Lecture 7

Key points

Introduction to Wave and Wave Equation

Wave characteristics: wave front, phase,
phase velocity, group velocity, longitudinal
waves, and transverse waves

Wave equation and the solutions of the
wave equation

Characteristic curves of the wave equation
Electromagnetic waves travel through an
empty space (a vacuum)

Fourier transform and Fourier components
of a linear wave: definition of linear wave,
wavelength, wave number, wave period,
wave frequency, wave angular frequency



7.1. Wave Characteristics ( 5tBAA MIIBENERLEE )
e KA wave front

e FHMI phase

e 7THZRE phase velocity

e EE3R/E group velocity

o 4t longitudinal waves
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=K transverse waves
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7/.2. Wave Equations

Table 7.1 The 2"%-order Partial Differentia Equations
_FBERMoAER HFEZ _RHZRLET
2-D Poisson equation elliptic equation

0P (x, 0P (x, x? 2
(y)  07PYy) _ LYy
dx*? dy? a’* b?

1-D diffusion equation
dT (x,t) B 04T (x,t)
ot = ox?

parabolic equation

y = 4ax?

1-D wave equation

0°Ax,t)  10°A0t) _

0x?2 c?  OJt?

hyperbolic equation
x2 y2

az_bzz1




Laplace equation V?® (¥) = 0 &
Poisson equation V4® (x) = f(x) are elliptic equations.
Diffusion equation is a parabolic equation.

oT (x,t R
gt ) = kV*T (%, t)
Wave equation is a hyperbolic equation.
N 1 0%A(%,t) )
VeA(x,t) — 2 a2 o S(x,t)
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7.3. Analytical Solutions of the One-Dimensional Wave Equation

Let us consider the following 1-D wave equation
0%A(x,t) 1 0%A(x,t) _ 0

7.1
0x? c? OJt? (7.1)
Since
0%A(x,t) 1 0%A(x,t)
0x? c?  Ot?
_[a 181 0 10],4( 0
~lox  cotllox cot o
Eq. (7.1) yields
0A(x,t) 10A(x,t)
— = ( 7.2
[ dx T c Ot ] (7.2)



or
0A(x,t) 10A(x,t)

__ — 7.3

ax c Ot 0 (7.3)

One can show that A(x — ct) is the solution of Eq. (7.2).
Proof:
Substituting A(x, t) = A(x — ct) into Eq. (7.2), it yields

0A(x —ct) 10A(x —ct)
_|__
0x C dt

_dA(x —ct)d(x —ct) 1dA(x —ct) d(x — ct)

~ d(x —ct) 0x +E d(x — ct) ot

_ dA(x — ct) . 1dA(x — ct) _ 0
~ d(x —ct) +Z d(x — ct) (=6) =




Likewise, A(x + ct) is the solution of Eq. (7.3).
Solution of the wave equation (7.1) can be written as a linear
combination of F(x — ct) and R(x + ct), that is,

A(x,t) = F(x —ct) + R(x + ct)

How do we know that A(x — ct) is the solution of Eq. (7.2)?

AR Ax, t) EMEPEIIEE (x,t) BRE - IRESZ 7 —EIRH4
Eq. (7.2) MEEBAUZBMNE =BV —E - i - Ffo]
PIEREI— I RIBII E 8 [E(x, 0),n(x, t)] BF A RZE & BIK

2 mAZn WERE - UR2R
0A

=0 (7.4)
677 E=const.
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0A[x(&,n),t(E,n) 0A| 0x dA| Ot
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g £ x OMle
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0x
on
ot 1
on C
Eq. (7.7) can be rewritten as
oct)_ 1 7.8
ol = (7.8)
Subtracting Eq. (7.8) from Eq. (7.6), it yields
d(x — ct)
=0 (7.9)
on :
Eqg. (7.9) yields, x — ct is a function of (. The simplest solution is
x—ct =¢&(x,t)

=1 (7.6)

(7.7)
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Thus, the solution of Eq. (7.2) is A(x,t) = A[&(x,t)] = A(x — ct).
Likewise, the solution of Eq. (7.3) is A(x, t) = A(x + ct).

Table 7.2. Summary of 1-D wave equation and its solutions

— (@ PE{R M SRR analytical solutions
Alx,t) = F(x —ct
4G _10%AD _ (x, 2) X é(x A Cz)
0x? c? Ot?
o] DABREPE B E — P& i 2 A2 0
0A(x,t) 10A(x,t)| 0 analytical solution
ox ¢ ot | A(x,t) = A(x — ct)
0A(x,t) 10A(x,t)| 0 analytical solution
ox ¢ ot | Ax,t) = A(x + ct)
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7.4. Characteristic Curves of the 1-D Wave Equation

The characteristic curves of the equation (7.2) are
¢(x,t) = x — ct = constant curves. We can show that the
phase of the perturbation is constant along a constant £(x, t).

Figure 7.1 sketches the propagation of an initial disturbance based
on Eq.(7.2). The amplitude of the disturbance is constant along
each characteristic curve ¢ = x — ct. The disturbance propagates
toward +x direction at a speed c.

Exercise 7.1. Describe the evolution of a disturbance which
satisfies Eq. (7.1).
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Figure 7.1. A sketch of
the propagation of an
initial disturbance
based on Eq. (7.2).
The amplitude of the
disturbance is
constant along each
characteristic curve

¢ =x—ct. The
disturbance
propagates toward
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7.5. Electromagnetic Wave Equation in a Vacuum

Let us consider a system without charge, electric current, or any

dielectric medium. It yieldsf = 0 and p, = 0. The Maxwell
equations in this system become

V-E=0 (7.10)
V-B=0 (7.11)
., 0B
ot
. 10E
VXB = —— (7.13)
c? ot

The electromagnetic wave equation can be obtained by taking curl
of the Faraday’s Law (7.12) or the Ampere’s Law (7.13).
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oVxB 1 9%E

Vx(VXE) = — e NS
. 1 0VXE 1 0%B
VX(VXB) - c? Ot - c? 0t?

where
Vx(VXE)=-V?E+V(V-E) = —V2E
vx(VxB) = —V?B +V(V - B) = —V?B
Thus, we have

72F — - OE _ 0
c? 0t?
and
725 — - B _ 0
c? 0t?

(7.14)

(7.15)
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( electromagnetic wave equations in a vacuum )
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A\ == EE

ITE&EE | B A curl of the

-

Ml

Ampere’s Law O] DU1S 2l 4 Y E

=0 A2 T (6.20) © & HY curl

of the Faraday’s Law B E SR EaEE M N EFE RN A ET
(6.21) °
. 109°%B R
2 —_
VIB = — = = —lVXJ (6.20)
L 102%E ] 1
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7.6. Fourier Transform & Fourier Components of a Linear Wave

DERRM D KREN TGRSl BINA 7.4 8RR EERAR TR -
FEETER - AZBINRMO HRED - FEEBERE T TUK
B FA—EREIRR - #RRBENRMD HENIFEERM -
B2 IRIBLCE/NAVRED - 22 ol UK IR R FELR MR EN 5 2
E—TECAARIERIREHEER - IR PIZENRM D HE
o EARBEA— BTN RM o HREI - B ol IR E
URES  RRRFERM D HED - BERA—HNELRE
o, - EEM O MIRE SRR E B EEET -

Q: What is the definition of a linear function? and a linear wave?
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Fourier Transform
For 0 <x <L - ERRE f(x) Y99I F Fourier series f&F

f(x) = E[Cn cos(k,x) + d,;sin (k,,x)]

IIf Fourier series BIE K (basis)B21E [ B EL cos(k,,x) EAZFERE]
sin (k,,x), EF k,, = 2nn/L ° Pill ¢, B2 f(x) 1E cos(k,x)
MRS - d, B f(x) TE sin (k,x) TRV -

Let ¢,, = 1;,cos (¢,,) and d,, = —1;,sin (¢,,). Ityields

FG) = ) 1005 () cos(knx) = sin (d)sin (ky)]

n

=) [ cosClax + )

n
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Thus, the function A(x — ct) can be written as

Alx —ct) = Z{/T(kn) cos[k,(x — ct) + ¢,]}

n

= Re {z [A(k,) e Pnethn(x—ct) ]}

n
where A(k,,) is the amplitude of the nth harmonic component in

the Fourier series and ¢,, is the phase of the nth harmonic
componentatx =t = 0.

Let A(k,) = A(k,)e'®n and k,,c = w,,. It yields

A(x — ct) = Re {z [A(k,)e!knX=@nl) ]} (7.16)

n
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Since A(x — ct) is a general solution of Eq. (7.2), substituting Eq.
(7.16) into Eq. (7.2), it yields

9 o
_aRe {z [A(k,)ei(knx=wnt) ]}

n 5 - (7.17)
+ =2 Re {Z[/T(kn)ei("nx‘wnt) ]} — 0
c Ot ~ |
For
iei(knx—wnt) — ik ei(knx—wnt)
0x "
and
_ei(knx—wnt) — —jw ei(knx—wnt)
ot "

Eq. (7.17) can be rewritten as
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. X0 .
Re {z A(k,)(ik, — Tn) etlknx-wnt)t — () (7.18)
n

Eq. (7.18) yields

X0
l n_Tn:O
or
Wn,
_:C .
k, (7.19)

Eq. (7.19) is the dispersion relation of the Eq. (7.2). Eq. (7.19)
yields that the wave speed of the nth harmonic wave component
is equal to w,,/k,,, where k,, = 2nn/L is the wave number,

A, = 2n/k, = L/nis the wavelength.
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Let the wave period of the nth harmonic wave component be 7,,,
then, by definition, c = 4, /1,,, or
A, 2 2m 1
T Tk, wn o
Thus, w,, is the angular frequency and f,, is the frequency of the
nth harmonic wave component.

In summary, the so-called plane wave assumption,
A(X,t) = Re {A(l?)ei(k'f‘wt) }
which is a simplified form of Eq. (7.16), can turn a 3-D PDE into an

algebra equation, where
N d
V=—->>ik and — - —iw
dx dt
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Q: What is plane wave? What is surface wave?

Exercise 7.2. Derive the wave dispersion relation of the EM waves
in a vacuum.

24



