Lecture 5

Key points

Drift motion: Multiple-time-scale analysis

EXB Drift

Gravitational Drift
Application: Gravitational Rayleigh-
Taylor Instability => plasma bubble in
the E-region ionosphere

Polarization Drift
Applications: Polarization current at
the wave front of the MHD waves

Curvature Drift

Grad B Drift
Application: Formation of partial ring
current after substorm injections



Review: 31 ()X ) 2% &) drift motion
weailf - BRI E&EEWST]E gyro motion - 1= 1 M &R
W35 B BRI TR P ZETTSE PR ED bounce motion - EBIERE
ABEINMGS SR ET IR EE drift motion ° 7E drift
motion @iFH - I —(EL e EHANEEE - RIFRIF9{
& /4 guiding center © L ERR @ FEMFABEHEZ
guiding center ¥J# - [ guiding center i E[EMZ -
e RI—EMZEE - Bl ExB drift - HittizS

gravitational drift polarization drift
grad B drift curvature drift

A




—

EOAEMTIEST - 57 # ExB drift

1. Solving the equation of motion with the given E field
and B field directly.

2. Changing the moving frame to the guiding canter
moving frame, where E=0, then changing back to the
original moving frame with a DC Electric field.

3. Considering the change of kinetic energy, thus the
change of gyro radius.

4. Taking time-averaging to remove the high-frequency
part of the motion.
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ExB Drift

e .

Let us consider a charge particle with mass m, and charge
g, moving in a space with uniform and steady magnetic
field B and electric field E. Assume that the electric

field is perpendicular to the magnetic field (E L B) and the
initial velocity of the particle is also perpendicular to the

ambient magnetic field, (¥(t = 0) L B).

= VST
The equation of motion of the charge particle is
dv o ,
m— = q(E + UXB) (5.1)
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The velocity of the charge particle can be decomposed
into two components, a high-frequency component v and
a low-frequency component v*. That is

v = v + vt (5.2)

Subs’ri’ru’ring Eq (5. 2) into Eq. (5.1) to eliminate v, it yields
dvt?  dvt

( +—) = q(E + xB + BLxB) (5.3)



Step 1. aXHESEAEL :
The high-frequency components in Eq. (5.3) vyields

"H

( —) = q(V"'xB) (5.4)

Thus, the high-Frequency velocity component is the gyro
velocity component (v" = ¥/},,). Solution of Eq. (5.4) has
been discussed in Lecture 2 (Example 2.1).

Step 2. KEBEIEIR AR -
For 2, = |q|B/m, the solution of Eq. (5.4) is

PH(t) = v [6,,sin(Q.t + @) + IZI e, cos(2.t +¢)] (5.5)

where ¢ is the initial phase angle and é,,%xé,, =é, =B



Step 3. BEFRSRRHBETY . HESSEYERS - 2

M EEEXSREERENSRED -
Let us define the time averaging of A by

2m

[ A(t)de

<A >27T/-QC:

(5.6)

The low-frequency equation of motion can be obtained by
time-averaging of Eq. (5.3) over one gyro period. Since

2TT 2TT

Qc Qc
j sin(2.t + ¢)dt = f cos(.t+d)dt =0
0

0



it yields
< 1_7)H >27T/-QC= O
dvt

——> =0
dt 27T/.QC

Thus, time-averaging of Eq. (5.3) over one gyro period
yields

dv*
dt
Let us assume that v% is constant with time. That is

m(< —— >,10.) = QE+< B* >,,/0 XB) (5.7)

dvt/dt =0 and < V" >, ,, = V. (EEREK - FSZFRKWL

%'/fé EEIEEE%EZ /\/\’%N\ ° ) For S'I'eady U , Eq. (5.7) Y|elds
0 = g(E + BLXB) (5.8)



Step 4-7. KR SIRIRRMEE - ELLTE steady state RYAE
Solution of Eq. (5.8) is

s _ EXB (5.9)

Namely, |¥%| = E/B and ?' = EXB.

AN FA AL 2o
AN ’%/\/\ (== BN

e One can substitute the solution given in Eq. (5.9) back
to Eq. (5.8) and find that the solution satisfies the Eq.
(5.8).

e The solution given in Eq. (5.9) also satisfies the time
independent assumption dv*/dt = 0.
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The low-frequency velocity component given in Eq. (5.9) is
called the “ExB drift velocity” (e.g., Fig. 5.1).

It is important to note that, since we consider non-
relativistic equation of motion, the EXB drift speed E/B
must satisfies E/B < c. Namely, for a given uniform

electric field E, the background magnetic field strength
should be much greater than E/c. Or, for a given uniform

magnetic field B, the background electric field strength
should be much less than c¢B.
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Fig. 5.1. Examples of EXB Drift
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Gravitational drift
Let us consider a charge particle with mass m, and charge

g, moving in a uniform magnetic field B and a uniform

gravitational field §. Assume that § L B and the initial
velocity of the particle is also perpendicular to the
ambient magnetic field, i.e., 7(t = 0) L B.
The equation of motion of the charge particle is
dv R

m—— = mg + qUuXxB (5.10)
The velocity of the charge particle can be decomposed
into two components, a high-frequency component v and
a low frequency component v*. That is

v=1v+ vt (5.11)
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Subs’ri’ru’ring Eq. (5 11) into Eq. (5.10), it yields

dvt
( v +—) =mg + q(v" XB + BL XB) (5.12)
The hlgh-Frequency components in Eq. (5.12) yields
dvt 5
m(—-) = q(3"'xE) (5.13)

Again, the high-frequency velocity component is the gyro
velocity component. Time-averaging of Eq. (5.12) yields
dv*

m(< —— >3m/0,) = mg + q < " >,n/0 XB (5.14)

Assume that v% is constant with time. That is dvl(t)/
dt =0 and < v" >,,,, = U". Eq. (5.14) yields

0 =mg + qixB (5.15)
14



Solution of Eq. (5.15) is

s MIxB (5.16)

qB°

One can substitute the solution in Eq. (5.16) back to Eq.
(5.15) and find that the solution satisfies the Eq. (5.15).
The solution given in Eq. (5.16) also satisfies the time
independent condition dv*/dt = 0. The low-frequency
velocity component given in Eq. (5.16) is called the
“gravitational drift velocity.” Note that the gravitational
drift velocities of ions and electrons are in different
directions. The gravitational drift speed increases with

increasing mass of the charge particle.
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General form of the low-frequency drift velocity

Let us consider a charge particle with mass m, and charge
g, moving in a uniform magnetic field B and a uniform

Force field F. i.e.,
dv . .

The solution of Eq. (5.17) can be written as v = 9}, +
Ugrire- The low-frequency drift velocity can be written as
. FxB
Vdrife = 7B? (5.18)
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Application: Gravitational-Rayleigh-Taylor Instability --
An example of mixed EXB drift and gravitational drift
Either due to the sunset disturbance or due to a
gravity wave disturbance, the surface disturbance on the
bottom side of the ionosphere (the D-region and E-region
ionosphere) is unstable to the Gravitational-Rayleigh-

Taylor Instability.
Q: What is gravity wave ( E/)K ) ?

Ans.: E—EXRIBERARE P - KILEK% - e/ - L

==

JBFTES ARY & MEENIN LR - Rl LAES

= TR

Exercise 5.1. Please discuss the process of the

Gravitational-Rayleigh-Taylor Instability.
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Polarization drift
Let us consider a charge particle with mass m, and charge

g, moving in a uniform magnetic field B = 2B and a slowly

increased electric field E(t) = yEt., where E is constant
with time. Assume that the initial velocity of the particle
is perpendicular to the ambient magnetic field.
The equation of motion of the charge particle is

dv(t)

dt

We decompose the velocity of the charge particle into
three components, a high-frequency component v/}, (t), a
slowly changed component vg,5(t), and a DC drift
component Vg5, i.e.,

m = g[E(t) + B(t)XB] (5.19)
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U(t) = U000 (®) + Vb () + V05 (5.20)
Substituting Eq. (5.20) into Eq. (5.19), it yields
dﬁ;{yro + dﬁé‘xB)
dt dt (5.21)

= q(E + Bl,,oXB + Dk XB + 825 XB)

m(

where the high-frequency component v},., satisfies

dﬁé{yro > H = (5 22)
m( dt ) = CI(UgmeB) .
and the slowly changed velocity component satisfies
E(t) + DL s (t)XB = 0 (5.23)
A E(t)xB
VExp(t) = B2 (5.24)
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i B2 a P pxl
The equation of motion at lower frequency can be
obtained by time-averaging of Eq. (5.21) over one gyro

period. Since

< 1_7)H >27T/-QC= O

dvt
< F >27T/'QC= O

dvUgp(t) VE VE
;t =< 75 XB >3n/0,= 57 _xB
the time-averaging of Eq. (5.21) can be written as
PE -
mjl;—xB = q(< E + vEXB(t)xB >?2n+ vd,,,lfth) (5.26)
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Substituting Eq. (5.23) into Eq. (5.26) to eliminate the
term E + L., (£)XB in Eq. (5.26), it yields
yE

m o XB = qua5 e XB (5.27)
Eq. (5.27) yields
3DC o TP
vdrift =Y qu (5.28)

The drift velocity shown in Eq. (5.28) is called the
"polarization drift velocity,” because it is associated with
the polarization electric field at the wave front of a low-
frequency MHD (magnetohydrodynamic) waves. The
electric current resulting from the polarization drifts of
ions and electrons is called the “polarization current.”
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According to Eq. (5.28), the polarization current at the
wave front of the MHD wave should be parallel to the
dE(t)/dt (e.g., Fig. 5.2).
Polarization Drift
e B=BZ

T E=E (7§
y
[y

/f\/-\ion

electron
Fig. 5.2. A sketch of polarization drifts of an ion and an
electron.
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Curvature drift
Let us consider a charge particle with mass m, and charge

g, moving in a steady but curved magnetic field B. Let Rj
be the radius of curvature of the magnetic field line. If
the charge particle has a velocity component v, parallel
to the local magnetic field, then in the charge particle’s
guiding center moving frame, the particle will sense a

centrifugal force F., where

R
C B RB

Substituting Eq. (5.29) into the general form of the low-
frequency drift velocity Eq. (5.18), it yields

(5.29)
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L, mup RpxB

vd?"ift _ RB qBZ
The drift velocity given in Eq. (5.30) is called the
“curvature drift velocity” (e.g., Fig. 5.3).

Physical Picture of the Curvature Drift

(5.30)

J

Fig. 5.3. A sketch of curvature drift of an ion.
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Q: How to determine the radius of curvature of a given
magnetic field B ?

Ans.: Considering a space curve, let ¢ be the unit tangent
vector along the curve and s denote the length along the
curve. Since

dt t(s + As) — t(s) 1t]46 —7 (
DR — i A = 5.31)
ds Agr—{lo As AlérBo rAQ (=1) r

we have

A dt
n_ _?.pf (5.32)

rds
where 7 is the unit vector along the radial direction of
the curve, and r is the radius of curvature.
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If we consider the curvature of a magnetic field line, the
fl becomes Ry, r is the Ry, t is along the magnetic field
direction B. Thus, we have

R S
5 _ _p.vp (5.33)
Rp
For B = B/B, it yields
R, B-VB BB B-VB VB
B _ _ + - .VB = — 4+ A= (5.34)
R, B2 ' B BZ ' B

Note that, if we ignore the displacement current, the JxXB
Lorentz force can be decomposed into a magnetic pressure
gradient force and a magnetic tension force. That is
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- - VXB B * VB VBZ

JXB = XB = ——

Ho Ho_) _Z).Uo (5.35)
VLBZ V"BZ B * VB

— — +
200 2Ug Ho

where V, =BB-Vand V, = V-V, =(1—-BB) -V

Substituting Eq. (5.34) into Eq. (5.35), it yields

I B? R, B?
JXB = -V, (—) — —— (5.36)

magnetic pressure magnetic
gradient force tension force

27



Substituting Eq. (5.36) into Eq. (5.31) to eliminate Ryz/Rg,
the curvature drift velocity given in Eq. (5.31) can be
rewritten as

2 2
- mv” ,LlO B > -
churv. — ( ) [ Vy ( ) — JXB| XB

qB< \B* 2Ho (5.37)
_ myj Lo
=5 (- 7, BxE) — 5 ( ;) UxB) xB
Note that, for J = 0, the curvature drift velocity becomes
2
3 muv S,
pL = qu (=V,.BxB) (5.38)
The resulting equation is “similar” to the grad B drift
2
B} muv?{ .
vLp = PTE (-V,.BxB) (5.39)
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Grad B drift

Let us consider a charge particle with mass m, and charge
q, moving in a non-uniform magnetic field B = 2B(x).
Assume that the initial velocity of the particle is
perpendicular to the ambient magnetic field. The equation
of motion of the charge particle is

dar
= (5.39)
dv N
— = gUXB 5.40
m 7 qU ( )

The velocity of the charge particle can be decomposed
into a high-frequency gyro motion component and a low-
frequency gquiding center drift component. That is,
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gyro'+ (5.41)
= vgym + v g.c. (5.42)

where 73, and v, satisfy the following high-frequency
equations

~H
d’”jliro 5 (5.43)
dvt o
m 22/7‘0 q gyroXB(Tglfc. (5'44)
The solu’rions of Uj)ro(t) and 75, (t) can be written as

gyro (t)

= v [Rsin(2t + p) + (5.45)

|q| ycos(2.t + ¢)]
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gyro (t)

— Z—l [—X cos(.t + ¢) + q ly sin(2,.t + ¢)] (5.46)
where ¢ is the initial phase angle and 2, = |q|B(7;.)/m is
the gyro (angular) frequency.

The Taylor series expansion of the magnetic field with
respect tfo the guiding cenfter is

B() = B(7yc) + (F = 7yc) VB, ++ (5.47)

31



Substituting Egs. (5.41), (5.42) & (5.47) into Eq. (5.40), it
yields
dﬁgyro dﬁélc
M ™

= q(v gyro T 1?gLC)X]-'?(_)L ) (5.48)
+q(Vf,o + VL )x(F—7E.) - VBL .

r= rgc

Averaging Eq. (5.48) over one gyro period, ignoring the
higher order terms, and assuming that ;. is a constant
with time, it yields the first- order approxima’rion

O_U XB( )+< Vgyro X gyro oL D20, (5.49)

Tg.c.
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Since B = 2B(x), it yields

5 dB
>H _ JH
Tgyro " VB|._. = Xgyro dx
Thus, we have
SH
gy'rox gyro VB‘; =L
_ . . dB
= +Xv X — YU
ygyro gyro dx y xgyro

2
L
gyro dx

(5.50)
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Substituting Eqs (5.45) & (5.46) into Eq.(5.51), it yields

H *H

r=Tg.c.
2

q vt
= —A——cos(ﬂ t + ¢) cos({2, t+q§)

lq| Q. dx lp—p, (5.52)
v? dB
+ y—sin(!)ct + ¢) cos(2.t + p) —
{2 ax lp=sk,

The time average of Eq. (5.52) becomes

o s v¢ dB
Peike T2 Vgl 20, dx lpgi
where <sin({2.t + ¢) cos(2.t + ¢) >,,,0.= 0 and
1
2

(5.53)

> [ >H

< cos(2.t + @) cos(.t + P) >op/0.=
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For 2. = |q|B(%.)/m, Eq. (5.53) can be rewritten as

2
- - =y mvj_
Substituting Eq. (5.54) into Eq. (5.49), it yields
2
- =275 mUJ_
0 = Bt XB(7k.) — 2aB G, VBli_si (5.55)

We can obtain v;. from Eq. (5.55). That is
sl mv? —VB|f=fgL_C_><B(7?gL.c.)

gc 2 qB3|._aL

r=Tgc

(5.56)

Note that, Eq. (5.56) is only a first-order approximation of
the grad B drift. The magnetic field and its gradient in
Eq. (5.56) should be evaluated at the guiding center.
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Grad B drift fAfEENISAVECIEE (RS &REER )
For constant magnetic momentum u =W, /B,

it vields W, = uB, and —VW, = —uVB.

The dimension of —VW, is a force.

It yields, the dimension of —uVB is also a force.

Substituting F = —uVB into Eq. (5.18) yields
. —uVBxB W, —VBXB mv? —VB xB
Varife =gz "B gz 2 gB®
The biggest problem of this approach is that —VWW, is NOT
a force. It did not show that this result is only a first-

order approximation, nor the location where the magnetic
field and its gradient should be evaluated.

(5.57)
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