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Lecture 5   Drift motion: Multiple-time-scale analysis 

Key points 𝑬×𝑩 Drift  
Gravitational Drift 

Application: Gravitational Rayleigh-
Taylor Instability => plasma bubble in 
the E-region ionosphere  

Polarization Drift  
Applications: Polarization current at 
the wave front of the MHD waves 

Curvature Drift 
Grad B Drift 

Application: Formation of partial ring 
current after substorm injections 
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Review: 飄（漂）移運動 drift motion 
帶電粒子，除了會繞著磁場打轉 gyro motion，也會在兩個強

磁場所構成的磁瓶中進行彈跳動 bounce motion。最後還會在
不均勻的磁場結構中進行飄移運動 drift motion。在 drift 
motion過程中，平均一個迴旋週期的時間裡，粒子的平均位

置為 guiding center， 也就是說，帶電粒子本身會繞著 
guiding center打轉。而 guiding center 會發生各種飄移。 

最常見的一種飄移運動，就是 𝑬×𝑩 drift。其他還有 
gravitational drift  polarization drift 
grad B drift   curvature drift 
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至少有以下四種方式，來了解 𝑬×𝑩 drift 
1. Solving the equation of motion with the given E field 

and B field directly. 
2. Changing the moving frame to the guiding canter 

moving frame, where E=0, then changing back to the 
original moving frame with a DC Electric field. 

3. Considering the change of kinetic energy, thus the 
change of gyro radius. 

4. Taking time-averaging to remove the high-frequency 
part of the motion. 

第 4種方法， 可適用於所有 multiple-timescale processes. 

尤其當兩個 timescales 的時間尺度相差很多的時候。 



	 4	

多時間尺度問題標準處理法： 
Step 1. 先找出最高頻方程式。 

Step 2. 求最高頻現象的解。 
Step 3. 將原來方程式對時間平均，消去最高頻物理現象，留

下一個包含次高頻時間尺度的方程式。 

Step 4. 求次高頻現象的解。 
Step 5. 將原來方程式對時間平均，消去次高頻物理現象。 

Step 6. 留下下一個時間尺度的方程式。 
Step 7. 於此類推，直到 DC現象（steady state現象）出現

為止。 
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𝑬×𝑩 Drift 
命題： 
Let us consider a charge particle with mass 𝑚, and charge 
𝑞, moving in a space with uniform and steady magnetic 
field 𝐵 and electric field 𝐸.  Assume that the electric 
field is perpendicular to the magnetic field (𝐸 ⊥ 𝐵) and the 
initial velocity of the particle is also perpendicular to the 
ambient magnetic field, (𝑣(𝑡 = 0) ⊥ 𝐵).   
基本方程： 
The equation of motion of the charge particle is 

𝑚
𝑑𝑣
𝑑𝑡 = 𝑞(𝐸 + 𝑣×𝐵) (5.1) 
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以均勻電磁場中的 𝑬×𝑩 Drift這個問題而言，只有兩個時間
尺度：高頻現象與 steady state現象。 
The velocity of the charge particle can be decomposed 
into two components, a high-frequency component 𝑣1 and 
a low-frequency component 𝑣2. That is    

𝑣 = 𝑣1 + 𝑣2 (5.2) 
Substituting Eq. (5.2) into Eq. (5.1) to eliminate 𝑣, it yields 

𝑚(
𝑑𝑣1

𝑑𝑡 +
𝑑𝑣2

𝑑𝑡 ) = 𝑞(𝐸 + 𝑣1×𝐵 + 𝑣2×𝐵) (5.3) 
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Step 1. 先找出最高頻方程式： 
The high-frequency components in Eq. (5.3) yields 

𝑚(
𝑑𝑣1

𝑑𝑡 ) = 𝑞(𝑣1×𝐵) (5.4) 

Thus, the high-frequency velocity component is the gyro 
velocity component (𝑣1 = 𝑣34561 ).  Solution of Eq. (5.4) has 
been discussed in Lecture 2 (Example 2.1).  
 
Step 2. 求最高頻現象的解： 
For 𝛺8 = 𝑞 𝐵/𝑚, the solution of Eq. (5.4) is 
𝑣1 𝑡 = 𝑣:[𝑒:= sin 𝛺8𝑡 + 𝜙 +

𝑞
|𝑞| 𝑒:C cos 𝛺8𝑡 + 𝜙 ] (5.5) 

where 𝜙 is the initial phase angle and 𝑒:=×𝑒:C = 𝑒∥ = 𝐵 



	 8	

Step 3. 將原來方程式對時間平均，消去最高頻物理現象，留
下一個包含次高頻時間尺度的方程式。 
Let us define the time averaging of A by  

< 𝐴 >CK/LM=
𝐴 𝑡 𝑑𝑡

CK
LM
N

𝑑𝑡
CK
LM
N

 (5.6) 

 
The low-frequency equation of motion can be obtained by 
time-averaging of Eq. (5.3) over one gyro period. Since  

sin(𝛺8𝑡 + 𝜙)𝑑𝑡
CK
LM

N
= cos(𝛺8𝑡 + 𝜙)𝑑𝑡

CK
LM

N
= 0 
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it yields  
< 𝑣1 >CK/LM= 0 

<
𝑑𝑣1

𝑑𝑡 >CK/LM= 0 
Thus, time-averaging of Eq. (5.3) over one gyro period 
yields 

𝑚(<
𝑑𝑣2

𝑑𝑡 >CK/LM	) = 𝑞(𝐸+< 𝑣2 >CK/LM×𝐵) (5.7) 

Let us assume that 𝑣2 is constant with time.  That is 
𝑑𝑣2/𝑑𝑡 = 0 and < 𝑣2 >CK/LM= 𝑣2. （這個假設，等答案求出

來後，需要被檢驗。）  For steady 𝑣2, Eq. (5.7) yields 
0 = 𝑞(𝐸 + 𝑣2×𝐵) (5.8) 
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Step 4-7. 求次高頻現象的解，在此也是 steady state的解 
Solution of Eq. (5.8) is  

𝑣2 =
𝐸×𝐵
𝐵C  (5.9) 

Namely, 𝑣2 = 𝐸/𝐵 and 𝑣2 = 𝐸×𝐵.   
檢驗答案 
• One can substitute the solution given in Eq. (5.9) back 

to Eq. (5.8) and find that the solution satisfies the Eq. 
(5.8).  

• The solution given in Eq. (5.9) also satisfies the time 
independent assumption 𝑑𝑣2/𝑑𝑡 = 0.   
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The low-frequency velocity component given in Eq. (5.9) is 
called the “𝑬×𝑩 drift velocity” (e.g., Fig. 5.1). 
 
It is important to note that, since we consider non-
relativistic equation of motion, the 𝑬×𝑩 drift speed 𝐸/𝐵 
must satisfies 𝐸/𝐵 ≪ 𝑐.  Namely, for a given uniform 
electric field 𝐸, the background magnetic field strength 
should be much greater than 𝐸/𝑐. Or, for a given uniform 
magnetic field 𝐵, the background electric field strength 
should be much less than 𝑐𝐵. 
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𝑬×𝑩 
Drift 

 

 
Choose  
VEXB=1 

 
 Fig. 5.1. Examples of 𝑬×𝑩 Drift 
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Gravitational drift 
Let us consider a charge particle with mass 𝑚, and charge 
𝑞, moving in a uniform magnetic field 𝐵 and a uniform 
gravitational field 𝑔.  Assume that 𝑔 ⊥ 𝐵 and the initial 
velocity of the particle is also perpendicular to the 
ambient magnetic field, i.e., 𝑣(𝑡 = 0) ⊥ 𝐵.  
The equation of motion of the charge particle is 

𝑚
𝑑𝑣
𝑑𝑡 = 𝑚𝑔 + 𝑞𝑣×𝐵 (5.10) 

The velocity of the charge particle can be decomposed 
into two components, a high-frequency component 𝑣1 and 
a low frequency component 𝑣2. That is    

𝑣 = 𝑣1 + 𝑣2 (5.11) 
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Substituting Eq. (5.11) into Eq. (5.10), it yields 

𝑚(
𝑑𝑣1

𝑑𝑡 +
𝑑𝑣2

𝑑𝑡 ) = 𝑚𝑔 + 𝑞(𝑣1×𝐵 + 𝑣2×𝐵) (5.12) 

The high-frequency components in Eq. (5.12) yields 

𝑚(
𝑑𝑣1

𝑑𝑡 ) = 𝑞(𝑣1×𝐵) (5.13) 

Again, the high-frequency velocity component is the gyro 
velocity component. Time-averaging of Eq. (5.12) yields  

𝑚(<
𝑑𝑣2

𝑑𝑡 >CK/LM	) = 𝑚𝑔 + 𝑞 < 𝑣2 >CK/LM×𝐵 (5.14) 

Assume that 𝑣2 is constant with time.  That is 𝑑𝑣2(𝑡)/
𝑑𝑡 = 0 and < 𝑣2 >CK/LM= 𝑣2.  Eq. (5.14) yields 

0 = 𝑚𝑔 + 𝑞𝑣2×𝐵 (5.15) 
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Solution of Eq. (5.15) is  

𝑣2 =
𝑚𝑔×𝐵
𝑞𝐵C  (5.16) 

One can substitute the solution in Eq. (5.16) back to Eq. 
(5.15) and find that the solution satisfies the Eq. (5.15).  
The solution given in Eq. (5.16) also satisfies the time 
independent condition 𝑑𝑣2/𝑑𝑡 = 0.  The low-frequency 
velocity component given in Eq. (5.16) is called the 
“gravitational drift velocity.”  Note that the gravitational 
drift velocities of ions and electrons are in different 
directions. The gravitational drift speed increases with 
increasing mass of the charge particle.   
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General form of the low-frequency drift velocity 
 
Let us consider a charge particle with mass 𝑚, and charge 
𝑞, moving in a uniform magnetic field 𝐵 and a uniform 
Force field 𝐹. i.e.,  

𝑚
𝑑𝑣
𝑑𝑡 = 𝐹 + 𝑞𝑣×𝐵 (5.17) 

The solution of Eq. (5.17) can be written as 𝑣 = 𝑣34561 +
𝑣T5UVW2 .  The low-frequency drift velocity can be written as 

𝑣T5UVW2 =
𝐹×𝐵
𝑞𝐵C  (5.18) 
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Application: Gravitational-Rayleigh-Taylor Instability -- 
An example of mixed 𝑬×𝑩 drift and gravitational drift  

Either due to the sunset disturbance or due to a 
gravity wave disturbance, the surface disturbance on the 
bottom side of the ionosphere (the D-region and E-region 
ionosphere) is unstable to the Gravitational-Rayleigh-
Taylor Instability.   
Q: What is gravity wave （重力波）? 

Ans.: 在一個對流穩定的大氣中，火山爆發，或颱風，或過山
風所造成的上下擾動加上水平風，就可以產生重力波。 
Exercise 5.1.  Please discuss the process of the 
Gravitational-Rayleigh-Taylor Instability. 
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Polarization drift 
Let us consider a charge particle with mass 𝑚, and charge 
𝑞, moving in a uniform magnetic field 𝐵 = 𝑧𝐵 and a slowly 
increased electric field 𝐸 𝑡 = 𝑦𝐸𝑡., where 𝐸 is constant 
with time.  Assume that the initial velocity of the particle 
is perpendicular to the ambient magnetic field.  
The equation of motion of the charge particle is 

𝑚
𝑑𝑣(𝑡)
𝑑𝑡 = 𝑞[𝐸(𝑡) + 𝑣(𝑡)×𝐵] (5.19) 

We decompose the velocity of the charge particle into 
three components, a high-frequency component 𝑣34561 (𝑡), a 
slowly changed component 𝑣Z×[2 (𝑡), and a DC drift 
component 𝑣T5UVW\] ,  i.e.,    
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𝑣 𝑡 = 𝑣34561 𝑡 + 𝑣Z×[2 𝑡 + 𝑣T5UVW\]  (5.20) 
Substituting Eq. (5.20) into Eq. (5.19), it yields 

𝑚(
𝑑𝑣34561

𝑑𝑡 +
𝑑𝑣Z×[2

𝑑𝑡 )

= 𝑞(𝐸 + 𝑣34561 ×𝐵 + 𝑣Z×[2 ×𝐵 + 𝑣T5UVW\] ×𝐵) 
(5.21) 

where the high-frequency component 𝑣34561  satisfies 

𝑚(
𝑑𝑣34561

𝑑𝑡 ) = 𝑞(𝑣34561 ×𝐵) (5.22) 

and the slowly changed velocity component satisfies  
𝐸 𝑡 + 𝑣Z×[2 𝑡 ×𝐵 = 0 (5.23) 

𝑣Z×[2 (𝑡) =
𝐸(𝑡)×𝐵
𝐵C  (5.24) 
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𝑑𝑣Z×[2 𝑡
𝑑𝑡 =

1
𝐵C
𝑑𝐸 𝑡
𝑑𝑡 ×𝐵 =

𝑦𝐸
𝐵C ×𝐵 (5.25) 

The equation of motion at lower frequency can be 
obtained by time-averaging of Eq. (5.21) over one gyro 
period.  Since 

< 𝑣1 >CK/LM= 0 

<
𝑑𝑣1

𝑑𝑡 >CK/LM= 0 

<
𝑑𝑣Z×[2 𝑡

𝑑𝑡 >CK/LM=<
𝑦𝐸
𝐵C ×𝐵 >CK/LM=

𝑦𝐸
𝐵C ×𝐵 

the time-averaging of Eq. (5.21) can be written as 

𝑚
𝑦𝐸
𝐵C ×𝐵 = 𝑞(< 𝐸 + 𝑣Z×[2 (𝑡)×𝐵 >CK

LM
+ 𝑣T5UVW\] ×𝐵) (5.26) 
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Substituting Eq. (5.23) into Eq. (5.26) to eliminate the 
term 𝐸 + 𝑣Z×[2 (𝑡)×𝐵 in Eq. (5.26), it yields 

𝑚
𝑦𝐸
𝐵C ×𝐵 = 𝑞𝑣T5UVW\] ×𝐵 (5.27) 

Eq. (5.27) yields 
𝑣T5UVW\] = 𝑦𝐸

𝑚
𝑞𝐵C (5.28) 

The drift velocity shown in Eq. (5.28) is called the 
“polarization drift velocity,” because it is associated with 
the polarization electric field at the wave front of a low-
frequency MHD (magnetohydrodynamic) waves.  The 
electric current resulting from the polarization drifts of 
ions and electrons is called the “polarization current.”  
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According to Eq. (5.28), the polarization current at the 
wave front of the MHD wave should be parallel to the 
𝑑𝐸 𝑡 /𝑑𝑡 (e.g., Fig. 5.2). 

Polarization Drift 

 
Fig. 5.2. A sketch of polarization drifts of an ion and an 
electron.  
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Curvature drift 
Let us consider a charge particle with mass 𝑚, and charge 
𝑞, moving in a steady but curved magnetic field 𝐵.  Let 𝑅[ 
be the radius of curvature of the magnetic field line.  If 
the charge particle has a velocity component 𝑣∥ parallel 
to the local magnetic field, then in the charge particle’s 
guiding center moving frame, the particle will sense a 
centrifugal force 𝐹8, where 

𝐹8 = 𝑅[
𝑚𝑣∥C

𝑅[
 (5.29) 

Substituting Eq. (5.29) into the general form of the low-
frequency drift velocity Eq. (5.18), it yields 
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𝑣T5UVW2 =
𝑚𝑣∥C

𝑅[
𝑅[×𝐵
𝑞𝐵C  (5.30) 

The drift velocity given in Eq. (5.30) is called the 
“curvature drift velocity” (e.g., Fig. 5.3). 

 
Fig. 5.3. A sketch of curvature drift of an ion. 
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Q: How to determine the radius of curvature of a given 
magnetic field 𝐵 ? 
 
Ans.: Considering a space curve, let 𝑡 be the unit tangent 
vector along the curve and 𝑠 denote the length along the 
curve.  Since 
𝑑𝑡
𝑑𝑠 = lim

cd→N

𝑡 𝑠 + 𝛥𝑠 − 𝑡 𝑠
𝛥𝑠 = lim

ch→N

𝑡 𝛥𝜃
𝑟𝛥𝜃 −𝑛 =

−𝑛
𝑟  (5.31) 

we have 
𝑛
𝑟 = −

𝑑𝑡
𝑑𝑠 = −𝑡 ⋅ 𝛻𝑡 (5.32) 

where 𝑛 is the unit vector along the radial direction of 
the curve, and 𝑟 is the radius of curvature. 
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If we consider the curvature of a magnetic field line, the 
𝑛 becomes 𝑅[, 𝑟 is the 𝑅[, 𝑡 is along the magnetic field 
direction 𝐵.  Thus, we have   

𝑅[
𝑅[

= −𝐵 ⋅ 𝛻𝐵 (5.33) 

For 𝐵 = 𝐵/𝐵, it yields 
𝑅[
𝑅[

= −
𝐵 ⋅ 𝛻𝐵
𝐵C +

𝐵𝐵
𝐵 ⋅ 𝛻𝐵 = −

𝐵 ⋅ 𝛻𝐵
𝐵C +

𝛻∥𝐵
𝐵  (5.34) 

 
Note that, if we ignore the displacement current, the 𝑱×𝑩 
Lorentz force can be decomposed into a magnetic pressure 
gradient force and a magnetic tension force.  That is 
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𝐽×𝐵 ≈
𝛻×𝐵
𝜇N

×𝐵 =
𝐵 ⋅ 𝛻𝐵
𝜇N

−
𝛻𝐵C

2𝜇N
 

= −
𝛻:𝐵C

2𝜇N
−
𝛻∥𝐵C

2𝜇N
+
𝐵 ⋅ 𝛻𝐵
𝜇N

 
(5.35) 

where 𝛻∥ = 𝐵𝐵 ⋅ 𝛻 and 𝛻: = 	𝛻 − 𝛻∥ = (1 − 𝐵𝐵)	 ⋅ 𝛻  . 
 
Substituting Eq. (5.34) into Eq. (5.35), it yields 

𝐽×𝐵 = −𝛻:(
𝐵C

2𝜇N
) −

𝑅[
𝑅[

𝐵C

𝜇N
 (5.36) 

    
 magnetic pressure 

gradient force 
magnetic 
tension force 
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Substituting Eq. (5.36) into Eq. (5.31) to eliminate 𝑅[/𝑅[, 
the curvature drift velocity given in Eq. (5.31) can be 
rewritten as 

𝑣8s5t.2 =
𝑚𝑣∥C

𝑞𝐵C
𝜇N
𝐵C −𝛻:

𝐵C

2𝜇N
− 𝐽×𝐵 ×𝐵 

=
𝑚𝑣∥C

𝑞𝐵v −𝛻:𝐵×𝐵 −
𝑚𝑣∥C

𝑞𝐵C
𝜇N
𝐵C (𝐽×𝐵)	×𝐵 

(5.37) 

Note that, for 𝐽 = 0, the curvature drift velocity becomes 

𝑣8s5t.2 =
𝑚𝑣∥C

𝑞𝐵v −𝛻:𝐵×𝐵  (5.38) 

The resulting equation is “similar” to the grad B drift  

𝑣w[2 =
𝑚𝑣:C

2𝑞𝐵v −𝛻:𝐵×𝐵  (5.39) 
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Grad B drift 
Let us consider a charge particle with mass 𝑚, and charge 
𝑞, moving in a non-uniform magnetic field 𝐵 = 𝑧𝐵(𝑥).  
Assume that the initial velocity of the particle is 
perpendicular to the ambient magnetic field. The equation 
of motion of the charge particle is 

𝑑𝑟
𝑑𝑡 = 𝑣 (5.39) 

𝑚
𝑑𝑣
𝑑𝑡 = 𝑞𝑣×𝐵 (5.40) 

The velocity of the charge particle can be decomposed 
into a high-frequency gyro motion component and a low-
frequency guiding center drift component.  That is,  
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𝑟 = 𝑟34561 + 𝑟3.8.2  (5.41) 
𝑣 = 𝑣34561 + 𝑣3.8.2  (5.42) 

where 𝑟34561  and 𝑣34561  satisfy the following high-frequency 
equations 

𝑑𝑟34561

𝑑𝑡 = 𝑣34561  (5.43) 

𝑚
𝑑𝑣34561

𝑑𝑡 = 𝑞𝑣34561 ×𝐵(𝑟3.8.2 ) (5.44) 

The solutions of 𝑣34561 𝑡  and 𝑟34561 𝑡  can be written as  
𝑣34561 𝑡 	

= 𝑣:[𝑥 sin 𝛺8𝑡 + 𝜙 +
𝑞
|𝑞| 𝑦 cos 𝛺8𝑡 + 𝜙 ] (5.45) 
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𝑟34561 𝑡 	

=
𝑣:
𝛺8
[−𝑥 cos 𝛺8𝑡 + 𝜙 +

𝑞
|𝑞| 𝑦 sin 𝛺8𝑡 + 𝜙 ] (5.46) 

where 𝜙 is the initial phase angle and 𝛺8 = 𝑞 𝐵(𝑟3.8.2 )/𝑚 is 
the gyro (angular) frequency. 
 
The Taylor series expansion of the magnetic field with 
respect to the guiding center is 

𝐵 𝑟 = 𝐵 𝑟3.8.2 + 𝑟 − 𝑟3.8.2 ⋅ ∇𝐵
5z5{.M.| + ⋯ (5.47) 
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Substituting Eqs. (5.41), (5.42) & (5.47) into Eq. (5.40), it 
yields 

𝑚
𝑑𝑣34561

𝑑𝑡 + 𝑚
𝑑𝑣3.8.2

𝑑𝑡
= 𝑞 𝑣34561 + 𝑣3.8.2 ×𝐵 𝑟3.8.2

+ 𝑞 𝑣34561 + 𝑣3.8.2 × 𝑟 − 𝑟3.8.2 ⋅ ∇𝐵
5z5{.M.| + ⋯ 

(5.48) 

Averaging Eq. (5.48) over one gyro period, ignoring the 
higher order terms, and assuming that 𝑣3.8.2  is a constant 
with time, it yields the first-order approximation 
0 = 𝑣3.8.2 ×𝐵 𝑟3.8.2 +< 𝑣34561 ×𝑟34561 ⋅ ∇𝐵

5z5{.M.| >CK/LM	 (5.49) 
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Since 𝐵 = 𝑧𝐵(𝑥), it yields 

𝑟34561 ⋅ ∇𝐵
5z5{.M.| = 𝑥34561 𝑑𝐵

𝑑𝑥	 5z5{.M.|
𝑧 (5.50) 

Thus, we have 
𝑣34561 ×𝑟34561 ⋅ ∇𝐵

5z5{.M.| 	

= +𝑥𝑣43456
1 𝑥34561 𝑑𝐵

𝑑𝑥	 5z5{.M.|
− 𝑦𝑣~3456

1 𝑥34561 𝑑𝐵
𝑑𝑥	 5z5{.M.|

 
(5.51) 
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Substituting Eqs. (5.45) & (5.46) into Eq.(5.51), it yields 
𝑣34561 ×𝑟34561 ⋅ ∇𝐵

5z5{.M.| 	

= −𝑥
𝑞
𝑞
𝑣:C	
𝛺8

cos 𝛺8𝑡 + 𝜙 cos 𝛺8𝑡 + 𝜙
𝑑𝐵
𝑑𝑥	 5z5{.M.|

+ 𝑦
𝑣:C	
𝛺8

sin 𝛺8𝑡 + 𝜙 cos 𝛺8𝑡 + 𝜙
𝑑𝐵
𝑑𝑥	 5z5{.M.|

 

(5.52) 

The time average of Eq. (5.52) becomes 

< 𝑣34561 ×𝑟34561 ⋅ ∇𝐵
5z5{.M.| >CK

LM
= −𝑥

𝑞
𝑞
𝑣:C	
2𝛺8

𝑑𝐵
𝑑𝑥	 5z5{.M.|

 (5.53) 

where < sin 𝛺8𝑡 + 𝜙 cos 𝛺8𝑡 + 𝜙 >CK/LM= 0 and  

< cos 𝛺8𝑡 + 𝜙 cos 𝛺8𝑡 + 𝜙 >CK/LM=
1
2 
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For 𝛺8 = 𝑞 𝐵(𝑟3.8.2 )/𝑚, Eq. (5.53) can be rewritten as 

< 𝑣34561 ×𝑟34561 ⋅ ∇𝐵
5z5{.M.| >CK

LM
= −

𝑚𝑣:C	
2𝑞𝐵(𝑟3.8.2 ) ∇𝐵 5z5{.M.|  (5.54) 

Substituting Eq. (5.54) into Eq. (5.49), it yields 

0 = 𝑣3.8.2 ×𝐵 𝑟3.8.2 −
𝑚𝑣:C	

2𝑞𝐵(𝑟3.8.2 ) ∇𝐵 5z5{.M.|  (5.55) 

We can obtain 𝑣3.8.2  from Eq. (5.55).  That is 

𝑣3.8.2 =
𝑚𝑣:C	
2

−∇𝐵 5z5{.M.| ×𝐵 𝑟3.8.2 	
𝑞𝐵v 5z5{.M.|

 (5.56) 

Note that, Eq. (5.56) is only a first-order approximation of 
the grad B drift.  The magnetic field and its gradient in 
Eq. (5.56) should be evaluated at the guiding center.  
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Grad B drift 偷懶取巧的記憶法（物理意義錯誤） 
For constant magnetic momentum 𝜇 = 𝑊:/𝐵, 
it yields 𝑊: = 𝜇𝐵, and −∇𝑊: = −𝜇∇𝐵. 
The dimension of −∇𝑊: is a force. 
It yields, the dimension of −𝜇∇𝐵 is also a force. 
Substituting 𝐹 = −𝜇∇𝐵 into Eq. (5.18) yields 

𝑣T5UVW2 =
−𝜇𝛻𝐵	×𝐵
𝑞𝐵C =

𝑊:	
𝐵
−𝛻𝐵	×𝐵
𝑞𝐵C =

𝑚𝑣:C	
2

−𝛻𝐵	×𝐵
𝑞𝐵v  (5.57) 

The biggest problem of this approach is that −∇𝑊: is NOT 
a force. It did not show that this result is only a first-
order approximation, nor the location where the magnetic 
field and its gradient should be evaluated. 


