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Lecture	8			 Sound	Wave	in	Neutral	Gas	

Key	points	 • Sound	wave	in	neutral	gas	
• Longitudinal	wave	&	transverse	wave	
• Linearize	the	governing	equations	
• Uniform	and/or	non-uniform	equilibrium	
• Plane	wave	assumption	
• Fourier	transform	
• Dispersion	relation	
• Phase	velocity	and	group	velocity	
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8.1.	Longitudinal	Wave	and	Transverse	Wave	
• 電磁波是一種橫波。但是靜電波與聲波都屬於縱波。	

• 橫波可以在有介質的環境中傳播，但是電磁波這種橫波也

可以在真空中傳播。	

• 縱波就一定要在介質中傳播。本講中我們將用中性大氣中

的聲波為例，聲波的產生機制並推導線性的聲波方程式。	

• 地震時，上下震動的Ｐ波是一種縱波，只有在靠近震央附

近才能感受到它。左右搖晃的Ｓ波是一種橫波，可以傳到

比較遠的地方。可見縱波 Damping	的速度比較快(why?)，

所以離擾動源較遠的地方，通常只能測到橫波。	
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• 可是非線性的聲波，會以超音速的速度傳播，並且形成激

震波(shock	wave)，反而不易消失(why?)。	
• The	shock	wave	is	an	interested	topic	but	is	beyond	the	scope	

of	this	Lecture.	
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8.2.		Basic	Equations		
Governing	equations	of	the	sound	wave	in	a	neutral	gas	are	the	
fluid	equations	of	the	ideal	gas.		They	are	listed	below	
	
Continuity	equation	

(
𝜕
𝜕𝑡
+ 𝑉 ⋅ 𝛻)𝜌 = −𝜌𝛻 ⋅ 𝑉	 (8.1)	

Momentum	equation	

𝜌(
𝜕
𝜕𝑡
+ 𝑉 ⋅ 𝛻)𝑉 = −𝛻𝑝 + 𝜌𝑔	 (8.2)	

Adiabatic	energy	equation		

(
𝜕
𝜕𝑡
+ 𝑉 ⋅ 𝛻)𝑝 = −

5
3
𝑝𝛻 ⋅ 𝑉	 (8.3)	
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For	sound	wave	𝛻 ⋅ 𝑉 ≠ 0,	therefore,	Eq.	(8.1)	and	(8.3)	yields	

(
𝜕
𝜕𝑡
+ 𝑉 ⋅ 𝛻)𝑝 =

5
3
𝑝
𝜌
(
𝜕
𝜕𝑡
+ 𝑉 ⋅ 𝛻)𝜌	 (8.4)	

𝜕
𝜕𝑡
+ 𝑉 ⋅ 𝛻 Eq. 8.1 	yields	

𝜕
𝜕𝑡
+ 𝑉 ⋅ 𝛻

>

𝜌 = −
𝜕
𝜕𝑡
+ 𝑉 ⋅ 𝛻 𝜌𝛻 ⋅ 𝑉 	

= − 𝛻 ⋅ 𝑉
𝜕
𝜕𝑡
+ 𝑉 ⋅ 𝛻 𝜌 − 𝜌𝛻 ⋅

𝜕
𝜕𝑡
+ 𝑉 ⋅ 𝛻 𝑉	

= +𝜌 𝛻 ⋅ 𝑉
>
− 𝜌𝛻 ⋅ −

𝛻𝑝
𝜌
+ 𝑔 	

= +𝜌(𝛻 ⋅ 𝑉)> + 𝛻>𝑝 −
𝛻𝜌 ⋅ 𝛻𝑝
𝜌

− 𝜌𝛻 ⋅ 𝑔	

(8.5)	
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𝜕
𝜕𝑡
+ 𝑉 ⋅ 𝛻 Eq. 8.4 	yields	

𝜕
𝜕𝑡
+ 𝑉 ⋅ 𝛻

>

𝜌

=
1
𝐶A>

𝜕
𝜕𝑡
+ 𝑉 ⋅ 𝛻

>

𝑝 + (1 −
5
3
)𝜌(𝛻 ⋅ 𝑉)>	

(8.6)	

where	𝐶A> = 5/3 (𝑝/𝜌).		Since,	in	the	spatial	scale	of	the	sound	
wave,	𝛻 ⋅ 𝑔 → 0,	we	can	ignore	the	𝛻 ⋅ 𝑔	term	in	Eq.	(8.5).		Thus,	
Eqs.	(8.5)	and	(8.6)	yield	

𝛻>𝑝 −
1
𝐶A>

𝜕
𝜕𝑡
+ 𝑉 ⋅ 𝛻

>

𝑝 = −
5
3
𝜌(𝛻 ⋅ 𝑉)> +

𝛻𝜌 ⋅ 𝛻𝑝
𝜌

	 (8.7)	

Eq.	(8.7)	is	the	nonlinear	sound	wave	equation	under	an	
assumption	of	that	the	compressional	process	is	abiabatic.	



	 7	

For	a	uniform	background	equilibrium,	each	variable	can	be	
decomposed	into	an	equilibrium	component,	denoted	by	a	
subscript	“0”	and	a	perturbed	component,	denoted	by	a	subscript	
“1.”		That	is	𝐴 𝑥, 𝑡 = 𝐴G + 𝐴H 𝑥, 𝑡 .		Thus,	Eq.	(8.7)	becomes		

𝛻>𝑝H −
1
𝐶AG>

[
𝜕
𝜕𝑡
+ (𝑉G + 𝑉H) ⋅ 𝛻]>𝑝H

= −
5
3
(𝜌G + 𝜌H)(𝛻 ⋅ 𝑉H)> +

𝛻𝜌H ⋅ 𝛻𝑝H
(𝜌G + 𝜌H)

	
(8.8)	

where	𝐶AG> = 5/3 (𝑝G/𝜌G).		For	small	amplitude	perturbation,	
𝑂(𝐴H/𝐴G) = 𝑂(𝜖) < 10NO,	we	can	ignore	the	second	order,	
𝑂(𝜖>),	or	higher	order	terms	in	Eq.	(8.8).		It	yields		

𝛻>𝑝H −
1
𝐶AG>

𝜕
𝜕𝑡
+ 𝑉G ⋅ 𝛻

>

𝑝H = 0	 (8.9)	
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If	we	choose	a	moving	frame	in	the	background	flow	rest	frame,	it	
yields	𝑉G = 0.		Thus,	Eq.	(8.9)	can	be	rewritten	as		

𝛻>𝑝H −
1
𝐶AG>

𝜕>𝑝H
𝜕𝑡>

= 0	 (8.10)	

Eq.	(8.10)	is	the	linear	sound	wave	equation.		The	sound	wave	
propagates	at	a	speed	equal	to	the	sound	speed	

𝐶AG =
3
5
𝑝G
𝜌G
=

3
5
𝑘Q𝑇G
𝑚

	 (8.11)	

where	𝑝G = 𝑛G𝑘Q𝑇G	and	𝜌G = 𝑛G𝑚.	
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8.3.		Linearizing	the	Fluid	Equations		
我們可以「先」線性化流體方程式，再來求聲波波動方程式。

如何線性化流體方程式呢？	

Step	1:	先將所有變數拆解為平衡態＋擾動態	
𝐴 𝑥, 𝑡 = 𝐴G(𝑥) + 𝐴H 𝑥, 𝑡 	 (8.12)	

Step	2:	寫出平衡態＋擾動態的流體方程式。	

Step	3:	寫出平衡態的流體方程式	

Step	4:	將 Step	2	結果減去 Step	3	結果，得擾動態的方程式	

Step	5:	若𝑂(𝐴H/𝐴G) = 𝑂(𝜖) < 10NO，則消去等於或小於	𝑂(𝜖>),	

的非線性項，就可得到線性化的擾動態方程式。	
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Substituting	Eq.	(8.12)	into	(8.1),	the	continuity	equation	becomes	

[
𝜕
𝜕𝑡
+ (𝑉G + 𝑉H) ⋅ 𝛻](𝜌G + 𝜌H)

= −(𝜌G + 𝜌H)𝛻 ⋅ (𝑉G + 𝑉H)	
(8.13)	

The	equilibrium	components	of	Eq.	(8.1)	satisfy	the	equilibrium	
continuity	equation.	i.e.,	

𝑉G ⋅ 𝛻𝜌G = −𝜌G𝛻 ⋅ 𝑉G	 (8.14)	
Subtracting	Eq.	(8.14)	from	Eq.	(8.13)	it	yields	the	perturbed	
continuity	equation	

𝜕
𝜕𝑡
+ 𝑉G ⋅ 𝛻 𝜌H + 𝑉H ⋅ 𝛻𝜌G + 𝑉H ⋅ 𝛻𝜌H

= −𝜌G𝛻 ⋅ 𝑉H − 𝜌H𝛻 ⋅ 𝑉G − 𝜌H𝛻 ⋅ 𝑉H	
(8.15)	
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Substituting	Eq.	(8.12)	into	(8.2),	the	Eq.	(8.2)	becomes	

(𝜌G + 𝜌H)[
𝜕
𝜕𝑡
+ (𝑉G + 𝑉H) ⋅ 𝛻](𝑉G + 𝑉H)

= −𝛻(𝑝G + 𝑝H) + (𝜌G + 𝜌H)𝑔	
(8.16)	

The	equilibrium	components	of	Eq.	(8.2)	satisfy	the	equilibrium	
momentum	equation.	i.e.,	

𝜌G𝑉G ⋅ 𝛻𝑉G = −𝛻𝑝G + 𝜌G𝑔	 (8.17)	
Subtracting	Eq.	(8.17)	from	Eq.	(8.16),	it	yields	the	perturbed	
momentum	equation	

𝜌G
𝜕
𝜕𝑡
+ 𝑉G ⋅ 𝛻 𝑉H + 𝜌G𝑉H ⋅ 𝛻𝑉G + 𝜌H𝑉G ⋅ 𝛻𝑉G	

+𝜌G𝑉H ⋅ 𝛻𝑉H + 𝜌H𝑉H ⋅ 𝛻𝑉G + 𝜌H
𝜕
𝜕𝑡
+ 𝑉G ⋅ 𝛻 𝑉H	

+𝜌H𝑉H ⋅ 𝛻𝑉H = −𝛻𝑝H + 𝜌H𝑔	

(8.18)	
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Substituting	Eq.	(8.12)	into	(8.3),	the	Eq.	(8.3)	becomes	

[
𝜕
𝜕𝑡
+ (𝑉G + 𝑉H) ⋅ 𝛻](𝑝G + 𝑝H)

= −
5
3
(𝑝G + 𝑝H)𝛻 ⋅ (𝑉G + 𝑉H)	

(8.19)	

The	equilibrium	components	of	Eq.	(8.3)	satisfy	the	equilibrium	
adiabatic	energy	equation.	i.e.,	

𝑉G ⋅ 𝛻𝑝G = −(5/3)𝑝G𝛻 ⋅ 𝑉G	 (8.20)	
Subtracting	Eq.	(8.20)	from	Eq.	(8.19),	it	yields	the	perturbed	
adiabatic	energy	equation	

𝜕
𝜕𝑡
+ 𝑉G ⋅ 𝛻 𝑝H + 𝑉H ⋅ 𝛻𝑝G + 𝑉H ⋅ 𝛻𝑝H

= −
5
3
𝑝G𝛻 ⋅ 𝑉H −

5
3
𝑝H𝛻 ⋅ 𝑉G −

5
3
𝑝H𝛻 ⋅ 𝑉H	

(8.21)	
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For	small	amplitude	perturbation,	𝑂(𝐴H/𝐴G) = 𝑂(𝜖) < 10NO,	we	
can	ignore	the	second	order,	𝑂(𝜖>),	or	higher	order	terms	in	Eqs.	
(8.15),	(8.18),	&	(8.21).	The	linearized	fluid	equations	are	:	
The	linearized	continuity	equation	

𝜕
𝜕𝑡
+ 𝑉G ⋅ 𝛻 𝜌H + 𝑉H ⋅ 𝛻𝜌G = −𝜌G𝛻 ⋅ 𝑉H − 𝜌H𝛻 ⋅ 𝑉G	 (8.22)	

The	linearized	momentum	equation	

𝜌G
𝜕
𝜕𝑡
+ 𝑉G ⋅ 𝛻 𝑉H + 𝜌G𝑉H ⋅ 𝛻𝑉G + 𝜌H𝑉G ⋅ 𝛻𝑉G
= −𝛻𝑝H + 𝜌H𝑔	

(8.23)	

The	linearized	adiabatic	energy	equation		
𝜕
𝜕𝑡
+ 𝑉G ⋅ 𝛻 𝑝H + 𝑉H ⋅ 𝛻𝑝G = −

5
3
𝑝G𝛻 ⋅ 𝑉H −

5
3
𝑝H𝛻 ⋅ 𝑉G	 (8.24)	
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8.4.		Sound	Wave	in	a	Medium	With	Uniform	Background	Flow		
	
If	the	background	flow	velocity	is	uniform,	all	the	spatial	
derivatives	of	the	background	flow	velocity	become	zero.		We	can	
also	choose	the	moving	frame	to	be	the	equilibrium	flow	rest	
frame	(𝑉G = 0).		Thus,	Eqs.	(8.22)~(8.24)	become	

𝜕
𝜕𝑡
𝜌H = −𝜌G𝛻 ⋅ 𝑉H − 𝑉H ⋅ 𝛻𝜌G	 (8.25)	

𝜌G
𝜕
𝜕𝑡
𝑉H = −𝛻𝑝H + 𝜌H𝑔	 (8.26)	

𝜕
𝜕𝑡
𝑝H = −

5
3
𝑝G𝛻 ⋅ 𝑉H − 𝑉H ⋅ 𝛻𝑝G	 (8.27)	
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Likewise,	the	equilibrium	momentum	equation	(8.17)	becomes	
−𝛻𝑝G + 𝜌G𝑔 = 0	 (8.28)	

For	𝑔 = −𝑧𝑔,	Eq.	(8.28)	can	be	rewritten	as	
𝜕𝑝G
𝜕𝑥

=
𝜕𝑝G
𝜕𝑦

= 0	 (8.29)	

𝜕𝑝G
𝜕𝑧

= −𝜌G𝑔	 (8.30)	

Namely,	𝑝G = 𝑝G 𝑧 .			
因為重力的關係，讓平衡態氣體壓力隨高度	𝑧	的增加而遞減。

嚴格說來，波動如果沿著不均勻的平衡態方向傳播，波動的振

幅、速度、與波長都會有很大的變化。也因此，沿著±𝑧	方向

傳播的波，也不會是簡單的正弦波或餘弦波。	
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8.5.		Fourier	Transform	and	Dispersion	Relation		
為了簡化起見，我們考慮沿著水平方向傳播的聲波。並取波前

進方向為	𝑥	方向。也就是	𝑘 = 𝑥𝑘	。我們做平面波的假設，其

中波前所涵蓋的面，它的大小尺度遠大於波長，但是在𝑧	方向

的涵蓋面又不會太廣，所以可以忽略氣體壓力（甚至氣體密

度）隨高度的變化情形。同樣的，我們也假設波的水平傳播距

離，遠小於地球半徑，因此也可以忽略地球的曲率，以及地球

旋轉所造成的科氏力。The	above	plane	wave	assumption	yields	

𝐴H 𝑥, 𝑡 = 𝑅𝑒 [𝐴H(𝑘Z)𝑒[[\]^N_](\])`]	]
Z

	 (8.28)	
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or	simply	
𝐴H 𝑥, 𝑡 = 𝑅𝑒 𝐴H(𝑘)𝑒[[\^N_(\)`]	 	 (8.29)	

where	𝐴H	can	be	𝜌H,	𝑝H,	or	𝑉H^.		After	Fourier	transform,	the	PDE	
of	𝐴H 𝑥, 𝑡 	will	be	converted	into	an	algebra	equation	of	𝐴H(𝑘),	
where		

𝛻 = 𝑥
𝜕
𝜕𝑥

→ 𝑖𝑘𝑥		and	
𝜕
𝜕𝑡
→ −𝑖𝜔	

	
Namely,	The	Fourier	transform	of	Eq.	(8.25),	the	x-component	of	
Eq.(8.26),	and	Eq.	(8.27)	becomes,	respectively,		

−𝑖𝜔𝜌H = −𝜌G 𝑖𝑘 𝑉H^	 (8.30)	
−𝑖𝜔𝜌G𝑉H^ = −𝑖𝑘𝑝H	 (8.31)	

−𝑖𝜔𝑝H = −(5/3)𝑝G(𝑖𝑘)𝑉H^	 (8.32)	
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Substituting	Eq.	(8.32)	into	𝜔(8.31)	to	eliminate	𝑝H,	it	yields	

(
𝜔>

𝑘>
− 𝐶AG> )𝑉H^ = 0	 (8.33)	

where	𝐶AG> = (5/3)(𝑝G/𝜌G).	
我們也可以反過來將 Eq.	(8.31)	代入𝜔(8.32)	消去	𝑉H^,	得到	

(
𝜔>

𝑘>
− 𝐶AG> )𝑝H = 0	 (8.34)	

或將 Eq.	(8.30)	代入 Eq.	(8.33)	消去	𝑉H^,	得到	
𝜔>

𝑘>
− 𝐶AG>

𝜔
𝑘
𝜌H
𝜌G
= 0	 (8.35)	

For	non-zero	𝑉H^,	𝑝H,	and	𝜌H,	Eqs.	(8.33)~(8.35)	yields	the	
“dispersion	relation”	of	sound	wave		

𝜔> 𝑘 = 𝑘>𝐶AG> 	 (8.36)	



	 19	

The	phase	velocity	of	the	sound	wave	is		

𝑣fg =
𝜔
𝑘
𝑘 = 𝑘𝐶AG	 (8.37)	

By	definition,	the	group	velocity	is		
𝑣h = 𝛻\𝜔 𝑘 	 	

Thus,	the	group	velocity	of	the	sound	wave	is		

𝑣h = 𝑥
𝑑𝜔 𝑘
𝑑𝑘

= 𝑥𝐶AG = 𝑣fg	 (8.38)	

	


