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Lecture	9			 Linear	Waves	in	the	Ion-Electron	Two-Fluid	
Plasma		

Key	points	 • Electron-time-scale	linear	waves	in	an		
unmagnetized	plasma	
o Langmuir	waves	
o Cut-off	frequency,	resonant	frequency	

• Electron	time-scale	linear	waves	in	a	
magnetized	plasma	
o Mobility	tensor	
o L-mode,	R-mode	
o O-mode,	X-mode,	Z-mode	

• Ion-time-scale	linear	waves	
o Ion	acoustic	waves	
o Whistler	waves,	Chorus	waves	
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9.0.	Review	of	fluid equations	of	the	𝛼th	species	discussed	in	
Lecture	1	

𝜕𝑛$
𝜕𝑡

+ 𝛻 ⋅ (𝑛$𝑉$) = 0 (1.14) 

𝜕𝑚$𝑛$𝑉$
𝜕𝑡

+ 𝛻 ⋅ 𝑚$𝑛$𝑉$	𝑉$ + 𝑃$ = 𝑒$𝑛$(𝐸 +	𝑉$×𝐵) (1.15) 

𝜕
𝜕𝑡

1
2
𝑚$𝑛$𝑉$7 +

3
2
𝑝$ 	

+𝛻 ⋅
1
2
𝑚$𝑛$𝑉$7 +

3
2
𝑝$ 𝑉$ + 𝑃$ ⋅ 𝑉$ + 𝑞$ = 𝑒$𝑛$𝐸 ⋅ 	𝑉$ 

(1.16) 

It	can	be	shown	that,	for	isotropic	pressure	(𝑃$ = 1𝑝$),	Eqs.	
(1.14)~(1.16)	can	be	written	in	the	following	form.		
	



	 3	

Eq.	(1.14)	yields	
𝜕
𝜕𝑡
+ 𝑉$ ⋅ 𝛻 𝑛$ = −𝑛$𝛻 ⋅ 	𝑉$ (1.18) 

Eq.	(1.15)	−𝑚$𝑉$ 	Eq.	(1.14)	yields	

𝑛$𝑚$(
𝜕
𝜕𝑡
+ 𝑉$ ⋅ 𝛻)𝑉$ = −𝛻	𝑝$ + 𝑒$𝑛$(𝐸 +	𝑉$×𝐵) (1.19) 

Eq.	(1.16)−𝑉$ ⋅Eq.	(1.19)−(1/2)𝑚$𝑉$7	Eq.	(1.14)	yields	
3
2

𝜕
𝜕𝑡
+ 𝑉$ ⋅ 𝛻 𝑝$ = −

5
2
𝑝$𝛻 ⋅ 𝑉$ − 𝛻 ⋅ 𝑞$ 	 (9.0.1)	

For	adiabatic	process	(𝛻 ⋅ 𝑞$ = 0),	the	above	energy	equation	of	
the	𝛼th	species	(9.0.1)	is	reduced	to		

𝜕
𝜕𝑡
+ 𝑉$ ⋅ 𝛻 𝑝$ = −

5
3
𝑝$𝛻 ⋅ 𝑉$ 	 (9.0.2)	
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Substituting	Eq.	(1.18)	into	Eq.	(9.0.2)	to	eliminate	𝛻 ⋅ 𝑉$,	it	yields	
𝜕
𝜕𝑡
+ 𝑉$ ⋅ 𝛻 𝑝$ =

5
3
𝑝$
𝑛$

𝜕
𝜕𝑡
+ 𝑉$ ⋅ 𝛻 𝑛$ (1.20) 

Eq.	(1.20)	can	be	rewritten	in	“a	constant	of	equation	of	state”		
𝜕
𝜕𝑡
+ 𝑉$ ⋅ 𝛻 ln	(𝑝$𝑛$

@AB) = 0	 (9.0.3)	

For	𝛾$ = 5/3,	it	implies	𝛻 ⋅ 𝑞$ = 0.		Thus,	it	is	called	the	adiabatic	
equation	of	state.		
For	isothermal	process,	where	𝛻 ⋅ 𝑞$ ≠ 0,	we	have	𝛾$ = 1.		
Multiplying	Eq.	(9.0.3)	by	𝑝$,	it	yields		

𝜕
𝜕𝑡
+ 𝑉$ ⋅ 𝛻 𝑝$ =

𝛾$𝑝$
𝑛$

𝜕
𝜕𝑡
+ 𝑉$ ⋅ 𝛻 𝑛$	

																																= −𝛾$𝑝$𝛻 ⋅ 𝑉$ 	
(9.0.4)	
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9.1.	The	ion-electron	two-fluid	equations	and	Maxwell	equations	
	
The	continuity	equations	of	the	electrons	and	ions	

𝜕
𝜕𝑡
+ 𝑉E ⋅ 𝛻 𝑛E = −𝑛E𝛻 ⋅ 𝑉E 	 (9.1)	

𝜕
𝜕𝑡
+ 𝑉F ⋅ 𝛻 𝑛F = −𝑛F𝛻 ⋅ 𝑉F 	 (9.2)	

The	momentum	equations	of	the	electrons	and	ions	

𝑚E𝑛E
𝜕
𝜕𝑡
+ 𝑉E ⋅ 𝛻 𝑉E = −𝛻𝑝E − 𝑒𝑛E(𝐸 + 𝑉E×𝐵)	 (9.3)	

𝑚F𝑛F
𝜕
𝜕𝑡
+ 𝑉F ⋅ 𝛻 𝑉F = −𝛻𝑝F + 𝑒𝑛F(𝐸 + 𝑉F×𝐵)	 (9.4)	
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The	energy	equations	(the	equations	of	the	state)	of	the	electrons	
and	ions		

𝜕
𝜕𝑡
+ 𝑉E ⋅ 𝛻 𝑝E =

𝛾E𝑝E
𝑛E

𝜕
𝜕𝑡
+ 𝑉E ⋅ 𝛻 𝑛E = −𝛾E𝑝E𝛻 ⋅ 𝑉E 	 (9.5)	

𝜕
𝜕𝑡
+ 𝑉F ⋅ 𝛻 𝑝F =

𝛾F𝑝F
𝑛F

𝜕
𝜕𝑡
+ 𝑉F ⋅ 𝛻 𝑛F = −𝛾F𝑝F𝛻 ⋅ 𝑉F 	 (9.6)	

where	1 ≤ 𝛾E ≤ 5/3.		For	electron-time-scale	phenomena	we	can	
assume	that	𝛾E ≈ 5/3,	and	ions	are	not	moves	in	the	electrons’	
time	scale.		For	ion-time-scale	phenomena	we	can	assume	that	
𝛾E ≈ 1,	𝛾F ≈ 5/3,	𝑛E ≈ 𝑛F,	and	ignore	the	electrons’	inertial	term,	
because	in	the	ion	time	scale,	𝑂 𝑚E𝑛E 𝜕𝑉E/𝜕𝑡 ≪ 𝑂(𝑒𝑛E𝑉E×𝐵).	
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The	Maxwell	equations	in	the	ion-electron	two-fluid	plasma	

𝛻 ⋅ 𝐸 =
𝑒 𝑛F − 𝑛E

𝜖L
	 (9.7)	

𝛻 ⋅ 𝐵 = 0	 (9.8)	

𝛻×𝐸 = −
𝜕𝐵
𝜕𝑡

	 (9.9)	

𝛻×𝐵 = 𝜇L𝑒(𝑛F𝑉F − 𝑛E𝑉E) +
1
𝑐7
𝜕𝐸
𝜕𝑡

	 (9.10)	
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Review:	How	to	linearize	the	equations	
	
Step	1:	先將所有變數拆解為平衡態＋擾動態	

𝐴 𝑥, 𝑡 = 𝐴L(𝑥) + 𝐴R 𝑥, 𝑡 	
Step	2:	寫出平衡態的流體方程式，並依問題決定平衡態特性。	

Step	3:	寫出平衡態＋擾動態的流體方程式	

Step	4:	將 Step	3	的結果減去 Step	2	的結果，得擾動態方程式	

Step	5:	若𝑂(𝐴R/𝐴L) = 𝑂(𝜖) < 10@T，則消去等於或小於	𝑂(𝜖7),	

的非線性項，就可得到線性化的擾動態方程式。	
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有關平衡態的補充說明：	

從流體的觀點看，如果背景場的分佈有一個梯度，就有可能是

一個不穩定的平衡態(unstable	equilibrium)。反之，如果背景場

在空間中是均勻分佈的，則此背景場通常是一個穩定的平衡態

(stable	equilibrium)。不過，如果進一步考慮 Kinetic	effect	則只

有當速度空間分佈，沒有高低起伏的 local	minimum	分部時，

才能保證系統是處於線性的穩定平衡態(stable	equilibrium)	。	
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9.2.		Uniform	background	equilibrium		
	
For	simplicity,	we	assume	that	the	background	equilibrium	is	
uniform.		Namely,	𝐴 𝑥, 𝑡 = 𝐴L + 𝐴R 𝑥, 𝑡 	
	
Let	us	examine	the	equilibrium	equations		

𝑉EL ⋅ 𝛻 𝑛EL = −𝑛EL𝛻 ⋅ 𝑉EL	 0 = 0	
𝑉FL ⋅ 𝛻 𝑛FL = −𝑛FL𝛻 ⋅ 𝑉FL	 0 = 0	

𝑚E𝑛EL 𝑉EL ⋅ 𝛻 𝑉EL	
= −𝛻𝑝EL − 𝑒𝑛EL(𝐸L + 𝑉EL×𝐵L)	

0 = −𝑒𝑛EL(𝐸L + 𝑉EL×𝐵L)	

𝑚F𝑛FL 𝑉FL ⋅ 𝛻 𝑉FL	
= −𝛻𝑝FL + 𝑒𝑛FL(𝐸L + 𝑉FL×𝐵L)	

0 = +𝑒𝑛FL(𝐸L + 𝑉FL×𝐵L)	
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𝑉EL ⋅ 𝛻 ln	(𝑝EL𝑛EL
@AU) = 0	 0 = 0	

𝑉FL ⋅ 𝛻 ln	(𝑝FL𝑛FL
@AV) = 0	 0 = 0	

𝛻 ⋅ 𝐸L =
𝑒 𝑛FL − 𝑛EL

𝜖L
	 0 =

𝑒 𝑛FL − 𝑛EL
𝜖L

	

𝛻 ⋅ 𝐵L = 0	 0 = 0	
𝛻×𝐸L = 0	 0 = 0	

𝛻×𝐵L = 𝜇L𝑒(𝑛FL𝑉FL − 𝑛EL𝑉EL)	 0 = 𝜇L𝑒(𝑛FL𝑉FL − 𝑛EL𝑉EL)	
where		

0 =
𝑒 𝑛FL − 𝑛EL

𝜖L
	

it	yields		
𝑛FL = 𝑛EL = 𝑛L	 (9.11)	
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Substituting	Eq.(9.11)	into		
0 = 𝜇L𝑒(𝑛FL𝑉FL − 𝑛EL𝑉EL)	

it	yields	
0 = 𝜇L𝑒𝑛L(𝑉FL − 𝑉EL)	

That	is,		
𝑉FL = 𝑉EL = 𝑉L	 (9.12)	

Substituting	Eq.	(9.12)	into	the	equilibrium	momentum	equations,	
it	yields	

0 = 𝐸L + 𝑉L×𝐵L	 (9.13)	
We	can	choose	a	moving	frame	such	that	𝑉L = 0,	it	yields	𝐸L = 0	
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9.3.		Linearized	governing	equations	
Let	us	assume	the	background	medium	is	uniform.	We	choose	a	
moving	frame	such	that	𝑉EL = 𝑉FL = 0.		Linearizing	the	two-fluid	
equations	(9.1)~(9.6),	it	yields	

𝜕𝑛ER/𝜕𝑡 = −𝑛L𝛻 ⋅ 𝑉ER	 (9.14)	

𝜕𝑛FR/𝜕𝑡 = −𝑛L𝛻 ⋅ 𝑉FR	 (9.15)	

𝑚E𝑛L(𝜕𝑉ER/𝜕𝑡) = −𝛻𝑝ER − 𝑒𝑛L(𝐸R + 𝑉ER×𝐵L)	 (9.16)	

𝑚F𝑛L(𝜕𝑉FR/𝜕𝑡) = −𝛻𝑝FR + 𝑒𝑛L(𝐸R + 𝑉FR×𝐵L)	 (9.17)	
𝜕𝑝ER
𝜕𝑡

=
𝛾E𝑝EL
𝑛L

𝜕𝑛ER
𝜕𝑡

(= −𝛾E𝑝EL𝛻 ⋅ 𝑉ER)	 (9.18)	

𝜕𝑝FR
𝜕𝑡

=
𝛾F𝑝FL
𝑛L

𝜕𝑛FR
𝜕𝑡

(= −𝛾F𝑝FL𝛻 ⋅ 𝑉FR)	 (9.19)	
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Linearizing	the	Maxwell	equations,	(9.7)~(9.10),	in	the	ion-electron	
two-fluid	plasma,	it	yields	

𝛻 ⋅ 𝐸R =
𝑒 𝑛FR − 𝑛ER

𝜖L
	 (9.20)	

𝛻 ⋅ 𝐵R = 0	 (9.21)	

𝛻×𝐸R = −
𝜕𝐵R
𝜕𝑡

	 (9.22)	

𝛻×𝐵R = 𝜇L𝑒𝑛L(𝑉FR − 𝑉ER) +
1
𝑐7
𝜕𝐸R
𝜕𝑡

	 (9.23)	
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9.4.		Fourier	transform	of	the	governing	equations	from	the	(𝑡, 𝑥)	
domain	to	the	(𝜔, 𝑘)	domain	
	
Let	us	consider	a	one-dimensional	problem	(𝛻 = 𝑥𝜕/𝜕𝑥),	and	a	
uniform	background	magnetic	field	lying	on	the	𝑥-	𝑦	plane,	that	is	
𝐵L = 𝐵L(𝑥 cos 𝜃 + 𝑦 sin 𝜃),	where	𝜃	is	the	angle	between	the	
wave	normal	direction	𝑘	and	the	ambient	magnetic	field	direction.	
Applying	the	plane	wave	assumption		

𝐴R 𝑡, 𝑥; 𝜃 = 𝑅𝑒 𝐴R 𝜔, 𝑘; 𝜃 𝑒F(ab@cd)	 	
to	the	linearized	equations	(9.14)~(9.23)	it	yields	

−𝑖𝜔𝑛ER = −𝑛L(𝑖𝑘)𝑉ERb	 (9.24)	
−𝑖𝜔𝑛FR = −𝑛L(𝑖𝑘)𝑉FRb	 (9.25)	
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𝑚E𝑛L −𝑖𝜔 𝑉ER = −𝑥(𝑖𝑘)𝑝ER − 𝑒𝑛L(𝐸R + 𝑉ER×𝐵L)	 (9.26)	

𝑚F𝑛L −𝑖𝜔 𝑉FR = −𝑥 𝑖𝑘 𝑝FR + 𝑒𝑛L(𝐸R + 𝑉FR×𝐵L)	 (9.27)	
−𝑖𝜔𝑝ER = −𝛾E𝑝EL(𝑖𝑘)𝑉ERb	 (9.28)	
−𝑖𝜔𝑝FR = −𝛾F𝑝FL(𝑖𝑘)𝑉FRb	 (9.29)	

𝑖𝑘𝐸Rb =
𝑒 𝑛FR − 𝑛ER

𝜖L
	 (9.30)	

𝑖𝑘𝐵Rb = 0	 (9.31)	

𝑖𝑘𝑥×𝐸R = 𝑖𝜔𝐵R	 (9.32)	

𝑖𝑘𝑥×𝐵R = 𝜇L𝑒𝑛L(𝑉FR − 𝑉ER) −
𝑖𝜔
𝑐7
𝐸R	 (9.33)	
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We	have	discussed	in	Lecture	7	that	waves	consist	of	both	
electromagnetic	component	and	electrostatic	component	can	be	
obtained	by	curl	of	the	Faraday’s	Law.		Curl	of	Eq.(9.32)	yields	

𝑖𝑘𝑥× 𝑖𝑘𝑥×𝐸R = 𝑖𝑘𝑥× 𝑖𝜔𝐵R

= 𝑖𝜔 𝜇L𝑒𝑛L 𝑉FR − 𝑉ER −
𝑖𝜔
𝑐7
𝐸R 	

That	is	
𝜔7

𝑐7
− 𝑘7 1 + 𝑘7𝑥𝑥 ⋅ 	𝐸R = −𝑖𝜔𝜇L𝑒𝑛L 𝑉FR − 𝑉ER 	 (9.34)	

If	we	can	obtain	𝑉FR	and	𝑉ER	as	function	of	𝐸R,	then	we	can	obtain	
an	equation	of	𝐸R	from	equation	(9.34).	
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Substituting	Eqs.	(9.28)	and	(9.29)	into	Eqs.	(9.26)	and	(9.27)	
respectively,	and	multiplying	the	resulting	equations	by	
𝑖𝜔/𝑘7𝑚$𝑛L,	where	𝛼 = 𝑖	or	𝑒,	it	yields		

𝜔7

𝑘7
𝑉ER =

𝛾E𝑝EL
𝑚E𝑛L

𝑥𝑥 ⋅ 𝑉ER −
𝑖𝜔
𝑘7

𝑒
𝑚E

(𝐸R + 𝑉ER×𝐵L)	 (9.35)	

𝜔7

𝑘7
𝑉FR =

𝛾F𝑝FL
𝑚F𝑛L

𝑥𝑥 ⋅ 𝑉FR +
𝑖𝜔
𝑘7

𝑒
𝑚F

(𝐸R + 𝑉FR×𝐵L)	 (9.36)	

Eqs.	(9.35)	and	(9.36)	can	be	rewritten	in	the	following	forms	

𝑀E
@R ⋅ 𝑉ER = 𝐸R	 (9.37)	

𝑀F
@R ⋅ 𝑉FR = 𝐸R	 (9.38)	

Exercise	9.1:	

Find	the	inverse	of	the	mobility	tensors	𝑀E
@R	and	𝑀F

@R		
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Eqs.	(9.37)	and	(9.38)	yields		

𝑉ER = 𝑀E ⋅ 𝐸R	 (9.39)	

𝑉FR = 𝑀F ⋅ 𝐸R	 (9.40)	
Substituting	Eqs.	(9.39)	and	(9.40)	into	Eq.	(9.34)	to	eliminate	the		
𝑉FR	and	𝑉ER,	it	yields	

𝜔7

𝑐7
− 𝑘7 1 + 𝑘7𝑥𝑥 + 𝑖𝜔𝜇L𝑒𝑛L 𝑀F − 𝑀E ⋅ 	𝐸R = 0	 (9.41)	

Let		

𝐷 = 1 −
𝑐7𝑘7

𝜔7 1 +
𝑐7𝑘7

𝜔7 𝑥𝑥 +
𝑖𝜔𝑒𝑛L
𝜔7𝜖L

𝑀F − 𝑀E 	 (9.42)	

Eq.	(9.41)	can	be	rewritten	as		

(𝜔7/𝑐7)𝐷 	 ⋅ 	𝐸R = 0	 (9.43)	
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Exercise	9.2:			Find	the	wave	dielectric	tensor	𝐷(𝜔, 𝑘; 𝜃)	

For	𝐸R ≠ 0,	Eq.	(9.43)	implies	det 𝐷 = 0.		The	eigen-mode	
solutions	𝜔 𝑘; 𝜃 	are	also	called	the	dispersion	relations	of	the	
ion-electron	two-fluid	plasma.		Examples	of	the	two-fluid	
dispersion	relations	of	are	given	in	Figures	9.1	and	9.2,	where	
𝜔lm = 𝜔nE7 + 𝛺E7	is	the	upper	hybrid	frequency	and	𝜔pm =
𝛺E𝛺F 	is	the	lower	hybrid	frequency. 

There	are	the	six	propagating	wave	modes	in	the	ion-electron	
two-fluid	plasma,	where	the	high	frequency	waves,	the	ion	
acoustic	waves,	and	the	very	low	frequency	MHD	waves	can	be	
obtained	from	a	set	of	simplified	equations.		We	will	discuss	the	
high	frequency	waves	and	the	ion	acoustic	waves	in	this	Lecture,	
and	discuss	the	MHD	waves	in	Lecture	10.			
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Figure	9.1.		A	
sketch	of	the	
dispersion	
relation	of	five	
parallel	
propagating	
wave	modes	in	
the	ion-electron	
two-fluid	plasma.		
Langmuir	wave	
does	not	includ	
in	this	plot.	
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Figure	9.2.	A	
sketch	of	the	
dispersion	
relation	of	
four	
perpendicular	
propagating	
wave	modes	
in	the	ion-
electron	two-
fluid	plasma.	
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9.5.		High-frequency	waves	in	an	un-magnetized	plasma	(𝐵L = 0)	
	
To	study	waves	with	frequency	equal	or	higher	than	the	electrons’	
characteristic	frequencies,	we	can	assume	that	ions	will	not	
respond	to	the	waves.		Namely,	𝑛FR = 0,	𝑝FR = 0,	𝑉FR = 0.	For	un-
magnetized	plasma	𝐵L = 0,	the	governing	equations	in	the	(𝑘, 𝜔)	
domain	can	be	obtained	from	Eqs.	(9.24)~(9.33),	i.e.,	
	

−𝑖𝜔𝑛ER = −𝑛L(𝑖𝑘)𝑉ERb	 (9.44)	

𝑚E𝑛L −𝑖𝜔 𝑉ER = −𝑥(𝑖𝑘)𝑝ER − 𝑒𝑛L𝐸R	 (9.45)	
−𝑖𝜔𝑝ER = −𝛾E𝑝EL(𝑖𝑘)𝑉ERb	 (9.46)	



	 24	

𝑖𝑘𝐸Rb =
𝑒 −𝑛ER
𝜖L

	 (9.47)	

𝑖𝑘𝐵Rb = 0	 (9.48)	

𝑖𝑘𝑥×𝐸R = 𝑖𝜔𝐵R	 (9.49)	

𝑖𝑘𝑥×𝐵R = 𝜇L𝑒𝑛L(−𝑉ER) −
𝑖𝜔
𝑐7
𝐸R	 (9.50)	

Substituting	(9.46)	into	(9.45)	to	eliminate	𝑝ER	and	then	
substituting	the	resulting	equation	into	equation	(9.50)	to	
eliminate	𝑉ER,	and	substituting	(9.49)	into	(9.50)	to	eliminate	𝐵R,	it	

yields	𝐷 ⋅ 𝐸R = 0.	i.e.,	
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𝐷bb 0 0
0 𝐷qq 0
0 0 𝐷rr

⋅
𝐸Rb
𝐸Rq
𝐸Rr

= 0	

where	

𝐷bb = 1 −
𝜔nEL7

𝜔7 − 𝐶EL7 𝑘7
	 	

𝐷qq = 𝐷rr = 1 −
𝑐7𝑘7

𝜔7 −
𝜔nEL7

𝜔7 	 	

where	𝜔nEL7 = 𝑛L𝑒7/𝑚E𝜖L	and	𝐶EL7 = 𝛾E𝑝EL/𝑛L𝑚E.			
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For	𝐸Rb ≠ 0,	but	𝐸Rq = 𝐸Rr = 0,	it	yields	𝐷bb = 0.		i.e.,			
𝜔7 = 𝜔nEL7 + 𝐶EL7 𝑘7	 (9.51)	

Eq.	(9.51)	is	the	Langmuir	wave	dispersion	relation.		Since	𝐸Rb ≠ 0	
implies	𝑛ER ≠ 0	and	𝑉Rb ≠ 0,	the	Langmuir	wave	is	an	
electrostatic	wave,	a	compressional	wave,	and	a	longitudinal	
wave.	
	
For	𝐸Rb = 0,	but	(𝐸Rq, 𝐸Rr) ≠ (0,0),	it	yields	𝐷qq = 𝐷rr = 0.		i.e.,			

𝜔7 = 𝜔nEL7 + 𝑐7𝑘7	 (9.52)	
Eq.	(9.52)	is	the	light	wave	dispersion	relation.		Since	𝐸Rb = 0	
implies	𝑛ER = 0	and	𝑉Rb = 0,	the	light	wave	is	an	electromagnetic	
incompressible	pure	transverse	wave	with	a	cut-off	frequency	at	
𝜔 = 𝜔nEL.	
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Figure	9.3	is	a	sketch	of	the	(a)	Langmuir	wave	and	(b)	light	waves	
propagating	in	an	un-magnetized	plasma.		The	wave	frequency	at	
𝑘 = 0	is	the	cut-off	frequency.		Both	of	the	wave	modes	have	a	
cut-off	frequency	at	𝜔 = 𝜔nE.		The	waves	can	only	propagate	at	
the	frequency	𝜔 > 𝜔nE.		No	wave	can	propagate	at	frequency	
below	the	cut-off	frequency.		It	is	because	that,	for	𝜔 < 𝜔nE,	we	
have	𝑘7 < 0,	which	implies	that	the	wave	amplitude	will	decrease	
exponentially	and	become	a	non-propagating	wave.			



	 28	

	
Figure	9.3.		A	Sketch	of	the	(a)	Langmuir	wave	and	(b)	light	
waves	propagating	in	an	un-magnetized	plasma.			
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9.6.		High-frequency	waves	in	a	magnetized	plasma	(𝐵L > 0)	
	
To	study	waves	with	frequency	equal	or	higher	than	the	electrons’	
characteristic	frequencies,	we	can	assume	that	ions	will	not	
respond	to	the	waves.		i.e.,	𝑛FR = 0,	𝑝FR = 0,	𝑉FR = 0.		Thus,	the	
wave	dielectric	tensor	can	be	rewritten	as		

𝐷 𝜔, 𝑘; 𝜃 = 1 −
𝑐7𝑘7

𝜔7 1 +
𝑐7𝑘7

𝜔7 𝑥𝑥 −
𝑖𝜔𝑒𝑛L
𝜔7𝜖L

𝑀E 	

or	

𝐷 𝜔, 𝑘; 𝜃 = 1 −
𝑐7𝑘7

𝜔7 1 +
𝑐7𝑘7

𝜔7 𝑥𝑥 − 𝑖𝜔
𝜔nEL7

𝜔7
𝑚E

𝑒
𝑀E 	
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9.6.1.		Parallel	propagating	high-frequency	waves	(𝑘 ∥ 𝐵L)	
	
To	study	waves	with	frequency	equal	or	higher	than	the	electrons’	
characteristic	frequencies,	we	can	assume	that	ions	will	not	
respond	to	the	waves.	i.e.,	𝑛FR = 0,	𝑝FR = 0,	𝑉FR = 0.	
	
For	parallel	propagating	waves,	let	𝑘 = 𝑥𝑘,	𝐵L = 𝑥𝐵L.	The	
governing	equations	in	the	(𝑘, 𝜔)	domain	can	be	obtained	from	
Eqs.	(9.24)~(9.33),	i.e.,	

−𝑖𝜔𝑛ER = −𝑛L(𝑖𝑘)𝑉ERb	 (9.53)	

𝑚E𝑛L −𝑖𝜔 𝑉ER = −𝑥(𝑖𝑘)𝑝ER − 𝑒𝑛L(𝐸R + 𝑉ER×𝑥𝐵L)	 (9.54)	
−𝑖𝜔𝑝ER = −𝛾E𝑝EL(𝑖𝑘)𝑉ERb	 (9.55)	
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𝑖𝑘𝐸Rb =
𝑒 −𝑛ER
𝜖L

	 (9.56)	

𝑖𝑘𝐵Rb = 0	 (9.57)	

𝑖𝑘𝑥×𝐸R = 𝑖𝜔𝐵R	 (9.58)	

𝑖𝑘𝑥×𝐵R = 𝜇L𝑒𝑛L(−𝑉ER) −
𝑖𝜔
𝑐7
𝐸R	 (9.59)	

Substituting	(9.55)	into	(9.54)	to	eliminate	𝑝ER	and	then	
substituting	the	resulting	equation	into	equation	(9.59)	to	
eliminate	𝑉ER,	and	substituting	(9.58)	into	(9.59)	to	eliminate	𝐵R,	it	

yields	𝐷 ⋅ 𝐸R = 0.	i.e.,	
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𝐷R 0 0
0 𝐷7 𝑖𝐷v
0 −𝑖𝐷v 𝐷T

⋅
𝐸Rb
𝐸Rq
𝐸Rr

= 0	

where	

𝐷R = 1 −
𝜔nEL7

𝜔7 − 𝐶EL7 𝑘7
	 	

𝐷7 = 𝐷T = 1 −
𝑐7𝑘7

𝜔7 −
𝜔nEL7

𝜔7 − 𝛺EL7
	 	

𝐷v =
𝜔nEL7

𝜔7 − 𝛺EL7
𝛺EL
𝜔

	 	

where	𝜔nEL7 = 𝑛L𝑒7/𝑚E𝜖L,	𝐶EL7 = 𝛾E𝑝EL/𝑛L𝑚E,	and		
𝛺EL = 𝑒𝐵L/𝑚E.	
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For	𝐸Rb ≠ 0,	but	𝐸Rq = 𝐸Rr = 0,	it	yields	𝐷R = 0.		i.e.,		
𝜔7 = 𝜔nEL7 + 𝐶EL7 𝑘7	

This	is	the	dispersion	relation	of	the	Langmuir	wave,	which	is	the	
same	Langmuir	wave	obtained	in	un-magnetized	plasma.		Since	
𝐸Rb ≠ 0	implies	𝑛ER ≠ 0	and	𝑉Rb ≠ 0,	the	Langmuir	wave	is	an	
electrostatic	compressional	longitudinal	wave.	
	
For	𝐸Rb = 0,	but	(𝐸Rq, 𝐸Rr) ≠ (0,0),	it	yields		

det 𝐷7 𝑖𝐷v
−𝑖𝐷v 𝐷7

= 𝐷77 − 𝐷v7 = 𝐷7 + 𝐷v 𝐷7 − 𝐷v = 0	

Namely,	we	have	dispersion	relation	of	two	modes.		One	is	for	
𝐷7 + 𝐷v = 0,	the	other	is	for	𝐷7 − 𝐷v = 0.		Since	𝐸Rb = 0	implies	
𝑛ER = 0	and	𝑉Rb = 0,	both	wave-mode	are	electromagnetic	
incompressible	transverse	waves.	
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For	𝐷7 + 𝐷v = 0,	it	yields	

1 −
𝑐7𝑘7

𝜔7 −
𝜔nEL7

𝜔 𝜔 + 𝛺EL
= 0	 	

or	

𝜔7 = 𝑐7𝑘7 + 𝜔nEL7 𝜔
𝜔 + 𝛺EL

	 (9.60)	

Since		
𝐷7 𝑖𝐷v
−𝑖𝐷v 𝐷7

𝐸Rq
𝐸Rr

= 0	

𝐷7 + 𝐷v = 0	yields	𝐸Rq = 𝑖𝐸Rr.	It	can	be	shown	that	the	wave	
electric	field	is	left-hand	polarized	w.r.t.	the	ambient	magnetic	
field	(𝐵L = 𝑥𝐵L).		Thus,	Eq.	(9.60)	is	the	dispersion	relation	of	the	
L-mode	wave.		
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At	𝑘 = 0,	Eq.	(9.60)	yields		
𝜔wxy@z{{7 + 𝛺EL𝜔wxy@z{{ − 𝜔nEL7 = 0	

The	positive	solution	of	𝜔wxy@z{{	is	

𝜔wxy@z{{ =
1
2
(−𝛺EL + 𝛺EL7 + 4𝜔nEL7 )	

Thus,	the	cut-off	frequency	of	the	L-mode	is	

𝜔wxy@z{{,}@~z�� = 𝜔p =
1
2
(−𝛺EL + 𝛺EL7 + 4𝜔nEL7 )	

For	𝜔nEL7 ≫ 𝛺EL7 ,	the	cut-off	frequency	of	the	L-mode	is	
approximately	

𝜔p ≈ 𝜔nEL −
𝛺EL
2
(1 −

𝛺EL
4𝜔nEL

)	

which	is	slightly	less	than	the	cut-off	frequency	of	the	EM	wave	
propagating	in	the	un-magnetized	plasma.	
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For	𝐷7 − 𝐷v = 0,	it	yields	

1 −
𝑐7𝑘7

𝜔7 −
𝜔nEL7

𝜔 𝜔 − 𝛺EL
= 0	 	

or		

𝜔7 = 𝑐7𝑘7 + 𝜔nEL7 𝜔
𝜔 − 𝛺EL

	 (9.61)	

Since		
𝐷7 𝑖𝐷v
−𝑖𝐷v 𝐷7

𝐸Rq
𝐸Rr

= 0	

𝐷7 − 𝐷v = 0	yields	𝐸Rq = −𝑖𝐸Rr.	It	can	be	shown	that	the	wave	
electric	field	is	right-hand	polarized	w.r.t.	the	ambient	magnetic	
field	(𝐵L = 𝑥𝐵L).		Thus,	Eq.	(9.61)	is	the	dispersion	relation	of	the	
R-mode	wave.		
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At	𝑘 = 0,	Eq.	(9.61)	yields		
𝜔wxy@z{{7 − 𝛺EL𝜔wxy@z{{ − 𝜔nEL7 = 0	

The	positive	solution	of	𝜔wxy@z{{	is	

𝜔wxy@z{{ =
1
2
(𝛺EL + 𝛺EL7 + 4𝜔nEL7 )	

Thus,	the	cut-off	frequency	of	the	R-mode	is	

𝜔wxy@z{{,�@~z�� = 𝜔� =
1
2
(𝛺EL + 𝛺EL7 + 4𝜔nEL7 )	

For	𝜔nEL7 ≫ 𝛺EL7 ,	the	cut-off	frequency	of	the	R-mode	is	
approximately	

𝜔� ≈ 𝜔nEL +
𝛺EL
2
(1 +

𝛺EL
4𝜔nEL

)	

which	is	slightly	greater	than	the	cut-off	frequency	of	the	EM	wave	
propagating	in	the	un-magnetized	plasma.	
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Dispersion	relations	of	the	parallel	propagating	high-frequency	
waves	are	sketched	in	Figure	9.4.	
	

	
Figure	9.4.	A	Sketch	of	the	dispersion	relations	of	the	parallel	
propagating	high-frequency	waves	in	the	ion-electron	two-fluid	
plasma.	
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9.6.2.		Faraday	rotation	and	it	applications	
	
Figure	9.4(b)	shows	the	dispersion	relation	of	the	R-mode	and	L-
mode,	where	
R-mode	dispersion	relation	

𝜔7 = 𝑐7𝑘7 + 𝜔nEL7 𝜔
𝜔 − 𝛺EL

	

L-mode	dispersion	relation		

𝜔7 = 𝑐7𝑘7 + 𝜔nEL7 𝜔
𝜔 + 𝛺EL

	

It	can	be	shown	that	for	a	given	𝜔	the	R-mode	has	smaller	wave	
number	𝑘,	that	is	the	L-mode	wave	has	a	shorter	wavelength.		
Thus,	at	a	distance	from	the	source	region	the	received	L-mode	
phase	will	be	ahead	of	the	R-mode.		Thus,	the	polarization	plane	
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of	the	EM	wave	will	rotate	left-handed	w.r.t.	the	ambient	
magnetic	field.		The	left-hand	rotation	of	the	polarization	plane	is	
called	the	“Faraday	rotation.”	
	
Application:	
Scientists	estimate	the	line-of-sight	magnetic	field	strength	on	the	
solar	surface	or	on	the	surface	of	a	distant	star	based	on	the	
strength	of	the	observed	Zeeman	effect.		
Scientists	estimate	the	direction	of	the	line-of-sight	magnetic	field	
on	the	solar	surface	or	the	surface	of	a	distant	star	based	on	the	
theory	of	Faraday	rotation.		也就是比較兩片相反方向旋轉的光

柵所收到的光線強度差異，來決定光線極化方向如何旋轉，進

一步決定恆星表面磁場方向。	
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9.6.3.		Perpendicular	propagating	waves	(𝑘 ⊥ 𝐵L)	
	
To	study	waves	with	frequency	equal	or	higher	than	the	electrons’	
characteristic	frequencies,	we	can	assume	that	ions	will	not	
respond	to	the	waves.	i.e.,	𝑛FR = 0,	𝑝FR = 0,	𝑉FR = 0.	
	
Let	𝑘 = 𝑥𝑘,	𝐵L = 𝑦𝐵L.	The	governing	equations	in	the	(𝑘, 𝜔)	
domain	can	be	obtained	from	Eqs.	(9.24)~(9.33),	i.e.,	

−𝑖𝜔𝑛ER = −𝑛L(𝑖𝑘)𝑉ERb	 (9.62)	

𝑚E𝑛L −𝑖𝜔 𝑉ER = −𝑥(𝑖𝑘)𝑝ER − 𝑒𝑛L(𝐸R + 𝑉ER×𝑦𝐵L)	 (9.63)	
−𝑖𝜔𝑝ER = −𝛾E𝑝EL(𝑖𝑘)𝑉ERb	 (9.64)	
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𝑖𝑘𝐸Rb =
𝑒 −𝑛ER
𝜖L

	 (9.65)	

𝑖𝑘𝐵Rb = 0	 (9.66)	

𝑖𝑘𝑥×𝐸R = 𝑖𝜔𝐵R	 (9.67)	

𝑖𝑘𝑥×𝐵R = 𝜇L𝑒𝑛L(−𝑉ER) −
𝑖𝜔
𝑐7
𝐸R	 (9.68)	

Substituting	(9.64)	into	(9.63)	to	eliminate	𝑝ER	and	then	
substituting	the	resulting	equation	into	equation	(9.68)	to	
eliminate	𝑉ER,	and	substituting	(9.67)	into	(9.68)	to	eliminate	𝐵R,	it	

yields	𝐷 ⋅ 𝐸R = 0.	i.e.,		
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𝐷R 0 −𝑖𝐷�
0 𝐷7 0
𝑖𝐷� 0 𝐷T

⋅
𝐸Rb
𝐸Rq
𝐸Rr

= 0	

where	

𝐷R = 1 −
𝜔nEL7

𝜔7 − 𝐶EL7 𝑘7 − 𝛺EL7
	 	

𝐷7 = 1 −
𝑐7𝑘7

𝜔7 −
𝜔nEL7

𝜔7 	 	

𝐷T = 1 −
𝑐7𝑘7

𝜔7 −
𝜔nEL7

𝜔7
𝜔7 − 𝐶EL7 𝑘7

𝜔7 − 𝐶EL7 𝑘7 − 𝛺EL7
	 	

𝐷� =
𝜔nEL7

𝜔7 − 𝐶EL7 𝑘7 − 𝛺EL7
𝛺EL
𝜔
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For	𝐸Rq ≠ 0,	but	𝐸Rb = 𝐸Rr = 0,	it	yields	𝐷7 = 0.		i.e.,		
𝜔7 = 𝜔nEL7 + 𝑐7𝑘7	

This	dispersion	relation	is	the	same	as	the	electromagnetic	waves	
obtained	in	the	un-magnetized	plasma	wave.		Thus,	it	is	called	the	
ordinary	wave	mode.		Or	simply,	the	O-mode	wave.		Since	𝐸Rb = 0	
implies	𝑛ER = 0	and	𝑉Rb = 0,	the	O-mode	wave	is	an	
electromagnetic,	incompressible,	pure	transverse	wave.	
	
For	𝐸Rq = 0,	but	(𝐸Rb, 𝐸Rr) ≠ (0,0),	it	yields		

det 𝐷R −𝑖𝐷�
𝑖𝐷� 𝐷T

= 𝐷R𝐷T − 𝐷�7 = 0	

This	dispersion	relation	has	two	wave	modes	solutions,	both	of	
them	are	hybrid	waves,	which	consist	of	electromagnetic	and	
electrostatic	wave	components.		
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Dispersion	relations	of	the	perpendicular	propagating	high-
frequency	waves	are	sketched	in	Figure	9.5.	

	
Figure	9.5.	A	Sketch	of	the	dispersion	relations	of	the	
perpendicular	propagating	high-frequency	waves	in	the	ion-
electron	two-fluid	plasma.	
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為什麼會形成含有 ES＆EM 分量的混合波(hybrid	wave) 呢？ 

假想最初是一個靜電的縱波擾動：𝐸Rb ≠ 0,	but	𝐸Rq = 𝐸Rr = 0	

由 Eq.	(9.65)	推得若𝐸Rb ≠ 0,	則	𝑛ER ≠ 0.	

由 Eq.	(9.62)	推得若𝑛ER ≠ 0,	則	𝑉ERb ≠ 0.	

由 Eq.	(9.64)	推得若𝑉ERb ≠ 0,	則	𝑝ER ≠ 0.	

由 Eq.	(9.63)	推得若𝑉ERb ≠ 0,	則 𝑉ER×𝑦𝐵L
r
≠ 0,	則𝑉ERr ≠ 0.	

由 Eq.	(9.67)	推得若𝑉ERr ≠ 0,	則	𝐸Rr ≠ 0	&	𝐵Rq ≠ 0.	

因此當	𝑘 ⊥ 𝐵L	時，靜電的縱波擾動，會進一步產生電磁波的

橫波擾動。 
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假想最初是一個電磁的橫波擾動且擾動電場垂直背景磁場：
𝐸Rr ≠ 0,	but	𝐸Rb = 𝐸Rq = 0		
由 Eq.	(9.67)	推得若𝐸Rr ≠ 0,	則	𝐵Rq ≠ 0.	

由 Eq.	(9.63)	推得若𝐸Rr ≠ 0,	則	𝑉ERr ≠ 0.	

由 Eq.	(9.63)	推得若𝑉ERr ≠ 0,	則 𝑉ER×𝑦𝐵L
b
≠ 0,	則𝑉ERb ≠ 0.	

由 Eq.	(9.62)	推得若𝑉ERb ≠ 0,	則	𝑛ER ≠ 0.	

由 Eq.	(9.64)	推得若𝑉ERb ≠ 0,	則	𝑝ER ≠ 0.	

由 Eq.	(9.65)	推得若	𝑛ER ≠ 0,	則	𝐸Rb ≠ 0.	

因此當	𝑘 ⊥ 𝐵L	時，電磁波的橫波擾動，會進一步產生靜電的

縱波擾動。 
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只有當一個電磁的橫波擾動且擾動電場平行背景磁場時，此擾

動才能維持其橫波特性，不會產生縱波分量。例如， 

假想最初是一個電磁的橫波擾動且擾動電場平行背景磁場：	
𝐸Rq ≠ 0,	but	𝐸Rb = 𝐸Rr = 0		
由 Eq.	(9.67)	推得若𝐸Rq ≠ 0,	則	𝐵Rr ≠ 0.	

由 Eq.	(9.63)	推得若𝐸Rq ≠ 0,	則	𝑉ERq ≠ 0.	

由 Eq.	(9.63)	推得若𝑉ERq ≠ 0,	則	𝑉ER×𝑦𝐵L = 0,	因此不會產生其

他分量的電漿流場（平均速度場）擾動。於是，整個系統，都

將只有	𝐸Rq,	𝐵Rr,	&	𝑉ERq	的擾動，是一個純粹的橫波擾動。此波

的頻散關係與非磁化電漿中的電磁波相同，故稱為 O-mode.	



	 49	

反之，前面兩例，所獲得的兩種波模，都是混合波，故稱為

extraordinary	waves.	這兩種混合波：一個是右旋的波，有時稱

作 RX-mode，也常簡稱為 X-mode；一個是左旋的的波，有時

稱作 LX-mode，也常簡稱為	Z-mode。其中，右旋的 X-mode 波

動的角頻率都在𝜔nEL之上，	擾動電場垂直	𝑘	的電磁分量，大

於平行𝑘	的靜電分量。反之，左旋的 Z-mode 波動的角頻率有

一部分低於𝜔nEL，因此 ions 靜止不動的假設，有時會造成錯

誤的結果。此外，Z-mode 波動的擾動電場平行𝑘	的靜電分

量，通常大於垂直	𝑘	的電磁分量，這也是區分 Z-mode 與 X-

mode 的方法之一。	
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It	can	be	shown	that	the	cut-off	frequency	of	the	right-hand	
polarized	X-mode	wave	is	the	same	as	the	cut-off	frequency	of	the	
parallel	propagating	R-mode	wave,	𝜔�,	which	indeed	is	also	the	
cut-off	frequency	of	the	all	high-frequency	right-hand	polarized	
waves	that	propagating	oblique	to	the	ambient	magnetic	field.	
	
Likewise,	the	cut-off	frequency	of	the	left-hand	polarized	Z-mode	
wave	is	the	same	as	the	cut-off	frequency	of	the	parallel	
propagating	L-mode	wave,	𝜔p,	which	indeed	is	also	the	cut-off	
frequency	of	the	all	high-frequency	left-hand	polarized	waves	that	
propagating	oblique	to	the	ambient	magnetic	field.	
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9.7.		Linear	wave	solutions	in	an	un-magnetized	plasma	(𝐵L = 0)	
	

−𝑖𝜔𝑛ER = −𝑛L(𝑖𝑘)𝑉ERb	 (9.69)	
−𝑖𝜔𝑛FR = −𝑛L(𝑖𝑘)𝑉FRb	 (9.70)	

𝑚E𝑛L −𝑖𝜔 𝑉ER = −𝑥(𝑖𝑘)𝑝ER − 𝑒𝑛L𝐸R	 (9.71)	

𝑚F𝑛L −𝑖𝜔 𝑉FR = −𝑥 𝑖𝑘 𝑝FR + 𝑒𝑛L𝐸R	 (9.72)	
−𝑖𝜔𝑝ER = −𝛾E𝑝EL(𝑖𝑘)𝑉ERb	 (9.73)	
−𝑖𝜔𝑝FR = −𝛾F𝑝FL(𝑖𝑘)𝑉FRb	 (9.74)	
𝑖𝑘𝐸Rb = 𝑒 𝑛FR − 𝑛ER /𝜖L	 (9.75)	

𝑖𝑘𝐵Rb = 0	 (9.76)	
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	For	un-magnetized	plasma	𝐵L = 0,	and	for	𝑘 = 𝑥𝑘,	the	governing	
equations	in	the	(𝑘, 𝜔)	domain	can	be	obtained	from	Eqs.	
(9.24)~(9.33),	i.e.,	
	
If	we	wish	to	obtain	the	electrostatic	wave,	we	can	take	the	inner	
product	(𝑖𝑥𝑘/𝑚E) ⋅Eq.	(9.71),	which	yields		

𝑛L −𝑖𝜔 (𝑖𝑘)𝑉ERb = (𝑘7𝑝ER − 𝑒𝑛L𝑖𝑘𝐸Rb)/𝑚E 	 (9.79)	
Substituting	Eq.	(9.73)	into	Eq.	(9.79)	to	eliminate	𝑝ER,	substituting	
Eq.	(9.75)	into	Eq.	(9.79)	to	eliminate	𝑖𝑘𝐸Rb,	and	then	substituting	
Eq.	(9.69)	into	the	resulting	equation	to	eliminate	𝑖𝑘𝑉ERb,	it	yields	

𝑖𝑘𝑥×𝐸R = 𝑖𝜔𝐵R	 (9.77)	

𝑖𝑘𝑥×𝐵R = 𝜇L𝑒𝑛L(𝑉FR − 𝑉ER) −
𝑖𝜔
𝑐7
𝐸R	 (9.78)	
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−𝑖𝜔 (𝑖𝜔)𝑛ER = 𝑘7
𝛾E𝑝EL
𝑚E𝑛L

𝑛ER −
𝑒7𝑛L
𝑚E𝜖L

𝑛FR − 𝑛ER 	 (9.80)	

Let	𝐶EL = 𝛾E𝑝EL/𝑚E𝑛L	and	𝜔nEL = 𝑒7𝑛L/𝑚E𝜖L,	Eq.	(9.80)	can	
be	rewritten	as	

𝜔7 − 𝑘7𝐶EL7 𝑛ER + 𝜔nEL7 𝑛FR − 𝑛ER = 0	 (9.81)	
	
Likewise,	the	inner	product	(𝑖𝑥𝑘/𝑚F) ⋅	Eq.	(9.72)	yields		

𝑛L −𝑖𝜔 𝑖𝑘 𝑉FRb = (𝑘7𝑝FR + 𝑒𝑛L𝑖𝑘𝐸Rb)/𝑚F 	 (9.82)	
Substituting	Eq.	(9.74)	into	Eq.	(9.82)	to	eliminate	𝑝FR,	substituting	
Eq.	(9.75)	into	Eq.	(9.82)	to	eliminate	𝑖𝑘𝐸Rb,	and	then	substituting	
Eq.	(9.70)	into	the	resulting	equation	to	eliminate	𝑖𝑘𝑉FRb,	it	yields	
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−𝑖𝜔 𝑖𝜔 𝑛FR = 𝑘7
𝛾F𝑝FL
𝑚F𝑛L

𝑛FR +
𝑒7𝑛L
𝑚E𝜖L

𝑛FR − 𝑛ER 	 (9.83)	

Let	𝐶FL = 𝛾F𝑝FL/𝑚F𝑛L	and	𝜔nFL = 𝑒7𝑛L/𝑚F𝜖L,	Eq.	(9.83)	can	
be	rewritten	as	

𝜔7 − 𝑘7𝐶FL7 𝑛FR − 𝜔nFL7 𝑛FR − 𝑛ER = 0	 (9.84)	
	
Eq.	(9.81)	and	Eq.	(9.84)	can	be	rewritten	in	the	following	matrix	
form	

1 − 𝑎 𝑎
𝑏 1 − 𝑏

𝑛ER
𝑛FR

= 0	 (9.85)	

where	

𝑎 =
𝜔nEL7

𝜔7 − 𝑘7𝐶EL7
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𝑏 =
𝜔nFL7

𝜔7 − 𝑘7𝐶FL7
	 	

For	 𝑛ER, 𝑛FR ≠ [0,0]	,	it	yields	
det 1 − 𝑎 𝑎

𝑏 1 − 𝑏 = 0	
i.e.,		

1 − 𝑎 1 − 𝑏 − 𝑎𝑏 = 1 − 𝑎 − 𝑏 = 0	
Thus,	we	obtain	the	linear	dispersion	relation	of	the	electrostatic	
waves	in	the	un-magnetized	plasma		

1 −
𝜔nEL7

𝜔7 − 𝑘7𝐶EL7
−

𝜔nFL7

𝜔7 − 𝑘7𝐶FL7
= 0	 (9.86)	
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補充說明： 

以後如果學雙流體（或多流體）不穩定 (two-stream	instability	

or	multi-stream	instability)，當不同種類的流體以不同的平均速

度 𝑉$L 運動時，將可得到類似 Eq.	(9.86) 但不太相同的靜電波

頻散關係式	

1 − [
𝜔n$L7

(𝜔 − 𝑘 ⋅ 𝑉$L)	7 − 𝑘7𝐶$L7
]

$

= 0	 (9.87)	

其中 𝜔 − 𝑘 ⋅ 𝑉$L 為 Doppler	Shift 之後，該𝛼種流體所感受到的

靜電波頻率。  
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If	we	wish	to	obtain	the	electromagnetic	wave,	the	cross	product	
(𝑖𝑥𝑘/𝑚E)×Eq.	(9.71)	yields		

𝑛L −𝑖𝜔 (𝑖𝑥𝑘)×𝑉ER = −𝑒𝑛L(𝑖𝑥𝑘/𝑚E)×𝐸R	 (9.88)	
and	the	cross	product	(𝑖𝑥𝑘/𝑚F)×Eq.	(9.72)	yields	

𝑛L −𝑖𝜔 (𝑖𝑥𝑘)×𝑉FR = 𝑒𝑛L(𝑖𝑥𝑘/𝑚F)×𝐸R	 (9.89)	
The	cross	product	(𝑖𝑥𝑘)×Eq.	(9.78)	yields	

(𝑖𝑥𝑘)×(𝑖𝑘𝑥×𝐵R)

= 𝜇L𝑒𝑛L(𝑖𝑥𝑘)×(𝑉FR − 𝑉ER) −
𝑖𝜔
𝑐7
(𝑖𝑥𝑘)×𝐸R	

(9.90)	

Substituting	Eq.	(9.88)	into	Eq.	(9.90)	to	eliminate	(𝑖𝑥𝑘)×𝑉ER,	and	
substituting	Eq.	(9.89)	into	Eq.	(9.90)	to	eliminate	(𝑖𝑥𝑘)×𝑉FR,	it	
yields	
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(𝑘7𝐵R) =
𝑖𝜔
𝑐7
(
𝜔nFL7 + 𝜔nEL7

𝜔7 − 1)(𝑖𝑥𝑘)×𝐸R	 (9.91)	

Substituting	Eq.	(9.77)	into	Eq.	(9.91)	to	eliminate	(𝑖𝑥𝑘)×𝐸R,	it	
yields		

𝑘7𝐵R =
1
𝑐7
[𝜔7 − (𝜔nFL7 + 𝜔nEL7 )](𝐵R)	 (9.92)	

For	non-zero	𝐵R,	Eq.	(9.92),	yields	
𝜔7 = 𝜔nFL7 + 𝜔nEL7 + 𝑐7𝑘7	 (9.93)	

Since	𝜔nFL7 ≪ 𝜔nEL7 ,	Eq.	(9.93)	is	very	similar	to	the	high-frequency	
electromagnetic	wave	dispersion	relation	obtained	in	Eq.	(9.52).		
Likewise,	Eq.	(9.86)	can	be	decomposed	into	two	eigen	modes,	
where	the	high-frequency	one	is	very	similar	to	the	electrostatic	
wave	dispersion	relation	obtained	in	Eq.	(9.51).	
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以下簡單介紹，如何將 Eq.	(9.86)拆成兩個 eigen	modes.	
Eq.	(9.86)	yields	
	 𝜔7 − 𝑘7𝐶EL7 𝜔7 − 𝑘7𝐶FL7 − 𝜔nEL7 𝜔7 − 𝑘7𝐶FL7 − 𝜔nFL7 𝜔7 − 𝑘7𝐶EL7 = 0	
⇒	 𝜔7 7 − 𝑘7𝐶EL7 + 𝑘7𝐶FL7 + 𝜔nEL7 + 𝜔nFL7 𝜔7		

																																	+ 𝑘7𝐶EL7 𝑘7𝐶FL7 + 𝑘7𝐶FL7 𝜔nEL7 + 𝑘7𝐶EL7 𝜔nFL7 = 0	
⇒	 𝜔7 7 − (𝑘7𝐶EL7 + 𝜔nEL7 ) + (𝑘7𝐶FL7 + 𝜔nFL7 ) 𝜔7	

																																	+[(𝑘7𝐶EL7 + 𝜔nEL7 )(𝑘7𝐶FL7 + 𝜔nFL7 ) − 𝜔nEL7 𝜔nFL7 ] = 0	
⇒	 𝜔7 7 − 𝑎 + 𝑏 𝜔7 + [𝑎𝑏 − 𝜔nEL7 𝜔nFL7 ] = 0	

where	
𝑎 = 𝑘7𝐶EL7 + 𝜔nEL7 > 0	
𝑏 = (𝑘7𝐶FL7 + 𝜔nFL7 ) > 0	

⇒	 𝜔7 =
1
2
[ 𝑎 + 𝑏 ± 𝑎 + 𝑏 7 − 4(𝑎𝑏 − 𝜔nEL7 𝜔nFL7 )]	

⇒	 For	𝑇EL~𝑇FL,	it	yields	(𝑏/𝑎)	~(𝑚E/𝑚F)~(1/1836),	and	
⇒	 𝜔7 ≈

1
2
[ 𝑎 + 𝑏 ± 𝑎 + 𝑏 ∓

1
2
4 𝑎𝑏 − 𝜔nEL7 𝜔nFL7

𝑎 + 𝑏
]	
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⇒	 𝜔7 ≈
1
2
[ 𝑎 + 𝑏 ± 𝑎 + 𝑏 ∓ 2(𝑏 −

𝜔nEL7 𝜔nFL7

𝑎
)]	

	

Since		
𝜔nEL7 𝜔nFL7

𝑎
=

𝜔nFL7

1 + 𝑘
7𝐶EL7

𝜔nEL7

=
𝜔nFL7

1 + 𝛾E𝑘7𝜆�EL7 	

⇒	
𝜔m7 ≈ 𝑘7𝐶EL7 + 𝜔nEL7 + 𝑘7𝐶FL7 + 𝜔nFL7 − (𝑘7𝐶FL7 + 𝜔nFL7 −

𝜔nFL7

1 + 𝛾E𝑘7𝜆�EL7 )

𝜔p7 ≈ 																																																											+(𝑘7𝐶FL7 + 𝜔nFL7 −
𝜔nFL7

1 + 𝛾E𝑘7𝜆�EL7 )
	

⇒	
𝜔m7 ≈ 𝜔nEL7 + 𝑘7𝐶EL7

𝜔p7 ≈ 𝑘7𝐶FL7 + 𝜔nFL7 (1 −
1

1 + 𝛾E𝑘7𝜆�EL7 )
	

The	high-frequency	electrostatic	wave	mode		
𝜔m7 = 𝜔nEL7 + 𝑘7𝐶EL7 	 (9.94)	

is	the	Langmuir	wave	obtained	in	Eq.	(9.51).	
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The	low-frequency	(ion-time-scale)	electrostatic	wave	mode	is	

𝜔p7 = 𝑘7𝐶FL7 + 𝜔nFL7 (1 −
1

1 + 𝛾E𝑘7𝜆�EL7 )	 (9.95)	

	
For	𝑘7𝜆�EL7 ≪ 1,	we	have	

1
1 + 𝛾E𝑘7𝜆�EL7 ≈ 1 − 𝛾E𝑘7𝜆�EL7 	

Thus,		

𝜔nFL7 1 −
1

1 + 𝛾E𝑘7𝜆�EL7 ≈ 𝜔nFL7 1 − 1 − 𝛾E𝑘7𝜆�EL7 = 𝑘7𝐶EL7
𝜔nFL7

𝜔nEL7 	

It	yields	

𝜔p7 = 𝑘7𝐶FL7 + 𝜔nFL7 1 −
1

1 + 𝛾E𝑘7𝜆�EL7 	

= 𝑘7𝐶FL7 + 𝑘7𝐶EL7
𝜔nFL7

𝜔nEL7 = 𝑘7
𝛾F𝑘�𝑇FL + 𝛾F𝑘�𝑇EL

𝑚F
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Thus,	for	𝑘7𝜆�EL7 ≪ 1,	Eq.	(9.95)	is	reduced	to		
𝜔p7 = 𝑘7𝐶�L7 	 (9.96)	

where	𝐶�L = 𝛾F𝑘�𝑇FL + 𝛾F𝑘�𝑇EL /𝑚F 	is	the	sound	speed	of	the	
ion	acoustic	wave	at	the	long	wavelength	limit	in	an	un-
magnetized	plasma.	
For	𝑘7𝜆�EL7 ≫ 1,	we	have	

𝜔nFL7 1 −
1

1 + 𝛾E𝑘7𝜆�EL7 ≈ 𝜔nFL7 1 −
1

𝛾E𝑘7𝜆�EL7 ≈ 𝜔nFL7 	

	
Thus,	for	𝑘7𝜆�EL7 ≫ 1,	Eq.	(9.95)	is	reduced	to	

𝜔p7 = 𝑘7𝐶FL7 + 𝜔nFL7 	 (9.97)	
This	is	the	dispersion	relation	of	the	ion	acoustic	wave	at	the	short	
wavelength	limit	in	an	un-magnetized	plasma.	
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Based	on	the	above	discussion,	the	dispersion	relations	obtained	
in	Eq.	(9.93)	and	in	Eqs.	(9.94)	&	(9.95)	are	sketched	in	Figure	9.6.		
	

	
Figure	9.6.		A	sketch	of	the	wave	dispersion	relation	obtained	a	
un-magnetized	plasma	based	on	Eqs.	(9.93)	~	(9.95)			
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9.8.		Ion-time-scale	electrostatic	waves	in	an	un-magnetized	
plasma	(𝐵L > 0)	
The	dispersion	relation	obtained	in	Eq.	(9.96)	can	be	obtained	by	
assuming	that	𝑛E ≈ 𝑛F,	and	by	ignoring	the	electrons’	inertial	term	
in	the	electrons’	momentum	equation,	i.e.,		

Substituting	Eq.	(9.98)	into	Eqs.	(9.101)	&	(9.102)	to	eliminate	
𝑖𝑘 𝑉ERb	and	(𝑖𝑘)𝑉FRb,	it	yields	

−𝑖𝜔𝑛FR = −𝑛L(𝑖𝑘)𝑉FRb ≈ −𝑖𝜔𝑛ER = −𝑛L(𝑖𝑘)𝑉ERb	 (9.98)	
0 = −(𝑖𝑘)𝑝ER − 𝑒𝑛L𝐸Rb	 (9.99)	

𝑚F𝑛L −𝑖𝜔 𝑉FRb = − 𝑖𝑘 𝑝FR + 𝑒𝑛L𝐸Rb	 (9.100)	
−𝑖𝜔𝑝ER = −𝛾E𝑝EL(𝑖𝑘)𝑉ERb	 (9.101)	
−𝑖𝜔𝑝FR = −𝛾F𝑝FL(𝑖𝑘)𝑉FRb	 (9.102)	
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Substituting	Eq.	(9.98)	and	(9.99)	into	 𝑖𝑘/𝑚F Eq.	(9.100)	to	
eliminate	(𝑖𝑘)𝑉FRb	and	𝑒𝑛L𝐸Rb	it	yields	

Substituting	Eqs.	(9.103)	and	(9.104)	into	Eq.	(9.105)	to	eliminate	
𝑝FR	and	𝑝ER,	it	yields		

Thus,	for	non-zero	𝑛FR,	Eq.	(9.106)	yields	

where	𝐶�L = 𝛾F𝑘�𝑇FL + 𝛾F𝑘�𝑇EL /𝑚F 	

𝑝ER = 𝛾E𝑝EL𝑛FR/𝑛L	 (9.103)	
𝑝FR = 𝛾F𝑝FL𝑛FR/𝑛L	 (9.104)	

𝜔7𝑛FR = (𝑘7𝑝FR + 𝑘7𝑝ER)/𝑚F 	 (9.105)	

𝜔7𝑛FR = 𝑘7[(𝛾F𝑘�𝑇FL + 𝛾E𝑘�𝑇EL)/𝑚F]𝑛FR		 (9.106)	

𝜔7 = 𝑘7𝐶�L7 		 (9.107)	
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Exercise	9.3:	
Show	that,	although	we	have	assumed	that	𝑛E ≈ 𝑛F,	but	the	
amplitude	of	the	density	perturbation	of	electrons	should	be	
slightly	less	than	the	density	perturbation	of	ions	( 𝑛ER ≲ 𝑛FR )	in	
the	ion-acoustic	wave.	
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9.9.	Ion-time-scale	waves	in	a	magnetized	plasma	
	
As	shown	in	Figure	9.7	that,	for	electron	plasma	frequency	greater	
than	electron’s	cyclotron	frequency	(𝜔nEL > 𝛺EL),	the	waves	with	
frequency	between	the	𝛺EL	and	𝛺FL	consist	of	the	whistler	waves	
哨波,	the	chorus	waves 合唱波,	and	the	ion-acoustic	waves 正離子

聲波.		The	ion-acoustic	wave	in	the	magnetized	plasma	is	similar	to	
the	one	discussed	in	section	9.8,	except	for	nearly	perpendicular	
propagation.		The	whistler	waves	and	chorus	waves	are	right-hand	
polarized	electromagnetic	waves	or	hybrid	waves.		The	phase	
speed	of	the	whistler	wave	increases	with	increasing	wave	
frequency.		The	phase	speed	of	the	chorus	wave	decreases	with	
increasing	wave	frequency.		
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Figure	9.7.	Dispersion	relations	of	whistler	waves	哨波,	chorus	

waves 合唱波,	and	ion-acoustic	waves 正離子聲波	in	the	
magnetized	ion-electron	two-fluid	plasma.		
	


