dispersion relation of the electrostatic
waves in the un-magnetized plasma
2 2
W W
1— pey > — P > =0 (9.86)
w? —k?C;y, w?—k*C},
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If we wish to obtain the electromagnetic wave, the cross product
(iXxk/m,)XEq. (9.71) yields

ny(—iw)(iXk)xV,, = —eny(i%k/m,)xE, (9.88)
and the cross product (ixk/m;)XEq. (9.72) yields
no(—iw)(ixk)XV,; = eny(i%k/m;)XE, (9.89)
The cross product (iXk)XEq. (9.78) yields
(i%k) % (ikZXB,)
] = (9.90)

- 5 0x iw
= poeng(IXk)X(Viy — V1) — 2 (iXk)XE;

Substituting Eqg. (9.88) into Eq. (9.90) to eliminate (ia?k)xl_/;l, and

substituting Eqg. (9.89) into Eq. (9.90) to eliminate (iJ?k)XIZ-l, it
yields
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: 2 2
L ((Upio + Wpeo
c? w2

(k?B,) = — 1) (i%k)XE, (9.91)

Substituting Eq. (9.77) into Eg. (9.91) to eliminate (i)?k)xﬁl, it
yields

= 1 =
k*B; = o2 [w? — (wgzaio T (Uzzaeo)](Bﬂ (9.92)
For non-zero §1, Eq. (9.92), yields

w? = (Wl + w3e) + c2k? (9.93)
Since a)zzﬂ-o K a)ﬁeo, Eq. (9.93) is very similar to the high-frequency
electromagnetic wave dispersion relation obtained in Eq. (9.52).
Likewise, Eq. (9.86) can be decomposed into two eigen modes,
where the high-frequency one is very similar to the electrostatic

wave dispersion relation obtained in Eqg. (9.51).
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PINEENL - W18 Eq. (9.86)3F A A& eigen modes.
Eq. (9.86) yields
(w? — k2C5) (w? = k2CH) — wheo(w?* — k2CH) — wihio(w? — k2C5) =0

= (w?)? — (k2C% + k*Cly + wheo + w3y )w?
+(k2Cok*Cih + k2Clwyeo + k*Clow3i) = 0
= ((UZ)Z [(kZCeO + wpeo) + (kZClO + wplO)]w
[(kZCeO + wpeo)(kzclzo + wplO) peowzzﬂo] 0
= (w?)? —[a + blw? + [ab — wjeow5] = 0
where

a = (k?C% + wpeo) >0
b= (k*Ciy+ wpy) >0

1
S @ =3[@+b) £ [(@+b)? — 4(ab ~ wfegtfo)]
=  For Tog~Tj, ityields (b/a) ~(m,/m;)~(1/1836), and
1 14(ab — a)peoa)plo)
= — + —
w? 2[(a+b) (a+b)+2 @+ b) ]
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2

1 Wpi
S w? = [(a+b)  (a+b) F 2(b — L)
Since
wzzoeowzz;io Wi Wpi
a 14+ ——== kZC 1 + Vekz/lDeO
C“)peO
2_0
~ k2C% + wpeo + k*Clh + wplO (k*Cip + wplo plz
1+ y.k ADeO
=
2_0
2 2 Ui
W = +(k CO + w? 0~
' pt 1+ Vekz/lDeO
(U%I =~ (1)22980 + kZCeo
=

w? = k?CH + a)plo(l

1+ VeszDeO
The high-frequency electrostatic wave mode
Wi = (U;zoeo + k%Cé

is the Langmuir wave obtained in Eq. (9.51).

)

)

)

(9.94)
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The low-frequency (ion-time-scale) electrostatic wave mode is

wi = k*Ciy + wpip(1 —

9.95
1+ 7. k22 ) (9.95)

For k?1%,, < 1, we have

1 2
1 +Vek2/112)80 ~ 1Yok e
Thus,
1 (‘)210
ot <1 1 +yekza,%eo> = ol = (= rek 5l = koo T
It yields
2 22 2 1
w; = k“Cyy + W30 <1 BEpn yekz/% O)
e

— kZCZO 1+ kZC a)lzﬂ() _ kz (YikBTiO + yikBTBO)
l

a)peO m;
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Thus, for k%2%,, < 1, Eq. (9.95) is reduced to
wi = k*Cg, (9.96)

where C;o = \/(yikBTl-O + v;kgT.p)/m; is the sound speed of the
ion acoustic wave at the long wavelength limit in an un-

magnetized plasma.
For k%1%, > 1, we have

w2 [ 1— - ~ w2, |1 — ! ~ w2,
pio 1+ Vekz/ﬁ)eo P ‘Vekz/ﬁ)eO PO

Thus, for k?1%,, > 1, Eq. (9.95) is reduced to
wi = k*CH + wlyig (9.97)

This is the dispersion relation of the ion acoustic wave at the short
wavelength limit in an un-magnetized plasma.
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Based on the above discussion, the dispersion relations obtained
in Eg. (9.93) and in Egs. (9.94) & (9.95) are sketched in Figure 9.6.

(a)Te>0, Ti—0 (b)Te>0, T;>0

Figure 9.6. A sketch of the wave dispersion relation obtained a
un-magnetized plasma based on Egs. (9.93) ~ (9.95)
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9.8. lon-time-scale electrostatic waves in an un-magnetized
plasma (B, > 0)

The dispersion relation obtained in Eqg. (9.96) can be obtained by
assuming that n, = n;, and by ignoring the electrons’ inertial term
in the electrons’ momentum equation, i.e.,

—lwn; = _no(ik)vilx R —lWNe = _no(ik)velx (9.98)

0 = —(ik)p,, — enyEy, (9.99)
m;ng (—iw)vux = —(ik)p;; + enogu (9.100)
~iwPe1 = ~VeDeo (Ik)Ve1x (9.101)
—iwpi; = —ViPio({k)Virx (9.102)

Substituting Eq. (9.98) into Eqgs. (9.101) & (9.102) to eliminate
(ik)V,,, and (ik)V;,, it yields
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De1 = YePeoTlin /Mo (9.103)
Di1 = ViPioMi1 /Mo (9.104)
Substituting Eq. (9.98) and (9.99) into (ik/m;)Eq. (9.100) to
eliminate (ik)V;;, and enyE, it yields
w?fiyy = (k?Piy + k?Per)/m; (9.105)
Substituting Egs. (9.103) and (9.104) into Eq. (9.105) to eliminate
pi1 and P4, it yields

w?Tyy = k?[(yikpTio + VekpTeo)/mi]fiy (9.106)
Thus, for non-zero 1;4, Eq. (9.106) yields
w? = k*Cg (9.107)

where Cgy = \/(VikBTio + ¥ikpTeo) /m;
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Exercise 9.3:
Show that, although we have assumed that n, = n;, but the
amplitude of the density perturbation of electrons should be

slightly less than the density perturbation of ions (|fi,{]| < |7i;1]) in
the ion-acoustic wave.
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9.9. lon-time-scale waves in a magnetized plasma

As shown in Figure 9.7 that, for electron plasma frequency greater
than electron’s cyclotron frequency (w,o > {2,9), the waves with

frequency between the (2,5 and (2;, consist of the whistler waves

(B8, the chorus waves &18)%, and the ion-acoustic waves LE &+

2. The ion-acoustic wave in the magnetized plasma is similar to

the one discussed in section 9.8, except for nearly perpendicular
propagation. The whistler waves and chorus waves are right-hand
polarized electromagnetic waves or hybrid waves. The phase
speed of the whistler wave increases with increasing wave
frequency. The phase speed of the chorus wave decreases with
increasing wave frequency.
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magnetized ion-electron two-fluid plasma.
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